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Gels are functional materials with well-defined structures (three-dimensional networks)

assembled from the dispersed colloids, and capable of containing a large amount of

water, oil, or air (by replacing the liquid within the gel pores), known as a hydrogel,

oleogel, and aerogel, respectively. An emulsion gel is a gelled matrix filled with emulsion

dispersion in which at least one phase, either continuous phase or dispersed phase forms

spatial networks leading to the formation of a semisolid texture. Recently, the interest

in the application of gels as functional colloids has attracted great attention in the food

industry due to their tunablemorphology andmicrostructure, promising physicochemical,

mechanical, and functional properties, and superior stability, as well as controlled release,

features for the encapsulated bioactive compounds. This article covers recent research

progress on functional colloids (emulsion gels), including their fabrication, classification

(protein-, polysaccharide-, and mixed emulsion gels), and properties specifically those

related to the gel-body interactions (texture perception, digestion, and absorption),

and industrial applications. The emerging applications, including encapsulation and

controlled release, texture design and modification, fat replacement, and probiotics

delivery are summarized. A summary of future perspectives to promote emulsion gels’

use as functional colloids and delivery systems for scouting potential new applications

in the food industry is also proposed. Emulsion gels are promising colloids being

used to tailor breakdown behavior and sensory perception of food, as well as for the

processing, transportation, and targeted release of food additives, functional ingredients,

and bioactive substances with flexibility in designing structural and functional parameters.

Keywords: biopolymer-based colloids, emulsion gels, delivery systems, functional material, gel-body interactions,

food applications

INTRODUCTION

A gel is an advanced material possessing three-dimensional (3D) networks with the ability to
incorporate large amount of water (hydrogel), oil (oleogel), or air (aerogel), due to its spatial
structure and unique properties, including high surface area, porosity, and loading capacity (1, 2).
A gel can also be defined as “an intermediate (semisolid) product between a solid and a liquid
possessing both elasticity and viscosity characteristics” (3). An emulsion gel is also known as
emulsion-filled gel or emulgel is “an emulsion dispersion filled gel matrix, wherein at least one
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phase either continuous phase or dispersed phase of emulsion
forms the 3D network structure leading to the gel formation”.
These gels possess superior stabilities against chemical reactions
(e.g., hydrolysis and oxidation), physical processes (e.g., phase
inversion and/or separation), and environmental changes such
as pH, temperature, and ionic strength (4–8) compared to
traditional emulsions, which tend to break down with time
by gravitational separation, droplets aggregation, and Ostwald
ripening (1, 9–11).

The biopolymers (e.g., polysaccharides and proteins) based
emulsion gels produced by different gelation methods and
coupled with a wide range of functionalities had the capability
of forming complex microstructures such as single continuous
phase-, double continuous phase-, uniform continuous-, and
nonhomogeneous as well as several other gelled systems
(Figure 1) (12, 13), making them diverse biomaterial and
efficient delivery vehicles for versatile industrial applications.
Functional food additives, bioactive phytochemicals, essential
oils, and lipophilic compounds including carotenoids, phenolic
acids, flavonoids, stilbenes, vitamins, and unsaturated fatty acids
exhibit health-promoting characteristics but have difficulty being
incorporated into food matrixes due to their low chemical
stability, limited water solubility and dispersibility, as well
as poor cell adsorption (12, 14–18). During the past 10
years (Figure 2), emulsion gels have emerged as a promising
biomaterial with desirable features and flexible fabrication
potential to be employed for the protection and transportation of
health-promoting functional ingredients and designing heathier
formulations with improved desired sensorial textures, digestion,
bioaccessibility, and bioavailability (8, 12, 17, 19, 20).

In recent years, many studies have reported the potential
of emulsion gels to effectively encapsulate, protect, and
targeted release of functional ingredients and nutraceuticals
against adverse environmental conditions by modifying their
dispersibility and stability in the food, controlling their release
time and rate, as well as improving bioavailability. To date,
emerging applications of emulsion gels to encapsulate and deliver
hydrophilic and lipophilic nutraceuticals (7, 21, 22), controlled
release of bioactives (12, 23), low fat foods with reduced lipolysis
(24, 25), reducing fat, sugar, and salt in foods (26–28), probiotics
delivery in the gastrointestinal tract with improved viability (29),
desired sensorial textures with improved physical stability (30,
31), structuring plant-oils as animal-fat replacer and substitute of
partially hydrogenated oils (32–34), and designing complex food
structures (textures, shapes, and nutritional contents) using 3D
printing (35) have attracted tremendous attentions for designing
safer, healthier, and sustainable food products.

This review summarizes the latest developments in
engineering biopolymers (e.g., polysaccharides and proteins)
based food gels, emphasizing their food applications. The gels
fabrication, their classification according to the composition of
the gel matrix (protein-, polysaccharide-, and mixed emulsion
gels), and properties, specifically those related to the gel-body
interactions (texture perception, digestion, and absorption), are
all discussed (Figure 3). The emerging industrial applications,
including encapsulation and controlled release, texture design
and modification, fat replacement, and probiotics delivery are

highlighted. A summary of conclusions and future perspectives
for scouting potential new applications of emulsion gels in the
food industry is also presented.

EMULSION GELS: FABRICATION AND
CLASSIFICATION

The formation of an emulsion gel takes place via gelation
of the following: (i) continuous phase or (ii) dispersed
phase in the precursor solution through different methods,
including emulsification, heating, heating and cooling, enzymatic
treatment, pH adjustment, salt induced, etc. It has been
established that gels formed via gelation usually had superior
stability against environmental stresses due to their strong
networks (3D) developed by the interconnected biopolymer
molecules (1, 12). The gelation process that leads to the formation
of gel matrix plays a key role in determining the final properties
(physicochemical, mechanical, and functional) of emulsion gels.
Briefly, the biopolymer type and concentration, processing
conditions (pH, temperature, and ionic strength), Pickering
particles, such as emulsifiers (size, wettability, surface charge,
and amount), and cooling temperature, as well as the aging
period after gelation, are the key points that strongly influence
the emulsion gels properties. The emulsion gels can be classified
into three categories based on biopolymers composition in a gel
matrix, including the following: (i) protein-based emulsion gels
(e.g., caseins, gelatin, soy, andwhey proteins), (ii) polysaccharide-
based emulsion gels (e.g., alginate, starch, pectin, and xanthan
gum), and (iii) mixed emulsion gels (e.g., soy protein isolate-
beet pectin, xanthan gum-guar gum, and zein-sodium caseinate-
propylene glycol alginate). In recent years, researchers have
mostly focused on the formation of protein-based emulsion gels,
which might be due to their excellent emulsifying properties,
relatively easy processing (gelation), and inheritable nutritional
composition (19, 36).

PROTEIN-BASED EMULSION GELS

Protein emulsion gels usually had a relatively high protein
concentration in the gel matrix, and caseins, gelatin, soy,
and whey proteins are the widely used biopolymers in
emulsion gels production due to their abundance, renewable
resources, and promising emulsifying and gelling properties.
Gelation techniques including heat-set (heating), and cold-set
such as acidification (acid-induced), ethanol-induced, enzyme
treatment, salt addition (salt-induced), and hydrostatic pressure-
induced approaches have been applied to synthesize the protein-
based emulsion gels (12, 37).

Recently, Luo et al. (19) synthesized whey protein emulsion
gels and then microgel particles with an average size of 0.5
± 0.05µm via heating (90◦C for 20min) followed by cooling
(4◦C for overnight) method to enhance the bioaccessibility of
capsaicinoids. The optimized formula includes whey protein (10
wt%), soybean oil (19.98 wt%), and capsaicinoids (0.02 wt%) used
in the preparation of emulsion gels. The in vitro study results
suggested that emulsion gels as a delivery system significantly
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FIGURE 1 | Schematic representation of different types of emulsion gels; oil/hydrogel (A), oleogel/water (B), water/oleogel (C), hydrogel/oil (D), water/oil/hydrogel (E),

water/oleogel/water (F), hydrogel/oil/water (G), oil/water/oleogel (H), oil/hydrogel/oil (I), and oleogel/water/oil (J).

FIGURE 2 | Publications per year during the last 10 years (2011-2021) were analyzed by “Sci-finder” using “emulsion gel” as the keyword for searching.
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FIGURE 3 | An overview of emulsion gels, indicating their classification, gel-body interactions (texture perception, digestion, and absorption), and emerging industrial

food applications.

increased the bioaccessibility of encapsulated capsaicinoids and
showed a positive correlation with the extent of lipid digestion.
The bioaccessibility indicated the release of capsaicinoids from
gel matrix during digestion and their solubilization in the
aqueous phase in the gastrointestinal tract. Fu et al. (36)
fabricated whey protein emulsion gels containing medium chain
triglyceride and cinnamaldehyde oils by the heating method.
The scanning electron microscopy results showed that cross-
linking occurred between the whey proteins and cinnamaldehyde
at the oil-water interfaces leading to an effective reduction in
viscosity, an increase in viscoelasticity, and smaller and uniform
pore size in emulsion gels. The in vitro study on gastrointestinal
fate showed that protein-based gel had slower disintegration than
protein-cinnamaldehyde gel and revealed a faster disintegration
due to the addition of cinnamaldehyde that softened the gel.

Lv et al. (38) produced Pickering emulsion gels containing
canola oil stabilized by whey protein isolate gelled particles aimed
to encapsulate curcumin. The formed gels had the highest loading
efficiency of 90.3%, which contributed to the gel’s compact
structure (solid-like) that retained the maximum percentage of

curcumin. The in vitro release under the gastric and intestinal
conditions revealed that emulsion gel had a slower release rate
than liquid emulsion ascribed to the gel-like structure which
showed a better resistance against the hydrolysis by pepsin.
Moreover, the emulsion gel encapsulating curcumin hindered
the degradation and showed remarkable stability, i.e., >70%
amount remained compared to only 7% of control (without
any protection) during storage of 240min under the light. Tan
and his team prepared highly concentrated emulsion gels as
nutraceuticals cargos by encapsulating 80% sunflower oil by
employing gelatin particles (∼200 nm) as the emulsifiers at
concentrations of 0.3–1.5 wt%. The formed gels remained stable
even after 90 days of storage and embedded β-carotene showed a
very high retention rate (90%) than that of bulk oil (8%) recorded
after 27-days (39, 40). Xu et al. (41) produced emulsion gels
containing 80% dodecane stabilized by β-conglycinin Pickering
particles (0.2–1 wt%), and formed gels showed excellent stability
during 60-days storage as well as heating at 100◦C for 15min.
Furthermore, a progressive decrease was observed in the size
of the droplets from 60 to 24µm with an increase in particle
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concentration from 0.2 to 1 wt%. Thus, emulsion gels and
Pickering emulsion gels can improve the digestion process
along with providing protection to the embedded lipophilic
compounds attributed to the compact gel structure.

POLYSACCHARIDE-BASED EMULSION
GELS

These emulsion gels comprise polysaccharide food polymers
with the gelation capacity that depends on their source and
structure, and alginate, agarose, modified starches (e.g., octenyl
succinic anhydride), carrageenan, curdlan, inulin, konjac gum,
and xanthan gum were the commonly employed biopolymers
in the formation of emulsion gels. Various methods, including
heating, heating and cooling, high shear, freeze-thaw cycles,
pH, ions induced (Ca2+ and K+), and salts addition (CaCl2)
can be applied to induce gelation leading to the formation of
emulsion gels (1, 37). Polysaccharide-based emulsion gels are
thermoreversible and their derived colloidal particles are also
considered less efficient emulsifiers to produce emulsion gels
compared to protein-based emulsion gels that exhibit long-
term stability because of protein molecules that not only act
as gel substrates but are excellent stabilizers (1, 10, 12, 28).
However, polysaccharide-based biopolymers are more effective
to increase viscosity and also exhibit inherent resistance to
digestive enzymes, such attributes make them particularly
suitable as delivery vehicles for bioactive compounds that require
a prolonged digestive journey for the encapsulates (20, 42, 43).

Torres et al. (30) fabricated starch-based emulsion
gels through heat-induced gelation, containing sunflower
oil volume fraction (5–20 wt%), wheat starch (15–
20 wt%), and octenyl succinic anhydride (OSA)
https://www.sciencedirect.com/topics/biochemistry-genetics-and
-molecular-biology/modified-starch modified starch (0.5–2
wt%). The results indicated that when starch was used at a
concentration of 20 wt% and oil at 5–15 wt%, the gel elastic
modulus increased by 50%, whereas a further increase in oil
content (20 wt%) strengthened the gel with an increment in the
elastic modulus up to 70%. This reinforcement in the gel matrix
is attributed to the hydrophobic interactions between oil droplets
and interfacial starch, and hydrogen bonding among starch
polymers specifically amylose molecules to form 3D networks.
The authors also produced gel particles with a diameter ranging
from 5 to 50µm via a top-down shearing of the formed gels and
suggested that these novel emulsion gels and derived microgel
particles can be employed in the delivery of bioactive substances
in various food and personal care products.

Mokhtari et al. (44) developed alginate
nanogels via emulsification and internal gelation
induced by https://www.sciencedirect.com/topics/chemistry/
calcium-chloride calcium chloride to deliver nutraceuticals with
high encapsulation efficiency. The results showed that sodium
alginate (0.5%), canola oil (400ml), calcium chloride (0.05M),
and Tween 80 (100ml) were the optimized concentrations in
formulating alginate-based gel nanoparticles. Moreover, the
nanocarriers derived from gel showed a spherical shape and

a higher encapsulation yield was obtained with the increasing
alginate amount due to increased viscosity that imparted
more cohesion property leading to high entrapment efficiency.
Furthermore, the gel particle size and encapsulation yield were
found highly proportional to the alginate concentrations as
high amounts lead to higher while small amounts resulted in
lower values. Zhang et al. (42) prepared emulsion gel using
carrageenan as gel matrix stabilized by mixed colloidal Pickering
nanoparticles made of zein-carboxymethyl dextrin biopolymers
and N-ethyl-N-(3-dimethylaminopropyl) carbodiimide as the
crosslinking agent. The in vitro digestion analysis suggested that
the bioaccessibility of curcumin in crosslinked emulsion gel was
decreased compared to emulsion due to the spatial networks
developed in emulsion gel. Briefly, the network structure slowed
down the digestive enzymes’ diffusion into the gel matrix, thus
delaying the https://www.sciencedirect.com/topics/biochemistry-
-genetics-and-molecular-biology/enzymatic-hydrolysis
hydrolysis and digestion of oil droplets encapsulating curcumin
and subsequently decreasing the bioaccessibility. In addition,
this study’s investigations revealed that photochemical and
thermal stability of the impregnated curcumin in emulsion gel
was significantly improved due to crosslinking and exhibited
high retention rates of 90.7 and 82.2% under light and
heat, respectively.

MIXED EMULSION GELS

Interest in the production of mixed gels has attracted more
attention from researchers since they offer enriched gelling
behaviors and more precise control on the physicochemical,
rheological, and functional properties over the individual
emulsion gels. Le et al. (20) reported that mixed gels (protein
and polysaccharide) had outstanding water-holding properties
(up to 600 g/g of mixed gel), and were also capable to produce
a diverse range of microstructures that can be further exploited
to bring desirable textures and sensory attributes. For instance,
during the process of homogenization, the polysaccharide part
imparts better stability against environmental conditions such
as pH, temperature, and ionic strength, while the protein part
contributes to producing fine droplets size through excellent
emulsifying capacity leading to a homogenous structure (10).
Gelation methods, including heating, cooling after heating, high
shear, enzyme treatment, and coacervation can be applied to
produce mixed emulsion gels (20, 45).

Particularly, coacervation is a commonly employed
method in the formation of mixed gels from oppositely
charged biopolymers, (e.g., protein-protein, polysaccharide-
polysaccharide, and protein-polysaccharide), by regulating the
mixture ratio (biopolymer type and concentration), temperature,
pH, ionic strength, etc. During this process, the charged species
(e.g., H+ and OH−) adsorbed on biopolymers surfaces interact
through electrostatic complexation and develop 3D networks
leading to gel formation (1, 20). Table 1 describes different
mixed emulsion gels combinations that include the following:
(i) protein-protein (72), (ii) polysaccharide-polysaccharide (43),
and (iii) protein-polysaccharide, etc. (68).
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TABLE 1 | Gel-based functional delivery systems, including protein-, polysaccharide-, and mixed emulsion gels (emulgels).

Delivery systems Gel matrix Oil phase Bioactives Applications References

Protein-based

emulsion gels

Whey protein isolate Corn oil Probiotics Encapsulation and

controlled release

Gao et al. (29)

Soy protein isolate Olive oil (40%) Polyphenols Encapsulation and

controlled release

Munoz-Gonzalez et al. (46)

Soy protein Soybean oil (50%) Inulin Fat replacement de Souza Paglarini et al. (33)

Whey protein isolate Soybean oil (50%, v/v) ……. Functional food Xi et al. (47)

Whey protein isolat Mixed oils (coconut & corn,

20% of emulsion)

β-carotene Encapsulation and

controlled release

Lu et al. (48)

Whey protein isolat Soybean oil (19.98 wt%) Capsaicinoids Encapsulation and

controlled release

Luo et al. (49)

Whey protein isolate Soybean oil (30%) ……. Encapsulation and

controlled release

Mantovani et al. (50)

Whey protein isolate Soybean oil (30%) Retinol (vit. A) Encapsulation and

controlled release

Beaulieu et al. (51)

β-lactoglobulin Sunflower oil (30%) α-Tocopherol (vit. E) Encapsulation and

controlled release

Liang et al. (52)

Soy protein isolate ……. Riboflavin (vit. B2) Encapsulation and

controlled release

Maltais et al. (21)

Wheat gluten Corn oil (56%) EGCG + quercetin Encapsulation and

controlled release

Chen et al. (53)

Polysaccharide-

based emulsion

gels

Carrageenan Soybean oil (50%) ..…. Fat replacement Paglarini et al. (28)

Alginate Canola oil (40, 60, and 80%) Peppermint extract Encapsulation and

controlled release

Mokhtari et al. (44)

Gellan gum Soybean oil (60%) Probiotics Probiotics delivery Picone et al. (54)

Starch Soy oil (85%) ..…. Texture design and

modifications

Yang et al. (55)

Rice starch Sunflower oil (40%) …… Texture design and

modifications

Zhang et al. (56)

Sodium alginate Paraffin oil (0.2%) Probiotics Probiotics delivery Qi et al. (57)

Sodium alginate Tea seed oil (0.2 g) Curcumin Encapsulation and

controlled release

Xu et al. (58)

Mixed emulsion gels Whey protein isolate-soy

protein isolate

Sodium alginate (0.4% ..…. Texture design and

modifications

Lin et al. (11)

Protein-protein

Whey protein- lactoferrin Corn oil (30 g) ..…. Reduced-fat products Yan et al. (59)

Whey protein-soy protein Olive oil, linseed oil, and fish

oil (44.39, 37.87, and

17.74%

Fatty acids (n-3) and

condensed tannins

Encapsulation and

controlled release

Freire et al. (60)

Polysaccharide-

polysaccharide

Alginate-konjac

glucomannan

Rapeseed oil (5–30%) …... Fat replacement Yang et al. (61)

Gellan gum- Pectin-

carrageenan-xanthan

Gum

Corn oil (10%) Quercetin Encapsulation and

controlled release

Chen et al. (53)

Xanthan gum-guar gum Sunflower oil (41%) Probiotics Probiotics delivery Pandey et al. (43)

Protein-polysaccharide whey protein

isolate-carrageenan

MCT oil (4mL) Curcumin Encapsulation and

controlled release

Su et al. (62)

black soybean

protein-sodium alginate

Soybean oil Insulin and quercetin Encapsulation and

controlled release

Han et al. (63)

Whey protein isolate-sodium

alginate

Corn oil (20% v/v) Lycopene Encapsulation and

controlled release

Liu et al. (64)

Soy proteinisolate-pectin Soybean oil [6% (v/v)] β-carotene Encapsulation and

controlled release

Zhang et al. (65)

Whey protein

isolate-alginate

Sunflower oil (0.5–20%) α-Tocopherol + resveratrol Encapsulation and

controlled release

Feng et al. (66)

(Continued)
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TABLE 1 | Continued

Delivery systems Gel matrix Oil phase Bioactives Applications References

Whey protein

isolate-xanthan gum

Babacu oil and tristearin

(4%)

Curcumin Fat replacement Geremias-Andrade et al.

(67)

Soy protein-sugar beet

pectin

Corn oil (15%) Ethyl butyrate Encapsulation and

controlled release

Hou et al. (68)

Whey protein isolate- rice

starch

Corn oil (2–8%) Carotenoids Encapsulation and

controlled release

Mun et al. (69)

Polysaccharide-

emulsifier

Kappa-carrageenan-

polysorbate

80

Algae oil Catechins Encapsulation and

controlled release

Alejandre et al. (70)

Protein-protein-

polysaccharide

Zein- sodium

caseinate-propylene glycol

alginate

Soybean oil (80%) …….. Texture design and

modification

Sun et al. (71)

Pandey et al. (43) formulated mixed emulsion gel using
sunflower oil and a combination of xanthan gum and guar
gum for the delivery of https://www.sciencedirect.com/topics/
biochemistry-genetics-and-molecular-biology/lactobacillus-
plantarum Lactobacillus plantarum 299v. The mechanical
strength and disintegration investigations on formed gel showed
significant improvements in the mechanical stability and gastric
acid resistance due to the combination of the xanthan gum
and guar gum in the dispersed phase of the formulation.
Moreover, the natural gums-based emulsion gel stored at
different conditions including 4, −20, and −196◦C, revealed
higher survival rates of encapsulated probiotics in the emulsion
gels compared to control. Hou et al. (68) designed mixed
emulsion gels via the enzymatic (mTGase) gelation method,
comprising flavored corn oil and stabilized by soy protein
isolate-sugar beet pectin complexes. Briefly, complex emulsified
emulsion gels presented more compact structures due to the
formation of strong interfacial networks ascribed to higher
emulsifier absorption at the oil-water interfaces. In addition, gas
chromatography analysis revealed that the ethyl butyrate release
rate was significantly lower before and after the mastication
process in emulsion gels due to their compact structure.

Zou et al. (73) prepared Pickering emulsion gels containing
corn oil volume fraction of 50% stabilized by complex Pickering
particles (zein-tannic acid- 1-1.5 wt%) having a three-phase
contact angle value of ∼86◦ and high interfacial activity. The
formed emulsion gels stabilized by complex Pickering particles
showed homogeneous structure and good stability over 30-
days of storage without any signs of oiling-off (creaming
and phase separation) due to their transformation from a
liquid state to a semisolid state ascribed to particles networks.
Wei et al. (72) produced highly concentrated emulsion gels
using ovotransferrin-lysozyme complex Pickering particles as
the stabilizers, and by increasing particle concentration from
0.5 to 2 wt% the size of the droplets decreased from 81.4
to 42.4µm at a fixed oil phase (75%). The formed emulsion
gels presented excellent stability during long-term storage and
inhibited the phase separation phenomenon because of particles
networks ascribed to electrostatic interactions. The Pickering
particles stabilized emulsion gels enhanced the bioaccessibility

of the impregnated curcumin by 22.2%, indicating gels as an
effective delivery system for lipophilic bioactive substances. (74)
fabricated Pickering emulsion gels by encapsulating medium
chain triglyceride oil (50-60%) stabilized by complex colloidal
particles (zein-pullulan - 2 wt%). The resultant gels showed
excellent stability against coalescence and phase separation and
no oil leakage was noticed even after 30-days of storage at
room temperature. The stability of emulsion gels was due to
the formation of compact interfacial layers by the colloidal
particles around the oil droplets, indicating their potential as
a delivery system for bioactive substances to design better
food formulations.

GEL-BODY INTERACTIONS

Texture Perception During Oral Processing
Texture perception is a complex process that correlates with the
properties of food such as chemical composition and structure as
well as physiochemical, mechanical, and enzymatic changes that
occur during oral processing (75, 76). Briefly, texture indicates
the rheology (hardness and brittleness-chewing) and tribology
(creaminess and smoothness-lubrication) related food attributes
sensed at early and later stages of oral processing, respectively
(1, 77–79). It has been found that the rheological properties were
correlated with the fracture stress and strain and determined
by the hardness and brittleness of food, whereas tribological
properties were linked with the friction coefficient perceived
by creaminess or smoothness (76, 80, 81). The rheological and
tribological properties of gels can be finely tuned by the gel
composition (biopolymer type and concentration), structure, and
mesh size to obtain the desired sensory attributes.

In recent years, interest in the application of emulsion gels
as a potential tool to mimic the food texture without affecting
their sensory perception by designing gels with reduced fat, sugar,
and salt has rapidly increased. The incorporation of emulsion
gel or derived particles into semisolid food formulations could
mimic the perception of fat because of the significant reduction
in friction coefficient through ball-bearing in the case of whey
proteins (82, 83) and enzymatic reactions for starch particles
(84). Interestingly, mouth-melting gels (e.g., gelatin-based gels)
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had excellent potential to increase the surface lubrication of
foods to achieve the desired mouthfeel of fat perception (85).
For instance, gelatin-based gels remain in a gel state at room
temperature but start melting at mouth temperature (37◦C), thus
could be effectively used in many food formulations to mimic fat
perception. In addition, emulsion gels can also avoid undesirable
sensory attributes of drugs or bioactive compounds by separating
them from the taste bud receptors in the mouth and delaying
their release in the digestive tract (26, 27).

Zhang et al. (56) used enzymatically hydrolyzed rice starch
(20 g) and sunflower oil (40 g) to fabricate emulsion-filled
gels, and the resulting gels showed a comparable texture
including hardness and cohesiveness similar to fat. Moreover, the
concentration of starch in the formulation directly influenced the
textural properties and flow behavior of formed gels. Briefly, the
firmness of emulsion gels was strengthened with the increase in
the concentration of starch, since the high content of amylose
and longer chains of amylopectin led to the formation of
harder emulsion gels. Luo et al. (49) prepared whey protein-
based emulsion gels comprising whey protein isolate 895 (10
wt%), soybean oil (19.98 wt%), and capsaicinoids (0.02 wt%),
and evaluated their oral breakdown behavior and mouth burn
perception. The capsaicinoids-loaded whey protein emulsion
gels revealed a lower mouth burn perception due to higher
mechanical strength that resulted in a slower diffusion rate
of the encapsulates from the gel matrix and subsequently a
lower mouth burn. These results suggested that emulsion gels
had promising textural potentials which could be utilized to
mimic desirable sensorial perceptions as well as for masking the
undesirable flavors of bioactive compounds in food formulations
while maintaining their consumer acceptability.

Digestion
The digestion kinetics of food-grade polymer-based gels are
mainly influenced by the gelation process, for instance,
gelation (acid and heat) of milk proteins slowed down their
digestion rate and prolonged the gastric retention time without
affecting the enzymatic cleavage sites (86, 87). Likewise, the
majority of polysaccharides (dietary fiber form) in the gel
state can significantly increase the gastric emptying time due
to the thickening effect that becomes prominent upon their
transformation from polymer to gel particles (88). Moreover,
gelation also delays the diffusion of digestive enzymes into the
gel matrix, thus digestion process of bioactive compounds can
be substantially delayed by encapsulating into food gels (42).
Therefore, via decreasing the digestion rate and prolonging
gastric retention time, gels impart health-promoting effects,
including enhanced satiety to attenuate obesity, good control of
glucose and cholesterol metabolism to prevent chronic disorders,
etc. (26, 88, 89).

The gels digestion process leads to the release of the
encapsulated bioactive compounds that takes place through
different mechanisms, including disintegration, swelling,
molecular interactions, and erosion (1, 17, 18). In the process
of gel erosion, the human enzymes work synergistically with
the pH responses (e.g., oral cavity, stomach, small intestine, and
colon) to initiate the controlled release of embedded bioactive

agents at the target sites such as the small intestine and colon.
The pH differences of the gastrointestinal tract bring changes to
the overall charge on the surface of biopolymers, thus, charge
shifting and different digestion behaviors in combination with
the interior environment make gels promising vehicles for the
efficient delivery of sensitive bioactive substances. For small
intestine delivery, a protein can be entrapped in calcium alginate
gel particles at pH 3 due to the opposite charges on protein and
alginate biopolymers, and protein can be easily released in the
small intestine at pH 7 because at this pH both biopolymers
possess negative charges (90). Therefore, the enzymes diversity
and pH responses show the potential to develop functional
delivery systems for the encapsulation, protection, and release
of bioactive at targeted sites, that could be further fine-tuned
by manipulating the differences in the ionic strengths between
the food gels formulations and the gastrointestinal environment
(17, 91, 92).

Lin et al. (11) fabricated alginate-based emulsion gels
stabilized by proteins (whey protein and soy protein isolates
as emulsifiers) and tomato-derived lycopene was encapsulated
in gels to study the in vitro digestion and its release behavior.
The results showed a delayed release of the encapsulated
lycopene from emulsion gels; whey protein isolate stabilized
alginate emulsion gel release commenced at 4-4.5 h, soy protein
isolate stabilized gel at 3.5-4 h, whereas an early release of 2.5-
3 h was observed in alginate-based gel without any protein.
The release corresponds to the start point of the structural
collapse and degradation of gel networks after swelling during
in vitro digestion of the emulsion gels. The whey protein
had a better emulsifying capacity and also developed stronger
interactions with alginate, thus improving the gel properties such
as increasing Young’s modulus of emulsion gel. A higher Young’s
modulus could retard the swelling process and subsequently
prevents the collapse of gel structure during the in vitro gastric
digestion. Thus, controlled release of encapsulated lycopene
was achieved via delayed degradation of gel matrix during the
in vitro intestinal digestion. Therefore, emulsion gels can be
employed to protect the health-promoting substances from the
harsh conditions of the gastrointestinal tract and deliver them to
specific target sites with improved digestion and bioaccessibility
(93, 94).

Absorption
It is a proven fact that undigested food is difficult to transport
leading to poor absorption of the inheritable nutrients into
the body because of barriers in the gastrointestinal tract
epithelial cells and especially the mucous layer. The mucous
layer comprises a 3D network of mucin glycosylated protein
fibers with an average mesh size of ∼100 nm (45, 95, 96).
In this regard, emulsion gels and derived particles with
optimum surface attributes (e.g., size, shape, surface charge,
and hydrophilicity/hydrophobicity) had the potential to enhance
the mucosal permeability and maximize the bioavailability
of embedded bioactive compounds (37, 94). Among the
biopolymers, chitosan exhibits the potential to adhere and
travel through the mucous layers to improve cellular uptake
via reversible depolymerization of cellular actin and strong
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interactions with the protein molecules. Thus, chitosan emulsion
gels are popular delivery cargos with the superiority of enhancing
cellular permeability without damaging epithelial cells (93,
96). For particles traversing through the epithelial cells, the
main pathways include paracellular migration and transcellular
translocation through tight junctions and enterocytes or M cells,
respectively. Therefore, increasing the translocation of loaded
gel particles is an important strategy for efficient delivery of the
biomolecules with low mucosal permeability, including proteins,
peptides, antimicrobial agents, nutraceuticals, and functional
food ingredients (37, 93, 94, 97).

Haug et al. (98) designed gelatin-based emulsion gels and
investigated their capability as delivery vehicles to boost the
bioavailability of omega-3 fatty acids including eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA). The study’s
findings revealed that emulsion gels significantly increased the
EPA and EPA + DHA levels in the blood plasma by 44.9 and
43.3%, respectively, as compared to gelatin capsules oral intake.
This significant increase was attributed to the pre-emulsification
of the fish oil as well as the design of the delivery vehicles
(chewable and soft (emulsion gels) vs. intact and solid (capsules).
Compared to gel capsules consumption, EPA and EPA + DHA
loaded emulsion gels showed the highest increase of 100.4 and
105.6%, respectively, indicating gels’ potential as efficient delivery
systems in improving the bioavailability of gel matrix embedded
functional ingredients.

Food Applications
Emulsion gels and derived particulates have emerged as
promising delivery systems for industrial food applications due
to their unique properties such as protection of functional
food additives, controlled release of bioactive substances,
and improved digestion and absorption of macro- and
micronutrients in the gastrointestinal tract (37, 75, 99, 100).
The industrial food applications of emulsion gels, including
encapsulation and controlled release, texture design and
modification, fat replacement, and probiotics delivery with
enhanced viability are discussed in the following section.

Encapsulation and Controlled Release
Encapsulation is a promising technique widely employed for the
protection and targeted delivery of bioactive compounds due to
the superior stability of embedded substances against chemical,
physical, and environmental stresses, and their desired controlled
release (e.g., fast or sustained). To date, different delivery systems
have been successfully developed with desirable structures and
characteristics such as protected encapsulation and delivery of
various bioactive nutrients with improved health benefits (17, 37,
101). In recent years, emulsion gels have garnered considerable
attention as promising encapsulation and delivery cargos due to
their superior properties for many food applications.

Xu et al. (41) prepared alginate-based nanoemulsion-filled
gels fabricated by a facial approach of self-emulsification and
sodium alginate ionic gelation. The formed gel loaded with
curcumin showed an average particle size of 0.46 ± 0.02mm,
a loading capacity of 7.25 ± 3.16 mg/g, and encapsulation
efficiency of 99.15 ± 0.85%, and the release rate was found

significantly higher at pH 9 than at pH 7. The results showed
that the alkaline condition (pH 9) achieved the half-release time
of curcumin (50% release) in just 3 h due to an accelerated
corrosion process compared to the neutral environment (pH 7)
that provided stability to the curcumin loaded emulsion filled
gels. Zhang et al. (102) produced gel as a delivery system from
whey protein isolate through heat gelation (24 h at 85◦C) for
the encapsulation of β-carotene. The encapsulation efficiency
was greatly improved from 76.55 to 92.11% than that of
untreated whey protein isolate. The layers of protein isolate
enhanced the protection of β-carotene, resulting in improved
digestion resistance and subsequently increased bioavailability.
Chen et al. (103) produced Pickering particle-stabilized emulsion
gels via emulsification and pH adjustment and coencapsulated (-
)-epigallocatechin-3-gallate (EGCG-hydrophilic bioactive) in the
inner water phase, whereas quercetin (lipophilic bioactive) in
the oil phase (Figure 4). The formed gels used to coencapsulate
bioactives showed an encapsulation efficiency of 65.5 and 97.2%
for (-)-epigallocatechin-3-gallate and quercetin in the aqueous
phase and oil phase, respectively. Furthermore, in vitro study
revealed that gels improved the bioaccessibility by 48.4 and
49% compared to control (water suspension) by 25.8 and 15%,
for epigallocatechin-3-gallate and quercetin, respectively. Thus,
emulsion gels as delivery systems had the potential for the
encapsulation and coencapsulation of hydrophilic and lipophilic
bioactive along with high encapsulation efficiency and controlled
release features to enhance their bioaccessibility. In summary,
gels are efficient cargos that could be used in improving
the digestion, bioaccessibility, and bioavailability of bioactive
compounds, functional ingredients, and pharmaceuticals.

Texture Design and Modification
The increasing consumers’ awareness and industrial demands
for clean-label food products have challenged the use
of traditional synthetic food additives (e.g., thickeners,
moisture absorbers, and emulsifiers) in designing food
structures with desired properties. Employing emulsion
gels is appropriate for various industrial food applications, for
instance, they can be employed for modifying the texture and
designing safer and healthier functional foods with improved
physicochemical properties. Furthermore, the texture of
emulsion gels can be fabricated by varying the biopolymer
type and concentration, Pickering particles concentration
(emulsifier), addition of functional additives, and processing
conditions such as pH, ionic strength, and temperature
(8, 12).

Zhang et al. (56) prepared emulsion-filled gels (EFGs) using
enzymatically hydrolyzed rice starches (ERS) instead of native
rice starch. The amount of starch in the gel medium had
a direct impact on the final properties of ERS-EFGs. The
addition of starch was found responsible for increasing the
storage modulus (G′) and loss modulus (G′′), as well as
improving the firmness and freeze-thaw stability of resultant
ERS-EFGs. On the other hand, the higher amount of emulsion
droplets diluted the starch concentration, causing a reduction
in both G′ and G′′, freeze-thaw stability, and firmness. Taktak
et al. (8) synthesized the gelatin-based emulsion gels from
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FIGURE 4 | Optical microscopic image and visual appearances of emulsion gels; (A) Emulsion dispersion droplets, (B) Blank emulsion gel, and (C)

Epigallocatechin-3-gallate and quercetin co-loaded emulsion gel. The formed gel showed an encapsulation efficiency of 65.5 and 97.2%, whereas enhanced the

bioaccessibility by 48.4 and 49% for (-)-epigallocatechin-3-gallate and quercetin, respectively. In addition, emulsion gel showed lower release rates of 73.3 and 31.7%

and improved stability by 63.6 and 82.3% for epigallocatechin-3-gallate and quercetin after 8-h incubation in specific environmental conditions (simulated intestinal

fluid) and remained stable to phase separation during 30-days storage at 4◦C (D) (103).

European eel skin gelatin (ESG) and European oil (EO). The
emulsion gels were prepared using the weight of EO:ESG in
1:2 and 1:4 (w/w) ratio through the homogenization process or
homogenization followed by sonication. The textural properties
such as hardness (7.87N), masticability (35.94 Nmm), breaking
strength (4.72N), and rigidity (1.29 N/mm) were higher in
gelatin gel (control) compared to gelatin based emulsion
gels, indicating that emulsion gels were more flexible than
gelatin gel. Gao et al. (29) synthesized high internal phase
emulsion gels, prepared by whey protein isolate and pectin, and
gelled by the addition of D-(+)-gluconic acid δ-lactone and
calcium to form double networks high internal phase emulsion

gels. The structural properties, such as hardness (220.77 ±

11.07 g), adhesiveness (168.4 ± 31.18 g/s), gumminess (129.98
± 4.63 g), and chewiness (108.41 ± 23.91 g) of the internal
phase emulsion gel (whey protein isolate and 2% pectin),
were significantly higher as compared to hardness (125.59 ±

18.64 g), adhesiveness (35.2 ± 8.1 g/s), gumminess (51.02 ±

16.85 g), and chewiness (50.79± 17.04 g) of a hydrogel (prepared
with similar composition as in internal phase emulsion gel).
Thus, the incorporation of emulsion gels in foods as functional
colloids exhibits the potential to regulate textural (rheology and
tribology) and functional properties such as reduced sugar, salt,
or cholesterol contents.
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FIGURE 5 | Emerging industrial food applications of emulsion gels (emulgels).

Fat Replacement
Worldwide, cardiovascular diseases developed due to excessive
intake of trans-fats are considered a major cause of morbidity
and mortality (104). Mozaffarian et al. (105) reported that
consumption of processed foods rich in saturated and artificial
trans-fats elevated the prevalence of coronary heart disease
from 23 to 29% when energy intake was increased by only 2%
from foods containing trans-fats. Moreover, the United States
Food and Drug Administration had also put a ban on partially
hydrogenated oils used in processed foods, since they are

a major source of trans-fats (106). Thus, the consumers’
concerns about the harmful effects of fat consumption and
the recent policy of the FDA related to the exclusion of
trans-fat from food products have together attracted increased
attention for needed innovation (107). In this regard, emulsion-
gel technology may be employed to develop food products
without trans fats and also to transform partially hydrogenated
oils into semi-solid forms such as viscoelastic gels with
zero trans fats or less saturated fats as a substitute for
solid fats.
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Nacak et al. (34) prepared emulsion gel comprising oil phase
[peanut oil:linseed oil (10:1) and polyglycerol polyricinoleate
(3.2 g)], and aqueous phase [water (37 g), inulin (8 g), egg white
powder (3 g), and gelatin (2 g)], per 100 g of emulsion by heating
at 55◦C in water bath followed by emulsification at 700 rpm
for 3min. The formed gel was utilized to replace the beef fat
partially/completely (50 and 100%) in sausages and found a 40%
reduction in total fat content and 27% in case of energy content.
Interestingly, the content of total saturated fatty acids (21.46 ±

0.4) and cholesterol (27.32 ± 0.6) was successfully decreased,
while obvious boosts were seen in mono-unsaturated fatty acids
(45.95 ± 0.14) and poly-unsaturated fatty acids (29.78 ± .22) in
sausages containing emulsion gels (100% beef fat replacement)
as compared to control. Likewise, de Souza Paglarini et al. (33)
produced emulsion gels by encapsulating 50% soybean oil in the
soy protein isolate (4%) and inulin (16.5%) as gel substrate to
replace animal fat. A decline in fat (11 to 34%) was calculated
in the reformulated products, furthermore, the least total fat
content (190.4 ± 6.3), higher fiber content (2.97 %), and high
amount of polyunsaturated fatty acid (80.37 ± 3.72) observed in
emulsion gels incorporated sausages. Notably, the incorporation
of emulsion gel replacing animal fat also offered better sensory
properties such as texture, flavor, aroma, and overall liking.
These findings indicated that emulsion gels had potential as
animal fat substitutes and could be used in formulating healthier
food products with a better fatty acids composition and sensory
score. Liu et al. (108) used wheat gluten protein particles (1
wt%) as Pickering emulsifiers and prepared emulsion gels by
encapsulating sunflower oil as a mayonnaise substitute. The
formed gels presented excellent thermal stability at 90◦C for
30min than the mayonnaise, which showed a complete collapse
with oil leakage. These findings suggested that emulsion gels have
had better nutritional ratios, healthier lipid composition, and
acceptable sensory features which could be used to replace animal
fat and as a safe alternative to partially hydrogenated oils.

Probiotics Delivery
Probiotics are the viable microorganisms in the human
gastrointestinal tract that impart health-promoting
characteristics by regulating the balance of gut microflora
(e.g., Bifidobacterium and Lactobacillus) (109, 110). For
example, probiotics present in the intestinal tract exert multiple
health benefits e.g., improved gastrointestinal tract health,
enhanced immunity, reduced bad-cholesterol levels, and
harmful microorganisms growth inhibition (111, 112). However,
environmental and processing conditions such as high relative
humidity and high temperatures greatly affect probiotics viability
(113). Recently, biopolymer-based emulsion gels have emerged as
a promising delivery system for probiotics targeted delivery with
enhanced viability by protecting them from harsh environmental
conditions during processing and digestion.

Gao et al. (29) developed high internal phase emulsion gels
from whey protein isolate and pectin biopolymers to encapsulate
and deliver Bifidobacterium lactis. The results showed that
the viability of encapsulated probiotics was significantly higher
in high internal phase emulsion gel (5.31 log CFU/ml) than
hydrogel (4.66 5.31 log CFU/ml) after a heat treatment at

65◦C for 30min ascribed to the fact that gel pores filled with
oil droplets effectively protected and minimized the effect of
heating on probiotics. In addition, the strength, shear viscosity,
water holding capacity, and stability of gels increased with an
increase in the concentration of pectin from 0 to 2%. Qi et
al. (57) developed smooth and spherical shaped micro-beads
by emulsion-gelation method with sizes ranging from 300 to
500µm as a delivery system for Saccharomyces boulardii and
Enterococcus faecium. The formed gels showed that S. boulardii
and E. faecium grew well and their survival rate improved by
25 and 40%, respectively, compared to controls under high
temperature and high humidity. The survival rate in gastric juice
for S. boulardii (60%) was significantly higher than E. faecium
(25%), but in the case of intestinal juice, a higher rate was
noticed for E. faecium (20%) than S. boulardii (15%). Picone
et al. (54) synthesized gellan gum-based spherical microbeads
with a diameter of 1.85µm via the emulsion-gelation method
to deliver Lactobacillus rhamnosus with a higher survival rate.
The formed emulsion gel showed the encapsulated probiotics
viability as 77% which was significantly higher than the non-
gelled emulsion of 66%. The in vitro study findings suggested
that emulsion-gelation improved the resistance of the embedded
probiotics which remained stable to oral and gastric digestions.
Based on the aforementioned findings, emulsion gels have
emerged as model probiotics delivery systems that not only
protected the encapsulated probiotics from adverse in vitro and
in vivo conditions but also ensured their targeted delivery with
enhanced viability. In addition, biopolymers as wall material also
provide nutrients to probiotics and the host due to biopolymers’
inheritable nutrient profiles, suggesting their potential to deliver
probiotics in the gastrointestinal tract and development of
functional formulations such as fermented foods.

CONCLUSIONS AND FUTURE TRENDS

Emulsion gel is an emulsion dispersion-filled gel matrix, wherein
at least one phase either continuous phase or dispersed phase
of emulsion creates 3D networks leading to the formation of
semisolid texture. In this review, the authors have discussed
the classification of emulsion gels based on their constitutive
nature of the polymers (i.e., proteins, polysaccharides, and mixed
emulsion gels), and gel-body interactions including sensorial
textures, digestion, and absorption. The tunable attractive
properties (morphology, mechanical, and functional) and unique
characteristics (biocompatible, biodegradable, eco-friendly, and
cost-competitive sustainable biomaterials) make emulsion gels
promising functional colloids and delivery vehicles for different
food applications (encapsulation, controlled release, texture
design, fat replacement, probiotics delivery, designer foods, and
so on). Based on their properties and characteristics emulsion
gels could be effectively utilized in the processing, transportation,
and targeted delivery of food additives, nutraceuticals, probiotics,
and functional ingredients such as flavors, natural pigments,
minerals, and vitamins (Figure 5 and Table 1). In addition,
emulsion gels can tailor breakdown behavior and sensory
perception of food, protect the bioactive substances against
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adverse conditions, modify their dispersible status in the food
matrixes, control their release time and rate, and eventually
enhance their bioavailability.

Emulsion gels could possibly be used to develop innovative
stimuli-responsive gels which may alter their morphology
and properties upon exposure to any external stimuli such
as enzymes, light, temperature, pressure, and pathogenic
microorganisms. Moreover, a combination of stimuli-responsive
gels with biological entities (e.g., bacteria and viruses) can help
in designing advanced bio-systems with high efficiency and
sensitivity to monitor and control the safety and quality of
the food products. Although biopolymer-derived emulsion gels
hadmany advantages (cell biocompatibility and biodegradability,
source renewability, inherent nutritional composition, etc.) over
synthetic polymers-based gels, however some properties such
as mechanical strength may not fully match. In this regard,
the presence of charged species (H+ and OH−) and different
functional groups on biopolymers such as amino, carboxyl, and
hydroxyl groups impart huge fabrication potentials that would
be utilized in designing gels with superior properties according
to the needs.

To further explore the scope of emulsion gels in the
food industry, cross-disciplinary studies emphasizing
their physicochemical, rheological and tribological, and
functional properties are needed to better design effective
food formulations. Moreover, detailed investigations
both in vitro and in vivo studies focusing on gel-body
interactions specifically gastrointestinal physiology (digestion,
biochemical transformations, absorption, and excretion)
could help in promoting emulsion gels applications in

edible food formulations. For instance, gels with desired
sensorial textures and flavors may help in eradicating
obesity-related problems by minimizing the intake of
fats and sugars and consequently an effective control of
cholesterol and glucose metabolism. Moreover, emulsion
gels can be used to tailor the sensory perception of
bioactive compounds such as phenolic substances and
capsaicinoids that had pungent and astringent tastes during
oral processing.
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