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Abstract: Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by
high blood-cholesterol levels mostly caused by mutations in the low-density lipoprotein receptor
(LDLr). With a prevalence as high as 1/200 in some populations, genetic screening for pathogenic
LDLr mutations is a cost-effective approach in families classified as ‘definite’ or ‘probable’ FH and can
help to early diagnosis. However, with over 2000 LDLr variants identified, distinguishing pathogenic
mutations from benign mutations is a long-standing challenge in the field. In 1998, the World
Health Organization (WHO) highlighted the importance of improving the diagnosis and prognosis
of FH patients thus, identifying LDLr pathogenic variants is a longstanding challenge to provide
an accurate genetic diagnosis and personalized treatments. In recent years, accessible methodologies
have been developed to assess LDLr activity in vitro, providing experimental reproducibility between
laboratories all over the world that ensures rigorous analysis of all functional studies. In this review
we present a broad spectrum of functionally characterized missense LDLr variants identified in
patients with FH, which is mandatory for a definite diagnosis of FH.

Keywords: Low Density Lipoprotein receptor (LDLr); variants; familial hypercholesterolemia;
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1. Familial Hypercholesterolemia (FH)

Familial hypercholesterolemia (FH) is one of the most frequent dyslipidaemias characterized
by high concentrations of total and LDL cholesterol (LDL-c) leading to accelerated atherosclerosis
and premature coronary heart disease (CHD) [1,2]. FH is an autosomal monogenic disorder and,
with a frequency estimated between 1:200–1:250, constitutes one of the most serious commonly
inherited metabolic diseases. Despite its high prevalence, FH is still severely underdiagnosed and
undertreated. Autosomal dominant mutations in LDLR (encoding the LDL receptor), APOB (encoding
apolipoprotein B100 (apoB100)), and PCSK9 (encoding proprotein convertase subtilisin/kexin type 9)
genes account for most cases of FH [3–6]. Most individuals with FH are heterozygous for mutations in
one of these genes and, therefore, have heterozygous FH. Being its penetrance almost 100%, half of the
offspring (mean prevalence) of an affected parent have a severely increased plasma cholesterol level
from birth onwards. Mutations in LDLR are the main genetic cause of FH [7–9] constituting more than
90% of the mutations found in FH patients, with more than 2000 LDLR genetic variants submitted so
far to the Human Gene Mutation Database (HGMD).
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2. FH Diagnosis

At present, there are neither conclusive clinical criteria for the diagnosis of FH nor standardized
processes for phenotypic diagnosis [10]. The clinical and biological diagnosis of FH is frequently
based on the Dutch Lipid Clinic Network (DLCN) score, which requires a detailed family history and
physical stigmata [11]. Therefore, clinical criteria used to identify patients with FH include high plasma
levels of total and LDL-C (250 mg/dL or 7 mmol/L), family history of premature coronary artery
disease (CAD), tendon xanthomata, corneal arcus, and elevated LDL cholesterol [12–14]. In addition
to DCLN score, Simon-Broome and US MedPed are also widely used. The best diagnostic approach
in most populations is to measure LDL-C levels in all first degree relatives of a FH proband and
screen all second-degree family members [15]. Heterozygous FH individuals have LDL-C levels
roughly 2 to 3 times higher than those in the general population, ranging from 190 to 400 mg/dL
(4.9–10.3 mmol/L). Although clinical diagnostic criteria have been extensively used for FH [16], genetic
testing is the preferred method for FH because it provides an unequivocal diagnosis [8,17,18] and it
also provides information for family cascade screening. However, correctly interpreting the clinical
significance of LDLr variants continues to be a constant challenge for molecular diagnostic practice
and clinical diagnosis can only be confirmed when a mutation is functionally characterized and
proven to affect LDL metabolism. LDLr variants can be grouped into 2 categories: truncating and
nontruncating variants. Truncating variants such as nonsense variants, out-of-frame indels, most
splicing variants, and partial gene deletions are known to have a deleterious effect on the function
of the LDLr protein and are considered to be pathogenic variants without the need of functional
characterization [19]. Nontruncating variants consist of single or multiple nucleotide substitutions
and in-frame indels. It is often more difficult to predict their pathogenicity. Currently, the procedure
for functional validation has become widespread because new and cost-effective methodologies
allow evaluation of these nontruncating variants through radioactive assays and fluorescence-based
approaches. Therefore, functional validation of these variants can be performed both ex vivo and
in vitro by using fluorescently labelled -antibodies or -LDL to determine LDLr activity in heterologous
cell models to directly demonstrate disease causality.

3. LDL Receptor

The mature LDLr is a type I transmembrane protein of 839 amino acids which regulates cholesterol
homeostasis in mammalian cells [3]. LDLr is mapped to 19p13.1–13.3 on the short arm of chromosome
19, spans 45 kb and consists of 18 exons and 17 introns that are transcribed and translated into five
distinct domains which form the cell-surface LDL receptor [20]. The protein is encoded as a precursor
of 860 amino acids comprising a 21-residues signal sequence at the N-terminus that is excised during
protein translocation into the endoplasmic reticulum (ER) [21]. LDLr is synthesized on ribosomes
of ER, then folded and partially glycosylated within ER and finally matured in the Golgi complex,
where glycosylation is completed [22]. The mature protein is structured into functional domains
organized in an ectodomain and intracellular domain. The ectodomain is encoded by exons 2–15 and
harbours a ligand-binding domain, an epidermal growth factor (EGF) precursor homology domain
and a C-terminal domain enriched in O-linked oligosaccharides (Figure 1A).
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Figure 1. Domain organization of LDLr and LDLr pathway and its dysregulation by defective
mutations. (A) Schematic representation of LDLr domains; (B) LDLr cycle. LDLr is synthesed at
ER, transproted to Golgi where is further processed with glycosilations. Mature LDLr is transported
to the plasma membrane, where the ligand-binding domain binds to the apo B100 moiety on LDL
particles. The LDLr/LDL complex undergoes endocitosis and within the cell, LDL particle components
are targeted for lysosomal degradation, whereas the LDLR is recycled to the cell surface. LDLr
mutations affecting different LDLr cycle results in dysregulation of the cycle.

The ligand binding domain contains 7 cysteine-rich repeats (LR1 to LR7) of approximately
40 amino acids with three disulphide bridges each (CysI-III, CysII-V, CysIV-VI). In addition, an acidic
residues cluster coordinates a Ca2+ ion which is required for correct folding of the domain [23]. Binding
of lipoproteins to the LDLr appears to be mediated by an interaction between acidic residues in the
LDLr-binding domain and basic residues of apoE and apoB100 [24,25]. The intracellular release of
the cargo is driven by a low-pH-induced conformational change of LDLr from an open to a closed
conformation [23,26,27]. Binding to different ligands appears to require different subsets of LR
modules [23,25,28]. The LR modules are interspaced by a short linker sequence mostly formed by four
residues ending in Thr with the sequence motif XXC6XXXTC1-XX. Some linkers, however, are longer.
It has been shown that O-glycans in the LR ligand-binding region of LDLr as well as VLDLr are
important for high-affinity lipoprotein binding and uptake [29].

The EGF precursor homology domain participates in the acid-dependent lipoprotein release in the
endosome and consists of two EGF-like domains, six YWTD repeats that form a six-bladed β-propeller,
and a third EGF-like repeat [30,31]. It has been shown that PCSK9, a secreted glycoprotein, promotes
degradation of the LDLr, thereby preventing clearance of LDL-C by the cells [32]. It also interacts with
the EGF-A domain of the LDLr at the cell surface and binds to the full-length receptor with a much
higher affinity in the acidic environment of the endosome. Consequently, the receptor is transported
from the endosome to the lysosome for degradation, rather than being recycled [32].

The C-terminal domain enriched in O-linked oligosaccharides contains 58 amino acids rich in
threonine and serine residues. It is thought that this domain plays a role in the stabilization of the
receptor [8]. This region shows minimal sequence conservation among six species analyzed and can be
deleted without adverse effects on receptor function in cultured fibroblasts [33].

The intracellular domains are encoded by Exons 16–17 and together constitute the transmembrane
domain. The TM domain contains 22 hydrophobic amino acids that are essential for anchoring the
LDLr to the cell membrane. The cytoplasmic domain of LDLr, consists of 50 amino acid residues and
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contains two sequence signals for targeting the LDLr to the cell surface and localizing the receptor to
coated pits [34]. Internalization of the LDLR also requires this cytoplasmic domain [35,36].

LDLr transcription is tightly regulated by the sterol-responsive element binding protein-2
(SREBP-2) through a feedback mechanism that responds to variations in intracellular sterol
concentrations and cellular demand for cholesterol [37]. In addition to classical transcription regulators,
a class of noncoding RNAs termed microRNAs (miRNAs), has emerged as critical regulators of gene
expression acting predominantly at the post-transcriptional level [38]. In particular, miR-148a directly
controls LDLr activity and is transcriptionally activated by SREBP1c in vitro and in vivo [39].

4. LDLr Pathway and Its Dysregulation by Defective Mutations

Upon lipoprotein binding to LDLr at the cell surface, the complex is internalized through
clathrin-coated pits into clathrin-coated vesicles [40] (Figure 1B). These vesicles fuse with early
endosomes, and acidification of the endosomal pH promotes LDL release, which is later degraded in
lysosomes. Normally, the LDLr is returned to the membrane and enters a new cycle [23].

This system maintains a constant level of cholesterol in hepatocytes and other cells by controlling
both the rate of cholesterol uptake from LDL and the rate of cholesterol synthesis [41]. LDLr mutations
affect different parts of this LDLr cycle leading to FH. LDLr mutations are thus classified depending
on the phenotypic behaviour of the mutant protein (Figure 1B) [42,43]: Class 1. Synthesis alteration,
known as “null alleles”; Class 2. Defective transport to Golgi or to the plasma membrane because the
synthetized proteins do not have an adequate three-dimensional structure and are retained, completely
or partially (2A and 2B, respectively) in the ER; Class 3. Deficient binding to ApoB, LDL binding
activity is 2% to 30% of normal due to rearrangements in repeat cysteine residues in binding ligand
domain or repeat deletions in EGFP-like domain; Class 4. Impaired endocytosis, LDLr is not recruited
into clathrin-coated pits; Class 5. Alteration in the recycle mechanism as a consequence of an impaired
LDL release in endosomes causing the receptor to be degraded in the lysosome. Recently, a sixth class
of mutations in the LDLr that interfere with insertion of the LDLr into the cell membrane resulting in
LDLr secretion has been described [44].

5. Determining the Pathogenicity of LDLr Variants

The majority of FH patients with positive genetic testing results have rare pathogenic variants in
LDLr [45] which comprise 60% of the ~2000 LDLr genetic variants that have been submitted to the
HGMD. Determining pathogenicity of LDLr is a key challenge in genomic medicine; therefore, several
approaches including computer prediction algorithms, in vivo and in vitro experimental evidence,
are used to gain information about variant effects [46].

5.1. In Silico Analysis

The revolution in DNA sequencing methodologies has tremendously increased the number
of gene sequences over the last several years, and these technologies continue to evolve [47,48].
Next-generation sequencing (NGS) in combination with sequence target enrichment methods are
useful in molecular diagnostics of FH [49]. Single-nucleotide polymorphisms (SNPs) are considered
to be the most common genetic changes that result from alterations in a single nucleotide. Among
SNPs, nonsynonymous SNPs (nsSNP) are associated with single amino acid substitution in the
coding regions of a gene that may have a drastic effect on the structural and functional properties
of the corresponding protein. These nsSNPs have been the subject of many recent studies and
a large amount of data now exists in public repositories such as dbSNP [50], HGVBase [51] and
HGMD [52]. To manage the large amount of data produced, computational tools to predict the
functional effects of sequence variations are under constant development to prioritize high-risk variants
that should be experimentally characterized for pathogenicity. These tools have been developed based
on features such as amino acid or nucleotide conservation and biochemical properties of the amino
acid substitutions. Identification of single nucleotide polymorphisms in the coding region of a gene
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that have implications in inherited human diseases is the fundamental objective of research in medical
genetics. The most used pathogenicity predictor open access software to assess the effect of LDLr
variants are PolyPhen-2 [53], Sorting Tolerant From Intolerant (SIFT) [54], Consensus Deleteriousness
score of missense SNVs (Condel) [55], Mutation taster [56], Grantham Score [57] and PhyloP [58].
However, individual tools often disagree, in part because they utilize different predictive features.
Understanding how amino acid substitutions affect protein functions is critical for the study of proteins
and their implications in diseases. Another limitation is that prediction results are hard to interpret
without physicochemical principles and biological knowledge. For this reason, there is a growing
need for the development and evaluation of tools for predicting the pathogenicity of rare variants.
Furthermore, functional validation of these LDLr variants must be conducted in order to identify
which mutations lead to a functional loss of receptor activity.

5.2. Functional Characterization of LDLr Variants

Functional assays are a direct method to determine whether the activity of a mutant protein is
altered by taking into account all the involved biological mechanisms. To date, functional studies of
LDLr variants have been conducted using two major approaches: 1. ex vivo methods, using cells from
FH patients; 2. in vitro methods using cell lines transfected with the LDLR mutant (Figure 2).

Figure 2. Flowchart of the used methodologies to functionally characterize LDLr variants ex vivo
and in vitro. Functional studies of LDLr variants are mainly conducted using two major approaches:
1. ex vivo methods, using cells from Familial Hypercholesterolemia (FH) patients (left-hand panel);
2. in vitro methods using cell lines transfected with the LDLr variant (right-hand panel). LDLr
activity determination is based in combination of different methodologies: Western blot to analyse
LDLr expression followed by fluorescence-activated cell sorting (FACS) and Confocal Laser Scanning
Microscopy (CLSM) that allow assessment of Class type mutation. The ex vivo approach is adequate
for Class 1, Class 2a and Class 3 LDLr variants. In vitro characterization allows identification of
Class 2b mutations by colocalizing the LDLr variants in the ER with calrgulin; using a solid-phase
immunoassay it is possible to determine LDLr-LDL EC50 values for Class 3 mutations which is
important to understand mild pathogenic variants; Class 4 variants are classified by complementing
CLSM with a colocalization assay with clathrin and, identification of Class 5 mutants is performed
by absence of LDLr colocalization with calregulin, LDLr colocalization with a lysosome marker
complemented by a FACS analysis of LDL binding to LDLr at different pH (7.4–5.2).
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5.2.1. Ex vivo Functional Validation

Since the first demonstration by Brown and Goldstein of the presence of a measurable LDL
receptor pathway in cultured skin fibroblasts from FH-homozygotes and normolipidemic controls
with 125I-labeled LDL [59], research has focused on the development of new and less invasive
methodologies for LDLr activity assessment. New strategies that use lymphocytes allow validation of
LDLr functionality by immortalization mediated by Epstein-Barr virus [60–62], stimulation of LDLr
expression in lymphocytes by incubation with statins [63,64], or treatment of cells with mitogens
or CD3/CD28 beads to stimulate T-lymphocytes [62,65]. Comparative studies between results in
fibroblasts with those obtained from immortalized lymphoblastoid cells from the same patient showed
similar results [66]. T-lymphocyte stimulation by CD3/CD28 beads followed by determining LDLr
activity through fluorescence-activated cell sorting (FACS) is a simple strategy used for functional
assays. This technique requires incubating cells from FH patients for 72 h with CD3/CD28 beads in a
medium containing a lipoprotein deficient serum to upregulate the LDLr, and then they are incubated
with labelled-LDL allowing the detection of the bound and/or internalized LDL amounts. Nowadays,
LDL are normally labelled with fluorescent molecules that allow obtaining an accurate analysis by
FACS [62,67]. Specifically, labelling LDLr with a fluorescent antibody or LDL with a fluorescent
antibody allows determination of LDLr expression at the cell membrane and LDL-LDLr binding,
respectively. LDL labelling is conducted by incubating cells for 4 h at 4 ◦C with fluorescent-labelled
LDL [67,68]. A recent advance in determining LDL uptake was introduced by our group and consists
of a combination of Fluorescein IsoTioCyanate labelled LDL (FITC-LDL) and Trypan-blue dye [67].
This method allows determination of LDL uptake in a single step because addition of Trypan blue
to the cell suspension quenches external fluorescence from LDL bound to membrane receptors,
allowing fluorescence quantification of internalized LDL exclusively [67]. Confocal microscopy with an
anti-LDLR antibody is used to verify localization of the LDLR on the plasma membrane and of ApoB
after endocytosis. The ex vivo approach is very suitable in assessment of Class 1, Class 2a and Class 3
LDLr variants in which LDL binding is highly impaired. However, ex vivo studies have the following
limitations: because lymphocytes studies are from heterozygote patients, interference of the wild
type allele has to be taken into account. Even in the presence of a null allele leading to a total absent
protein, the activity of the LDLr synthesized from the normal allele is still detectable and the total
measured activity is around 50%. If the variant under study is Class 2b, Class 3 (without a complete
loss of binding capacity), Class 4 and Class 5 the activity data may range from 70–90% compared
to activities of lymphocytes carrying wild type LDLr in both alleles. For this reason, ascertaining
pathogenicity in these cases needs further analysis. Another limitation of ex vivo assays is that
localization of LDLr to different subcellular compartments by confocal microscopy is difficult due to
the extremely small cytoplasm of lymphocytes. Advantages and disadvantages between functional
validation methodologies are shown in Table 1.

Table 1. Summary of advantages and disadvantages of radioactive and fluorescence-based
methodologies used to characterize the activity of LDLr variants.

Differences between Functional Validation Methodologies

Radioactivity Fluorescence
Highly reproducible Highly reproducible

Highly sensitive activity measurements Highly sensitive activity measurements
Stable labeling Stable labeling

Risk of exposure to radioisotopes Nonradioisotopes used
Ethical considerations regarding waste elimination In combination with CLSM allow LDLr classification

Noncompatible with CLSM

Disadvantages are shown in red.
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5.2.2. In Vitro Functional Validation

In vitro cell line model systems are particularly useful to help further our understanding of the
mechanisms underlying pathogenicity of LDLr variants. The use of cell line models to study LDLr
variant activities has many advantages: cell lines represent a renewable resource, are well-controlled
systems and there is no need for clinical samples. The analyses performed on these cell lines to
functionally validate LDLr variants are similar to those performed on ex vivo assays, including the use
of FACS measurements with antibodies [69] or fluorescently-labeled LDL and confocal microscopy
using antibodies for ApoB or markers for the endoplasmic reticulum [69]. Cells are transfected with
an expression plasmid in which the LDLr carrying the studied mutation is cloned. The methodology
used for that purpose is as follows:

5.2.3. Cell Transfection

LDLr-deficient Chinese hamster ovary (CHO) cell line ldlA7 (CHO-ldlA7) is transfected with
plasmids carrying the LDLr variant of interest [70,71]. Different methods of transfection are suitable
depending on laboratory experience. Transfected cells are maintained in culture during 48 h to achieve
maximal LDLr expression.

5.2.4. Western Blot Analysis

Usually the first step in functional characterization is to evaluate receptor expression. To do so,
immunoblotting is used to test if the LDLr variant is able to go from the precursor to the mature form.
Experimentally, cell lysates have to be prepared, protein concentration determined, and fractionated by
electrophoresis. Then, for semiquantitative immunoblotting, proteins are transferred to nitrocellulose
membranes which are immunostained using the appropriate antibodies. The signals are then
developed and quantified. The relative LDLr expression for the LDLr variant is calculated as the ratio
between the sum of band intensities corresponding to the mature and precursor form of LDLR protein
to that of a constitutive protein such as GAPDH.

5.2.5. Quantification of LDLr Expression by Flow Cytometry

To determine LDLR cell surface expression by FACS, transfected CHO-ldlA7 cells are incubated
with a primary antibody anti-LDLR for 1 h at room temperature, then washed with PBS-1% BSA and
incubated with secondary antibody Alexa Fluor 488-conjugated antimouse IgG. Fluorescence is then
acquired through FACS and compared with fluorescence obtained in cells expressing wild type LDLr.

5.2.6. Quantification of LDLR Activity by FACS

Transfected CHO-ldlA7 cells are incubated for 4 h at 37 ◦C or 4 ◦C with 20 µg/mL FITC–LDL
to determine LDLr activity or LDL–LDLr binding, respectively. After incubation with FITC–LDL,
CHO-ldlA7 cells are washed twice in PBS-1% BSA, fixed on 4% formaldehyde, and washed again.
To determine the amount of internalized LDL, Trypan blue solution is added to a final concentration
of 0.2% directly to the samples, eliminating the extracellular signal due to the noninternalized
LDL–LDLr complexes.

5.2.7. Confocal Laser Scanning Microscopy

Confocal laser scanning microscopy is used to analyze LDL-LDLr binding, uptake, expression of
LDLr, and enables determination of Class type mutation by testing LDLr colocalization with clathrin,
lysosomes, or endoplasmic reticulum (ER). Cells are plated in coverslips and transfected with the LDLr
containing plasmids. After 48 h, nonlabelled lipoproteins are added and cells, further incubated for
a 4 h then stained with the appropriate primary antibodies for 16 h at 4 ◦C followed by incubation with
fluorescent secondary antibodies. Cells are then visualized using a confocal microscope and images
processed and fluorescence intensities quantified.
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5.2.8. LDL–LDLr Binding at Different pH

To determine if the defect of an LDLr variant is due to defective LDLr recycling, an LDL binding
assay is performed at different pH’s to mimic the acidification process occurring in the endosome after
LDL endocytosis. To do this, transfected cells are incubated with 20 µg/mL of LDL–FITC for 30 min
in a 0.4-M sucrose medium at different pH’s. Then, cells are washed three times to remove unbound
LDL, fixed with 4% paraformaldehyde and the amount of bound LDL–FITC is quantified by FACS.

5.2.9. LDLr-LDL Affinity Assessment

In order to better classify Class 3 mutations from mild to severe pathogenic effect, a modified
ELISA binding assay with purified soluble wt LDLr (sLDLr) or and the variant of interest can be
performed. sLDLr variants are coated in 96-well and incubated with freshly purified human LDL for 2 h
at RT, then samples are incubated with anti-Apolipoprotein B for 1 h followed by peroxidase-conjugated
IgG for 1 h, and developed with a chromogenic substrate. After photometric quantification, EC50

values are calculated providing information about LDLr affinity to LDL [29].
In the recent years, our group has been actively using fluorescent-based methodologies to

characterize and classify LDLr variants; the obtained results to date are shown in Table 2.

Table 2. LDLr variants characterized and classified by fluorescent-based methodologies at Instituto
Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco.

Functional Validated and
Classified LDLr Variants Classification LDLr Activity Reference

c.226G>T p.(Gly76Trp) Nonpathogenic 100% [72]
c. 292G>A (p.Gly98Ser) Nonpathogenic 100% [73]
c.346T>C (p.Cys116Arg) Class 3 25% [74]
c.464G>A (p.Cys155Tyr) Class 3 <20% [69]
c.502G>A (p.Asp168Asn) Class 3 40% [74]
c.514G>A (p.Asp172Asn) Class 3 <2% [74]
c.769C>T (p.Arg257Trp) Nonpathogenic 100% [74]
c.806G>A (p.Gly269Asp) Nonpathogenic 100% [67]
c.829G>A (p.Glu277Lys) Nonpathogenic 100% [72]
c.862G>A (p.Glu288Lys) Class 3 60% [67]
c. 890A>C (p.Asn297Thr) Nonpathogenic 100% [73]
c.895G>A (p.Ala299Thr) Class 3 60% [67]
c.898A>G (p.Arg300Gly) Class 3 60% [74]
c.902A>G (p.Asp301Gly) Class 3 40% [74]
c.1216C>T (p.Arg406Trp) Class 2b or 5 60% [72]
c.1246C>T (p.Arg416Trp) Class 5 60% [69]
c.1285G>C (p.Val429Leu) Class 2a <10% [70]
c.1322T>C (p.Ile441Thr) Class 2a <10% [72]

c.1336 C>G (p.Leu446Val) Nonpathogenic 100% [75]
c.1361C>A (p.Thr454Asn) Class 5 60% [69]
c.1468T>C (p.Trp490Arg) Class 2a <10% [70]
c.1633G>T (p.Gly545Trp) Class 2a <10% [72]
c.1723G>T (p.Leu575Phe) Class 2 60% [76]
c.1729T>G (p.Trp577Gly) Class 2a <10% [69]
c.1744C>T (p.Leu582Phe) Class 2 60% [76]
c.1942T >C (p.Ser648Pro) Class 2b <25% [70]
c.2053C>T (p.Pro685Ser) Class 2b <75% [70]

c.2475C>A (p.Asn825Lys) Class 4 60% [69]
c.2575G>A (p.Val859Met) Nonpathogenic 100% [72]

6. ClinVar: Variant Pathogenicity Assignments based on LDLr Functional Characterization

The identification of many novel LDLr variants by NGS in clinical genetic testing has led to the
need for storing data about variant classification in a clinically-applicable location. Thus, several
general and gene-specific databases are available for use by investigators and clinicians, including the
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National Center for Biotechnology Information (NCBI) ClinVar database [77]. The ClinVar database at
NCBI archives and aggregates submitted interpretations of the clinical and/or functional significance
of variants for specified conditions, with opportunities to provide supporting evidence. Recently,
the ClinVar database related to LDLr has been updated with variants stored in the LDLr—specific
Leiden Open Variation Database (LOVD), increasing the size of the ClinVar LDLr database from
338 variants as of July 11, 2016, to 2248 variants as of April 30, 2018. Some research-oriented
submissions may provide functional significance based on experimental evidence, which may
inform the clinical interpretation of the same variant in patient encounters. To date there are 794
unique missense LDLr variants annotated in ClinVar identified by both research and clinical testing.
Among them, the reported clinical significance is as follows: 2.02% benign/likely benign, 7.81 of
uncertain significance, 62.80% pathogenic/ likely pathogenic and, 27.33% conflicting interpretations.
The category “conflicting interpretations” includes variants with multiple submissions where the
associated classifications were: benign/likely benign + uncertain significance; pathogenic/likely
pathogenic + uncertain significance; or benign/likely benign + pathogenic/likely pathogenic.

As mentioned above, the most used methodologies to determine LDLr functionality ex vivo
and in vitro are based on the use of radioactivity or fluorophores. LDL uptake and degradation of
125I-labeled LDL has been commonly used in radioactivity-based methods, a methodology that is being
replaced by the use of fluorescent-labeled LDL and antibodies for determining activity of LDLr [20,
65,67,78]. Both methods have been used indistinctly, probably depending on the research laboratory
facilities or continuation of the previously methodology in a specific laboratory. To date, 794 unique
missense pathogenic LDLr variants have been annotated in ClinVar. Only a minority of these 794
variants have been proven pathogenic. Among them, the activity of 100 has been experimentally
characterized (Table 3). Radioactive techniques have been used to functionally characterize 62 LDLr
variants and fluorescence-based methodologies to characterize 33 variants. Two mutations have been
assessed by both methodologies and three variants were characterized by other techniques (Western
blot and RNA studies). Although the number of characterized variants may seem low (13% of the
annotated missense variants), extensive work is being done by multiple laboratories to characterize
the remaining variants. In the next few years the percentage of the functionally characterized variants
will increase notably. In this respect, the use of fluorescence methodologies is increasing the number of
validated variants because FACS allows easier quantification of LDLr expression at the cell surface
and LDL uptake provides a better characterization of the defect associated with each mutation. In fact,
FACS complementation with confocal microscopy allows detection of the subcellular localization of
the LDLr, which allows assignment of the class type of each variant studied [69].

Table 3. ClinVar annotated LDLr variants functionally characterized ex vivo or in vitro by radioactive,
fluorescence-based or other techniques.

Ex Vivo

Functional validated LDLr variants LDLr activity Method Reference

c.1A>T (p.Met1Leu) residual Radioactivity [79]
c.28T>A (p.Trp10Arg) 40% Radioactivity [80]
c.81C>G (p.Cys27Trp) 15–30% Radioactivity [20]

c.265T>C (p.Cys89Arg) <5% Comp Htz Radioactivity [81]
c.268G>T (p.Asp90Tyr) not determined Radioactivity [82]
c.407A>T (p.Asp136Val) 76% Htz Fluorescence [83]
c.418G>A (p.Glu140Lys) 30% Comp Htz Radioactivity [82]
c.443G>C (p.Cys148Ser) 2% Radioactivity [84]
c.530C>T (p.Ser177Leu) <2% Radioactivity [85]
c.590G>T (p.Cys197Phe) <2% Comp Htz Radioactivity [20]
c.590G>A (p.Cys197Tyr) <2% Comp Htz Radioactivity [20]
c.662A>G (p.Asp221Gly) <2% Comp Htz Radioactivity [20]
c.670G>A (p.Asp224Asn) <2% Radioactivity [20]
c.676T>C (p.Ser226Pro) <2% Radioactivity [20]

c.681C>G (p.Asp227Glu) <2% Radioactivity [20]
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Table 3. Cont.

Ex Vivo

Functional validated LDLr variants LDLr activity Method Reference

c.682G>C (p.Glu228Gln) 2–5% Comp Htz Radioactivity [20]
c.796G>A (p.Asp266Asn) <2% Radioactivity [84]
c.798T>A (p.Asp266Glu) 15–30% Radioactivity [20]
c.910G>A (p.Asp304Asn) 5–15% Radioactivity [20]
c.917C>T (p.Ser306Leu) 2–5% Comp Htz Radioactivity [20]

c.953G>A (p.Cys318Arg) 2–5% Radioactivity [20]
c.974G>A (p.Cys325Tyr) <64% Fluorescence [62]
c.1003G>A (p.Gly335Ser) 30–40% Htz Radioactivity [20]
c.1013G>A (p.Cys338Tyr) <10% Radioactivity [86]
c.1027G>A (p.Gly343Ser) 15–30% Comp Htz Radioactivity [20]
c.1055G>A (p.Cys352Tyr) 15–30% Comp htz Radioactivity [20]
c.1056C>G (p.Cys352Trp) 9% Radioactivity [81]
c.1090T>C (p.Cys364Arg) 15–30% Radioactivity [20]
c.1124A>G (p.Tyr375Cys) <40% Radioactivity [87]
c.1135T>C (p.Cys379Arg) 15–30% Radioactivity [20]
c.1222G>A (p.Glu408Lys) 5–10% Radioactivity [88]
c.1252G>A (p.Glu418Lys) <70 Comp Htz Radioactivity [89]
c.1285G>A (p.Val429Met) <2% Radioactivity [90]
c.1291G>A (p.Ala431Thr) 5–15% Radioactivity [42]
c.1297G>C (p.Asp433His) <10% Radioactivity [89]
c.1301C>A (p.Thr434Lys) 5–15% Comp Htz Radioactivity [20]
c.1432G>A (p.Gly478Arg) 2–5% Comp Htz Radioactivity [20]
c.1444G>A (p.Asp482Asn) 15% Comp Htz Radioactivity [88]
c.1567G>A (p.Val523Met) 15–30% Radioac+Fluores. [42,81]
c.1618G>A (p.Ala540Thr) <50% Radioactivity [91]
c.1637G>A (p.Gly546Asp) <2% Radioactivity [20]
c.1646G>A (p.Gly549Asp) <2% Radioactivity [42]
c.1694G>T (p.Gly565Val) <2% Radioactivity [20]
c.1702C>G (p.Leu568Val) 25% Radioactivity [89]
c.1729T>C (p.Trp577Arg) <5% Fluorescence [92]
c.1731G>A (p.Trp577Cys) 64% Fluorescence [93]
c.1735G>A (p.Asp579Asn) <2% Comp Htz Radioactivity [20]
c.1775G>A (p.Gly592Glu) <5% Comp Htz Radioactivity [20]
c.1796T>C (p.Leu599Ser) 5–15% Radioactivity [20]
c.2000G>A (p.Cys667Tyr) <2% Radioactivity [94]
c.2054C>T (p.Pro685Leu) 15–30% Radioactivity [95]
c.2177C>T (p.Thr726Ile) 15–30% Comp Htz Fluorescence [20]
c.2389G>T (p.Val797Leu) not determined Other techniques [96]
c.2389G>A (p.Val797Met) not determined Other techniques [97]
c.2479G>A (p.Val827Ile) 15–30% Comp Htz Radioactivity [20]

In vitro

Functional validated LDLr variants LDLr activity Method Reference

c.58G>A (p.Gly20Arg) 100% Fluorescence [98]
c.226G>T (p.Gly76Trp) 100% Fluorescence [72]
c.259T>G (p.Trp87Gly) 25–100% Radioactivity [94]

c.268G>A (p.Asp90Asn) 55% Fluorescence [99]
c.301G>A (p.Glu101Lys) 15–30% Radioactivity [100]
c.344G>A (p.Arg115His) 64% Fluorescence [101]
c.346T>C (p.Cys116Arg) 25% Fluorescence [74]
c.464G>A (p.Cys155Tyr) <20% Fluorescence [74]
c.502G>A (p.Asp168Asn) 40% Fluorescence [74]
c.502G>C (p.Asp168His) <2% Radioactivity [102]

c.514G > A (p.Asp172Asn) 40% Fluorescence [74]
c.589T>C (p.Cys197Arg) <10% fluorescence [103]
c.665G>T (p.Cys222Phe) 33% Fluorescence [104]
c.769C>T (p.Arg257Trp) 100% Fluorescence [74]
c.782G>T (p.Cys261Phe) <20% Radioactivity [105]
c.806G>A (p.Gly269Asp) 100% Fluorescence [67]
c.829G>A (p.Glu277Lys) 100% Radioactivity [106]
c.862G>A (p.Glu288Lys) 60% Fluorescence [67]
c.895G>A (p.Ala299Thr) 60% Fluorescence [67]
c.898A>G (p.Arg300Gly) 60% Fluorescence [74]
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Table 3. Cont.

Ex Vivo

Functional validated LDLr variants LDLr activity Method Reference

c.902A>G (p.Asp301Gly) 40% Fluorescence [74]
c.986G>A (p.Cys329Tyr) 31% Fluorescence [99]

c.1072T>C (p.Cys358Arg) 67–72% Fluorescence [93]
c.1136G>A (p.Cys379Tyr) <40% Radioactivity [107]
c.1186G>A (p.Gly396Ser) 100% Radioac+Fluores. [108]
c.1216C>T (p.Arg406Trp) 60% Fluorescence [72]
c.1246C>T (p.Arg416Trp) 60% Fluorescence [69]
c.1268T>C (p.Ile423Thr) 54% Radioactivity [99]

c.1285G>C (p.Val429Leu) <10% Radioactivity [71]
c.1322T>C (p.Ile441Thr) <10% Fluorescence [72]

c.1361C>A (p.Thr454Asn) 60% Fluorescence [69]
c.1468T>C (p.Trp490Arg) <10% Radioactivity [71]
c.1633G>T (p.Gly545Trp) <10% Fluorescence [72]
c.1664T>C (p.Leu555Pro) <2% Radioactivity [109]
c.1690A>C (p.Asn564His) 100% Fluorescence [110]
c.1729T>G (p.Trp577Gly) <10% Fluorescence [69]
c.1744C>T (p.Leu582Phe) 60% Fluorescence [76]
c.1747C>T (p.His583Tyr) <60% Radioactivity [108]
c.1942T>C (p.Ser648Pro) <25% Radioactivity [71]
c.2053C>T (p.Pro685Ser) <75% Radioactivity [71]
c.2093G>T (p.Cys698Phe) <10% Fluorescence [72]
c.2396T>G (p.Leu799Arg) residual Other techniques [44]
c.2475C>A (p.Asn825Lys) 60% Fluorescence [69]
c.2483A>G (p.Tyr828Cys) <2% Comp Htz Radioactivity [33]
c.2575G>A (p.Val859Met) 100% Radioactivity [71]

7. Conclusions

Recent advances in genetic sequencing technology have resulted in remarkable improvements
in the speed, throughput and identification of LDLr variants occurring in FH patients. To date, more
than 2000 LDLr variants associated with FH have been described but only a minority of them have
been functionally validated and proven to be the cause of the disease. Awareness and identification
of the pathogenic variants causing FH would provide a definitive diagnosis. Additionally, early
diagnosis of FH can allow development of public health approaches to begin early treatment of FH
and prevent of future cardiovascular events. In the last years, a big effort has been establishing new
methodologies for assaying activity of these variants. Substitution of radioactivity for fluorescence
based methodologies has lowered the cost and provided a feasible and accessible tool to characterize
LDLr variants. Our group has been actively using and optimizing these fluorescent techniques to
characterize and classify LDLr variants. In order to provide an accurate classification, we have also
developed solid-phase immunoassays to determine LDLr binding affinity to LDL that will help to
understand the phenotype of patients carrying Class 3 LDLr variants. In addition, these techniques
allow the characterization of APOB and APOE pathogenic variants, as well as PCSK9 gain and loss of
function variants [75,111–114].
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