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Abstract: The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly
progressed in recent years. However, most MM patients relapse and after several salvage therapies,
the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and
bidirectional exchange of information takes place between the cells of the microenvironment and
neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers,
there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression.
Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their
expression or activity might be explored to reverse it. In this review we report the most recent
studies concerning the relationship between miRNAs and chemoresistance to the most frequently
used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The
experimental use of antagomirs or miRNA mimics have successfully been proven to counteract
chemoresistance and display synergistic effects with antimyeloma drugs which could represent a
fundamental moment to overcome resistance in MM treatment.

Keywords: micro-RNA; multiple myeloma; chemoresistance; bone marrow microenvironment;
antagomir; miRNA mimics; apoptosis

1. Introduction
1.1. General Considerations on miRNAs and Chemoresistance

The prognosis for newly diagnosed subjects with MM has significantly progressed in
recent years since new drugs, such as proteasome inhibitors, immunomodulatory drugs,
heat shock protein inhibitors, immune-checkpoints inhibitors, selective inhibitors of nuclear
export and monoclonal antibodies, have been launched on the market [1–7]. Neverthe-
less, several MM subjects continue to relapse and after several salvage therapies, the
development of multidrug resistance provokes the onset of a refractory disease [8].

Processes able to cause drug resistance in MM are not well known and several genetic
or acquired elements appear to participate in its onset. In fact, besides the biobehavioral
transformations of myeloma cells in response to drugs, numerous findings propose that
the direct adhesive relationships between the MM cells and the cells of the adjacent bone
marrow milieu cause the onset of pro-survival signs conducting to drug resistance. This
sort of drug resistance, called “cell adhesion-mediated drug resistance” (CAM-DR), is
considered one of the most relevant systems able to provoke the escape of MM cells from
therapeutic actions [9,10]. Therefore, clarification of the molecular systems inherent in
CAM-DR may facilitate identification of new therapeutic tactics to overcome this problem.

Bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, macrophages, endothelial
cells, bone marrow adipocytes, and fibroblasts create a composite structure with extra
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cellular matrix proteins and growth factors capable of conversing with MM cells. This
correlation may clarify the mechanisms of drug resistance in MM, as MM cells are sheltered
by these cells [11–13], and stroma-induced defense of MM cells may operate via soluble
elements discharged from BMSCs [14].

However, recently, it has been clarified that the microenvironment−MM cell rela-
tionship is not merely constituted of paracrine signals of soluble elements. A continuous
and bidirectional exchange of information takes place between cells of the microenviron-
ment and neoplastic cells to solicit the demands of cancer cells. Among these messenger
molecules there are microRNAs (miRNAs) [15], a family of small noncoding RNAs (18–25
nucleotides) that regulate gene expression through base complementarity between the
seed region of the miRNA and the 3′-untranslated region of the target mRNA. Depending
on the degree of complementarity, miRNA connections can induce mRNA translational
degradation or repression [16].

Extracellular miRNAs may be of two different types, such as microvesicle-(MV) free
and MV-entrapped [17]. The first type, simply combined to argonaute 2 (AGO2) proteins,
is the most frequent form and presents resistance to nucleases [18]. However, several cells
envelop and deliver specific miRNAs into MVs. Lipid membrane vesicles are delivered
from both MM cells and the cells of the bone marrow microenvironment and distribute
their RNA and protein cargos, wherewith they modify gene expression in the neighboring
cells [19,20]. Several forms of extracellular MVs have been reported, such as exosomes,
which derive from the multivesicular bodies, the smaller shedding vesicles, which originate
from the fission of the plasma membrane and the apoptotic bodies dropped from cells after
apoptosis. Unlike from AGO2-correlated miRNAs, MV-entrapped extracellular miRNAs
are transported to different cells where they control gene expression [19,20].

In any case, miRNAs are essential controllers of the human genes and regulate innu-
merable cellular pathways to direct cell proliferation. The miRNA alteration acts on cancer
onset, diffusion and drug resistance [21–24].

1.2. Possible Mechanisms of the Action of miRNAs in Multiple Myeloma Chemoresistance

miRNAs can operate as oncogenic or tumor suppressor miRNAs depending on their
targets, tumor suppressors or oncogenes, respectively [25], and several findings sustain
the action of both types in ruling the drug response of different tumors. It has also been
demonstrated that some miRNAs may control the drug response of MM cells via regulation
of the apoptotic or proliferative pathways such as p53 [26–28]. In fact, several reports
explored miRNAs and chemical resistance in MM drug resistant experimental models and
recent papers evidenced that the p53-related signaling pathways are regulated by miRNAs,
thus proposing a potential role of miRNAs in the drug response of MM cells.

It is well known that p53 is a transcription factor that can control the expression of a
myriad of miRNAs. This suggests that p53 can stimulate tumor suppressor miRNAs or in-
hibit some oncomiRNAs. The miRNAs activated by p53 essentially affect the antiapoptotic
genes, thus enhancing the tumor suppressor activity of p53, or they can control p53 itself in
a positive feedback loop. Contrariwise, miRNAs inhibited by p53 may target pro-apoptotic
genes conducting to a reduction of the tumor suppressor action of p53 [29,30].

Leotta et al. demonstrated that adhesion of wild type p53 MM cells to BMSCs in-
tensely increased miRNA-125a-5p level, while decreased p53 expression. Moreover, it was
demonstrated that when wild type p53 harboring sensitive MM cells adhered to BMSCs,
the mRNA of TP53 was reduced, while p53-targeting miRNAs, miR-125a, miR-125b, and
miR-25 were increased. However, some p53-controlled miRNAs such as miRNA-15a and
miRNA-16 were reduced, supporting the role of p53/miRNA interaction in stroma-induced
drug resistance in MM [31].

As far other miRNAs, miRNA-181a and miRNA-181b are increased in MM cells
with respect to normal plasma cells, as well as in drug-resistant MM cells with respect
to drug sensitive cells and control the p53 tumor suppressor. miRNA-181a and miRNA-
181b block programmed cell death and increase cell proliferation in MM cells [31–34].
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Remarkably, ectopic expression of miRNA-137 increased the sensibility of the MM cells to
bortezomib (BTZ) through augmenting p53 expression and decreasing ataxia telangiectasia
mutated/checkpoint kinase 2DNA repair pathway (ATM/Chk2). miRNA-27a, miRNA-
631, miRNA-324-5p, miRNA-155, miRNA-497, miRNA-520g, and miRNA-520h are also
reported to be implicated in the chemoresistance of MM cells. As a matter of fact, the
expression of these miRNAs resensitize MM cells to chemotherapy [35–40]; finally miRNA-
34a was also positively correlated with wild type p53 function with particular actions on
MM cell survival [41].

Cyclin-dependent kinase 5 (CDK5), a member of the CDK family, is regulated by
p35/p39. Ballabio et al. reported that the concentration of miRNA-27a was reduced in
BTZ-resistant MM cells and the ectopic expression of miRNA-27a resensitized these cells to
BTZ via reducing CDK5, which acts as an oncogene and is correlated with reduced survival
in MM patients [42,43].

Moreover, other miRNAs have been correlated with different oncogenic pathways
essential for the onset of drug resistance, such as MYC, IFN and STAT [44]. For instance, it
has been demonstrated that the proto-oncogene and transcription factor cellular myelocy-
tomatosis oncogene (c-MYC) has an essential effect in MM onset [45] and was implicated
in drug resistance [46] (Figure 1).
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Figure 1. Possible mechanisms of c-Myc affecting miRNAs in MM cells.

Blocking c-MYC stimulated programmed cell death in MM cells and the role of c-
MYC-repressed miRNAs (miRNAs-15a/16-1, -26a, -29, -34a, and -150) in regulation of
c-MYC-mediated activity on growth and cell death has been well described [47]. It is
certain that increased expression of c-MYC has a fundamental role for chemoresistance.
Interestingly, c-MYC causes the drug resistance of acute myeloid blast cells by blocking cell
differentiation. Instead, in MM where plasma cells are terminally differentiated it acts via
the interaction with different targets such as Myeloid cell leukemia-1 (MCL-1), an inhibitor
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of apoptosis, to cause drug resistance in different tumor diseases [48,49]. However, a
recent report demonstrated that c-MYC regulated drug response in MM cells by acting
on miRNA-29a, a tumor suppressor miRNA [50,51]. It was found that a p53-reactivating
compound called PRIMA-1Met reduced c-MYC and MCL-1, but increased miRNA-29a
in MM cells, and induced programmed cell death. c-MYC was recognized as a direct
target of miRNA-29a, as an increase of miRNa-29a reduced c-MYC and blocked MM cell
proliferation [52].

A mutation of other genes could also play a role in the onset of chemoresistance
under the influence of miRNAs. Polycomb-like protein 3 (PCL3), also known as PHF19,
is a polycomb-like (PCL) protein. PCL proteins are PRC2 (polycomb repressive complex
2)-related elements that develop subcomplexes useful for regulating PRC2 enzymatic
activity, a histone methyltransferase activity that modifies histone H3 on lysine 27. Yu et al.
demonstrated that increasing expression of the gene PHF19 caused MM cell proliferation
and drug resistance in vitro and in vivo [53]. After chemotherapy with BTZ, epirubicin or
melphalan, a reduction in MM cell death in PHF19 overexpression groups compared to the
empty vector groups was observed. PHF19 was increased in drug-resistant primary cells
from MM patients. Increasing PHF19 concentrations increased Bcl-xL and Mcl-1 presence
in MM cells. miRNA-15a is able to target the 3′UTR of PHF19. It was demonstrated that
the reduction of miRNA-15a caused an improved amount of PHF19 in MM cells. These
data demonstrated that the miRNA-15a/PHF19 pathway has a central role in MM drug
resistance [53].

Moreover, PHF19 stimulates the phosphorylation of EZH2 (enhancer of zeste homolog
2; the catalytic subunit of PRC2) via phosphoinositide-dependent kinase 1/protein kinase
B (PDK1/AKT) signaling, and its increased expression was demonstrated also in MM [54].
EZH2 C-terminal SET domain comprehends the histone methyltransferase function that
stimulates trimethylation of histone H3 lysine 27 (H3K27me3). In mature B-cells, EZH2
presence is reduced, causing an inhibition of EZH2 target genes. Contrariwise, an increased
expression of EZH2 causes an augmented inhibition of EZH2 target genes and increased
cell growth [54,55]. An elevated EZH2 amount in MM is linked to MM severity and bad
prognosis [56–59]. It was reported that EZH2 is increased in drug-resistant MM cells [59]
and a reduction of EZH2 provoked the contrary effect. Rastgoo et al. recognized miRNA-
138 as a controller of EZH2. Experimental data demonstrated that RNA-binding protein
with multiple splicing (RBPMS) is a target of EZH2. RBPMS silencing provokes resistance
to MM cells and reestablishment of RBPMS by miRNA-138 resensitizes the resistant cells
to drugs. Notably, in vivo release of miRNA-138 mimics n association with BTZ, causes
relevant regression of MM in xenograft animal models [60].

The increased delivery of the antiapoptotic components of the B-cell lymphoma 2
(Bcl-2) family can provoke cell growth and chemoresistance [60]. Multidrug resistance is
generally correlated with the increased expression of the MDR protein1 (MDR1), a mem-
brane protein that belongs to the family of adenosine triphosphate (ATP)-binding cassette
transporters and is recognized as the main factor in the transport of toxic compounds
outside the cell [61,62]. It was demonstrated that miRNA-19a caused drug resistance by
increasing Bcl-2 and MDR1 in MM cells in response to chemotherapy, and this process
is controlled by the phosphatase and tensin homolog deleted on chromosome 10/phos-
phatidylinositol 3 kinase/Protein Kinase B (PTEN/AKT/pAKT)-signaling pathway [63].
miRNA-19a-3p might be employed as a potential marker to predict the efficacy of treatment
in MM patients [64], (Figure 2).
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Figure 2. Possible targets of miRNA actions to induce chemoresistance in multiple myeloma.

In the following sections we report the most recent studies concerning the relationship
between miRNAs and chemoresistance to the most frequently used drugs in patients with
MM. Although most of the studies refer to proteasome inhibitors and in particular to BTZ,
the onset of chemoresistance linked to the different expressions of miRNAs concerns all
classes of drugs used, from steroids, to alkylating agents, to immunomodulators (Table 1).

1.3. miRNAs and Chemoresistance to Antimyeloma Drugs

Dexamethasone (Dex), a glucocorticoid (GC) is an essential drug employed in MM
treatment and is generally part of the chemotherapeutic protocols for MM. However, high
dosages of GC for a long time causes a GC receptor (GR) decrease, and a GC resistance.

Zhao et al. utilizing Dex resistant (MM1R) and sensitive MM cell line (MM1S) demon-
strated that the expression of miRNAs-221/222 was increased in GC-resistant cell lines and
augmented MM cell survival through Bcl2 associated X/BCL2 antagonist/killer 1/BCL2
binding component 3. As a consequence, for overturning the drug-resistance to Dex, an-
tagomir of miR-221/222 may be used and animals administered with Dex and miR-221/222
antagonist presented longer survival with respect to animals treated with Dex only [65].
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Table 1. Effects of commonly used drugs on miRNA expression and final biological effect.

Drug-Resistance Type of miRNAs Action Target Cells Effect Reference

Dexamethasone miRNA-221 increased MM1R BAX/Bak1 [65]

miRNA-222 increased MM1R BAX/Bak1 [65]

miRNA-15a decreased MM1R ↑IL-6 [66]

miRNA-16 decreased MM1R ↑IL-6 [66]

miRNA-21 increased KMS-26, U-266, OPM-2,
INA-6 RhoB [67]

miRNA-125b increased MM1S Bak1/SIRT1 and↓p53 [68]

miRNA-182 increased H929, MM.1S FOXO3A [69,70]

IMiDs AGO2 increased IMiD-sensitive MM cells cereblon [71,72]

Alkylants miRNA-221 Increased
RPMI8226/Dox6 and

RPMI8226/LR5, U266Dox
and U266/LR7

↑PUMA, SL7A5/LAT1,
ABCC1/MRP1, BAX/Bak1,

RelB-p52
[73,74]

miRNA-222 Increased
RPMI8226/Dox6 and

RPMI8226/LR5, U266Dox
and U266/LR7

↑PUMA, SL7A5/LAT1,
ABCC1/MRP1, BAX/Bak1 [73,74]

Bortezomib miRNA-21 Increased RhoB, NFkB [67]

miRNA-15a-5p Decreased BTZ-resistant cells MAP-k, E2 enzymes [75]

miRNA-16-5p Decreased BTZ-resistant cells MAP-k, E2 enzymes [75]

miRNA-17-5p Decreased BTZ-resistant cells MAP-k, E2 enzymes [75]

miRNA-20a-5p Decreased BTZ-resistant cells MAP-k, E2 enzymes [75]

miRNA-125b-5p Decreased BTZ-resistant cell MAP-k, E2 enzymes [76]

miRNA-21-5p Decreased U266, MAP-k, E2 enzymes [40,77,78]

miRNA-181a-5p Increased U266, MM.1S, RPMI8226 cell growth and MM cells
adhesion [79]

miRNA-376c-3p Increased U266, MM.1S, RPMI8226 unknown [79]

miRNA-215-5p Increased U266, MM.1S, RPMI8226 unknown [79]

miRNA-18a Increased Primary MM cells ↓HIF-1α [80]

let-7b Increased Primary MM cells ↑oncogenes CCND1, MYC,
RAS [80]

miRNA-29b Decreased Primary MM cells ↑oncogene SP-1 [81]

miRNA-27a-5p Decreased Primary MM cells ↑oncogene SP-1 [81]

miRNA-202 Decreased U266 ↑oncogene BAFF, JNK/SAPK,
BAX [76]

miRNA-101-3p Decreased RPMI-8226, U266, MM.1S,
OPM2, HS-5 ↑survivin (BIRC5) [82]

miRNA-155 Decreased Primary MM cells, MM1R ↑CD47, ↑TNF1IP8 [38,83]

miRNA-22-3p Increased MM cells ↑Snail1/hsa, ↓p53 [84]

miRNA-497 decreased Primary plasma cell leukemia
cells Bcl-2 [85–90]

miRNA-520g/h decreased BTZ-resistant MM cells Rad51, APE1 [40]

miRNA-16-2-3p increased Cells from BTZ-refractory
subjects multiple [91]

miRNA-19b-3p increased Cells from BTZ-refractory
subjects multiple [91]

miRNA-30e-5p increased Cells from BTZ-refractory
subjects multiple [91,92]

miRNA-122-5p increased Cells from BTZ-refractory
subjects multiple [91]

miRNA-143-3p increased Cells from BTZ-refractory
subjects multiple [91]

miRNA-148a-3p increased Cells from BTZ-refractory
subjects multiple [91]

miRNA-215-5p increased Cells from BTZ-refractory
subjects multiple [91,92]
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Table 1. Cont.

Drug-Resistance Type of miRNAs Action Target Cells Effect Reference

miRNA-30c-5p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNA-130a-3p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNA-151a-3p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNa-181a-5p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNA-191-5p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNa-328-3p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNA-376a-3p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNa-409-3p decreased Cells from BTZ-refractory
subjects Multiple [91]

miRNA-744-5p decreased Cells from BTZ-refractory
subjects multiple [91]

miRNA-1224-3p decreased Cells from BTZ-refractory
subjects multiple [91]

Carfilzomib miRNA-101-3p decreased RPMI-8226, U266, MM.1S,
OPM2, HS-5 ↑survivin BIRC5 [82]

Doxorubicin miRNA-21 increased BTZ-resistant MM cells RhoB [40]

Moreover, Dex-sensitive MM cell lines presented a greater amount of miRNA-15a
with respect to MM1R resistant cells. Remarkably, the contact of MM cells with MM-
BMSCs decreased miRNA-15a and -16 delivery in MM cells. Probably, the mechanism was
cytokine-mediated as IL-6 produced by MM-BMSCs decreased generation of miRNA-15a
and -16 in MM cells [66].

One study reported that miR-21 could also provoke drug resistance to Dex, doxoru-
bicin, or BTZ in MM cells [40]. Moreover, authors demonstrated that adhesion to BMSCs
increased miRNA-21 production in MM cells and caused drug resistance by targeting Ras
homologous B (RhoB) gene. A recent study confirmed that the oncogenic miRNA-21 was a
possible therapeutic target to overcome chemoresistance in MM [67].

Additionally, Murray et al. described an impressive antiapoptotic effect of miRNA-
125b in the resistance to Dex action in MM cells [68]. Utilization of antisense miRNA-125b
transcripts increased production of proapoptotic p53, reduced the delivery of antiapoptotic
SIRT1 and increased Dex-induced apoptosis in MM cells [68]. Dex also caused an aug-
mented expression of miRNA-34a, which is able to reduce SIRT1 deacetylase, thus causing
inhibition of p53 [68].

Contrariwise, several microRNAs were reported to strengthen the apoptotic effect of
Dex and this was exploited by Palagani et al. [93] who demonstrated a synergistic apoptotic
effect of a combined treatment with low-dose GC and a synthetic vector of miRNA-150.
Furthermore, miRNA-150 presented accessory effects acting on molecular chaperones,
transcriptional factors, hormone receptors, and unfolded protein stress, reducing the
probability of a GC resistance.

Recent studies demonstrated that miRNA-182 also has an essential action in GC
resistance. Yang et al. reported that anomalous miRNA-182 production is associated
with GC resistance in lymphoblastic leukemias though targeting the transcription factor
forkhead class box O3a (FOXO3A) [69]. However, the action of miR-182 in MM is not well
defined. In a study, it was reported that contact of H929 (another MM cell line) and MM.1S
cells to fibronectin could increase miRNA-182 production and reduce programmed cell
death 4 (PDCD4), which is essential for CAM-DR. Moreover, miRNA-182 was reported to
negatively control PDCD4 production in H929 and MM.1S cells [70].
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Conversely, the responsibility of miRNAs in the regulation of the efficacy of Im-
munomodulatory Drugs (IMiDs) such as Thalidomide, Lenalidomide and Pomalidomide
has been inadequately studied. IMiDs demonstrated relevant antitumor effects in MM
through reducing MM-cell proliferation in the bone marrow milieu and boosting immune
effector cell activity. They are recognized to connect to the ubiquitin 3 ligase cereblon
complex and so stimulating degradation of hematopoietic transcription factors IKZF1/3.
Lately, AGO2, which has an essential effect in miRNA activity, was recognized as a cereblon
binding partner and it was demonstrated that the steady-state concentrations of AGO2
are controlled by cereblon. In IMiD-sensitive MM cells treated with lenalidomide, apop-
tosis was observed together with an increase of cereblon and a reduction of AGO2 and
miRNAs [71].

A significant influence of miRNAs was also found in the onset of chemoresistance
phenomena to alkylating drugs.

Munker et al. evaluated miRNA production in human myeloma cell lines, RPMI8226
and U266 and their resistant variants RPMI8226/Dox6 and RPMI8226/LR5, U266Dox and
U266/LR7 [73].

It was reported that miRNA-221/222 inhibition may modify melphalan sensitivity in
MM cells. Blocking of miRNAs-221/222 overwhelmed melphalan resistance and stimulated
programmed cell death of MM cells in vitro. In fact, the therapy of severe combined
immunodeficient/nonobese diabetic (SCID/NOD) animals carrying melphalan-refractory
MM xenografts with locked nucleic acid (LNA) overwhelmed drug resistance [94].

A report demonstrated the justification of the combined administration of melphalan
and locked nucleic acid-inhibitor (LNA-i)-miRNA-221 in drug-refractory MM subjects. The
effect was due to the increase of PUMA, a (BH3)-only Bcl-2 member, and to a regulation of
drug influx-efflux transporters, as SLC7A5/LAT1 and the ABC transporter ABCC1/MRP1.
The powerful synergism was also substantiated in vivo by the employ of a systemically
dispensed LNA-i-miR-221 [95]. BAX and BAK, two other p53-correlated genes, were
also increased after inhibition of miRNAs-221/222 in vitro and in xenograft models. Au-
thors proposed that as PUMA is a modulator of programmed cell death, it is possible
that anti-sense-miRNAs-221/222 treatment should not only overwhelm Dex resistance
but also resistance to other drugs employed in MM treatment, comprising lenalidomide.
Remarkably, a report established that miRNA-221 production was controlled by RelB-p52
complex of the NFκB signaling pathway to which resistant MM cells are proposed to be
addicted [74]. By reducing MM cells of RelB and p52, a relevant decrease of miRNA-221
was found. The study also demonstrated that RelB-p52 complex reduced expression of
BMF, a proapoptotic gene which is a recognized target of miRNA-221. These findings
identified the stimulation of anti-apoptotic pathways to be one possible mechanism of MM
drug resistance induced by miRNAs-221/222.

However, most studies on the relationship between miRNA and chemoresistance in
MM have been conducted on proteasome inhibitors and in particular on BTZ, a small-
molecule proteasome inhibitor, normally employed to enhance the remission percentage
and extend the overall survival of MM subjects. Although the initial response to BTZ
is favorable, most subjects who primarily respond to BTZ acquire resistance to the drug.
About 55−65% of subjects with relapsed MM are unresponsive to BTZ [96], and almost
20–30% of MM subjects have innate DR to BTZ [97–99].

Circulating exosome-correlated miRNAs were employed as prognostic markers to
predict drug resistance, by evaluating responsive and BTZ-resistant MM subjects. In fact, a
decrease of four exosomal miRNAs, comprising miRNA-15a-5p, -16-5p, -17-5p, and -20a-5p
were reported in the BTZ-resistant MM subjects [75].

A diverse marker could be MiRNA-181a-5p, a target of long noncoding (Lnc) RNA
MALAT1, whose interference reduced the production of miRNA-181a-5p and blocked
the growth and adhesion of MM cells [79]. Several findings offer the suggestion that
expression levels of miRNA-215-5p, -376c-3p and -181a-5p can be employed to predict the
response to BTZ.
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MiRNA-15a/16-1, already mentioned above, was believed to possess tumor suppres-
sor activities implicated in angiogenesis, cell differentiation, growth, or programmed cell
death in numerous tumors including MM [100,101]. Preceding reports suggested that
miRNAs-15a/16-1 reduction participated to the MM onset and played a role in drug re-
sistance in myeloma cells. However, MM subjects with minor miRNA-15a expression
were resistant to BTZ-based treatment, suggesting that miRNA-15a has a more relevant
effect in drug resistance with respect to miRNA-16-1 in MM [65]. Li et al. demonstrated
that subjects with a reduced amount of miRNA-15a had poor survival when treated with
thalidomide or BTZ-based therapy, proposing that BTZ-based therapy did not enhance
Progression Free Survival (PFS) and Overall Survival (OS) of subjects with miRNA-15a
reduced expression [102,103].

In addition to the miRNAs mentioned above, others appear to have relevance in the
determining of BTZ chemoresistance. In fact, in a different study, circulating exosomal
miRNAs were extracted from newly diagnosed subjects with MM treated with BTZ and
Dex, and autologous hematopoietic stem-cell transplant. Two miRNAs-derived exosomes,
miR-18a and let-7b, were reported to be significantly correlated with poor prognosis in
an independent mode even after correcting for the cytogenetic alterations [80]. Reduction
of the delivery of exosomes by the sphingomyelinase inhibitor GW4869 augmented the
sensitivity of MM cells to BTZ, causing an increased anti-MM response when BTZ and
GW4869 were administered in a combined way [104].

As far the mechanisms by which miRNAs can cause resistance to BTZ, miRNAs can
operate on oncogenes, such as specific protein 1 (SP1) or factors, such as B-cell activating
factor (BAFF). For instance, tumor suppressors miRNA-29b and miRNA-27a- 5p regulate
anti-MM action of BTZ in MM cells by aiming oncogenes such as SP1 [81]. Moreover,
miRNA-202 regulates the BTZ effect via a decrease of the BAFF and JNK/SAPK path-
way [105]. BAFF is a component of the tumor necrosis factors (TNF) superfamily and was
recognized as an essential element affecting the proliferation of MM cells [106]. BMSCs
increase BAFF in MM and it was demonstrated that levels of BAFF were augmented in
BMSCs treated with miR-202 inhibitor. The production of Bcl-2 was decreased, and Bax
was increased after miRNA-202 mimics transfection. An increased amount of miRNA-202
in BMSCs rendered MM cells more sensitive to BTZ. Moreover, miRNA-202 could reduce
the stimulation of the NF-κB pathway in BMSCs. With respect to BTZ treatment alone,
contemporary administration of BTZ and miRNA-202 mimics reduced MM cell survival
and induced apoptosis [76].

In a different study, it was reported that levels of miRNA-21 were increased in MM
cells after adhesion to BMSCs [40]. Treating U266 cells with miRNA-21 mimics made cells
somewhat resistant to BTZ, Dex, and Dox. Authors demonstrated that NFκB may modulate
miRNA-21 concentration. Blocking NFκB employing the inhibitor BAY had repressing
actions on miRNA-21 expression. This suggested that miRNA-21 production in MM cells
was controlled by NF-kB signaling, as also described for miRNA-21 in an experimentation
on drug resistant B-cell lymphoma cells [77,78]. On the other hand, miRNAs such as
miRNA-125a, b, -221/222, and -451 are increased in MM cells presenting drug resistance.
The increased presence of these miRNAs diminished cell death caused by drugs such as
BTZ and Dex; thus a reduction of these miRNAs could be a novel therapeutic approach to
overwhelm drug resistance [76].

Abdi et al. reported that BMSCs reduced miRNA-101-3p expression and increased
survivin (BIRC5) in MM cells [82]. Survivin was reduced by miRNA-101-3p overexpression
and was reported to be a target of miRNA-101-3p. Increase of survivin augmented via-
bility of MM cells when employed with antimyeloma drugs and blocking miRNA-101-3p
through an anti-miRNA increased survivin. Moreover, the increase of miR-101-3p or the si-
lencing of surviving stimulated programmed cell death in MM cells and sensitized them to
antimyeloma treatment in the presence of BMSCs, overwhelming the stroma-induced drug
resistance. In the same study, it was reported that HS-5 cells and MM BMSCs derived from
MM patients provoked resistance to BTZ and carfilzomib (CFZ) in MM cells principally
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via direct cell−cell adhesion. Ectopic production of survivin made MM cells resistant to
BTZ and inhibition of miRNA-101-3p enhanced survivin protein levels [82]. These results
propose that BMSCs may utilize the miRNA-101-3p/survivin axis as a system to defend
MM cells against antimyeloma treatment.

A diverse path capable of provoking BTZ resistance implicates the intervention of
some integrins. CD47, an integrin-correlated receptor, is remarkably increased in MM drug
resistance with respect to parental cells, and increased presence of CD47 is correlated with
reduced progression free survival and overall survival. Rastgoo et al. demonstrated that
miRNA-155 is present at small concentrations in drug-resistant MM cells and is a controller
of CD47 [83]. An increase of miRNA-155 reduced CD47 expression in MM cells, causing
the stimulation of programmed cell death of MM cells and an increased phagocytosis of
MM cells. MiRNA-155 increased expression also re-sensitized drug-resistant MM cells to
BTZ, causing cell death via targeting tumor necrosis factor-α-induced protein 8 (TNFAIP8),
a negative controller of programmed cell death. Furthermore, it was demonstrated that the
TNFAIP8 concentrations were greater in MM.1R cells with respect to MM.1S. Remarkably,
ectopic expression of TNFAIP8 in the parental cell lines augmented resistance to BTZ by
blocking caspase-8 activity and caspase-3. Moreover, increased expression of miRNA-155
in drug resistant MM cells decreased concentrations of TNFAIP8 [83].

The role of miRNA-155 in BTZ resistance was confirmed also by other studies. Amodio
et al. evaluated miRNA-155 replacement as a possible anti-MM treatment in a xenograft
model of MM. Moreover, in primary MM cells, they reported a negative correlation between
miRNA-155 and the mRNA coding the proteasome subunit gene PSM_5, whose alteration
has been involved in BTZ resistance [38].

The Snail family transcriptional repressor 1 gene (Snail1) was evaluated in MM cells
from BTZ-resistant subjects. It was considerably correlated with the development of drug
resistance systems. The mechanistic evaluations established that the increase of Snail1
production in BTZ-resistant MM cells directly augmented transcription of the intracellular
multidrug resistance gene 1 (MDR1) and reduced P53 protein production via the Snail1/hsa-
miRNA-22-3p/P53 pathway to decrease programmed cell death. By increasing MDR1 and
reducing P53, Snail1 provoked the drug resistance of MM cells to BTZ, while Snail1 gene
silencing efficiently enhanced drug sensitivity to BTZ treatment [84].

Other miRNAs capable of changing BTZ sensitivity are miRNAs 497 and miRNA
520. miRNA-497 is thought to be a tumor-suppressive miRNA in several tumors, being
implicated in the control of proliferation and chemoresistance. An experimental study
reported that miRNA-497 was reduced in MM subjects with respect to controls, and it
was the one of four miRNA signatures recognized as having different concentrations that
related with lenalidomide/dexamethasone therapy responses in a primary plasma cell
leukemia clinical trial [85]. MiRNA-497 targets several genes able to influence apoptosis
such as Bcl-2 [86–90], an increased concentration of miRNA-497 augmented MM cell
apoptosis. Moreover, miRNA-497 enhanced the sensitivity of MM cells to BTZ. The
combined administration of miRNA-497 and BTZ may augment drug sensitivity, providing
a different therapeutic approach for MM [39] (Figure 3).
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miRNA-520g and miRNA-520h belong to the miRNA-515 family [107], and sev-
eral studies have evaluated their relationships with drug resistance. Ectopic produc-
tion of miRNA-520g caused resistance to 5-fluorouracil- or oxaliplatin-provoked pro-
grammed cell death [107]. They were remarkably reduced in BTZ-resistant MM cells,
and increased concentrations of miRNA-520g and miRNA-520h reduced production of
recombination-related protein Rad51 and cell survival of BTZ-resistant MM cells by binding
with Apurinic/apyrimidinic endonuclease 1 (APE1) mRNA. The combined increase of
miRNA-520g and miRNA-520h blocked BTZ-resistant MM cell proliferation [40].

MiRNA-215-5p, miRNA-30e-5p and miRNA-29b-3p were also reported to have an
essential action in the biology of MM and could have a role in chemoresistance [92].

However, more than the effect of a single miRNA capable of impacting a single
pathway, chemoresistance appears to be the result of the action of a particular constellation
of over- or down-expressed miRNAs [108]. In this sense, it is perhaps possible to define
some specific profiles capable of predicting a condition of chemoresistance to BTZ. For
instance, in a study, higher serum concentrations of miRNA-16-2-3p, miRNA-19b-3p,
miRNA-29b-3p, miRNA-30e-5p, miRNA-122-5p, miRNA-143-3p, miRNA-148a-3p, and
miRNA-215-5p, were described in BTZ-refractory subjects with respect to BTZ-sensitive
subjects, while the serum concentrations of miRNA-30c-5p, miRNA-130a-3p, miRNA-
151a-3p, miRNa-181a-5p, miRNA-191-5p, miRNa-328-3p, miRNA-376a-3p, miRNa-409-3p,
miRNA-744-5p, miRNA-766-3p, and miRNA-1224-3p were inferior in refractory patients
compared to the sensitive subjects [91].

2. Challenges and Future Perspectives

Progress of drug refractoriness is the most life-threatening condition in MM therapy,
hindering most novel treatments. To overcome this problem, new experimentations are
essential to investigate the mechanisms causing drug resistance in MM to obtain more
effective therapeutic approaches.

The detection of miRNAs implicated in the regulation of the action of drugs is becom-
ing a fascinating possibility, and the remarkable results that evidence that miRNAs are
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capable of changing the effectiveness of chemotherapeutics lead to a research area called
“miRNA pharmacogenomics” [109].

However, there are several challenges in the identification of miRNAs as new biomark-
ers of chemoresistance. Various issues have to be taken into account, such as the selection of
samples, the clinical conditions and the assay employed [110,111]. The origin of circulating
miRNAs and their clinical significance should also be taken into account if we should use
miRNAs as biomarkers [112–114]. A study by Pritchard et al. [115] emphasized that a huge
amount of circulating miRNAs addressed as tumor markers by different studies, actually
resembles those expressed by blood cells.

From this point of view, the study of extracellular vesicle (EV)-microRNAs could be
useful to explore the relationships between miRNAs and chemoresistance in MM patients.
As reported above, exosomes are cell-derived vesicles, which transport nucleic acids, lipids,
and proteins from their host cells [116]. Exosomes can be easily separated from biological
fluids, such as blood and urine, and this offers a desirable new possibility to have a reliable
biomarker for prognostic appliances [117]. Small EVs are believed to be a disease-specific
source of circulating miRNAs since, in cancer patients, these have been associated to the
sensitivity to different drugs [118].

A prognostic significance of EV-microRNAs has also been confirmed in several other
hematological malignancies. Saito et al. observed a different EV-microRNA expression
in subjects with myelodysplastic syndrome and acute myeloid leukemia during disease
progression [119]. EVs might also have a prominent role in MM onset and progression
by controlling endothelial cell functions, augmenting tumor cell growth, and increasing
immunosuppression [120–127]. However, the most relevant effect seems to be exploited in
cell–cell communication within the MM microenvironment [128]. Raimondo et al. reported
a group of miRNAs expressed in EVs, from the MM cell line, and in the BM and plasma of
subjects affected by smoldering myeloma and MM. They stated that miR-129-5p, which has
an action on osteoblast differentiation, is enhanced in MM-EVs with respect to smoldering
MM-EVs, thus proposing a specific enveloping associated with pathological grade [129],
and in terms of clinical praxis, circulating EV-miRNAs from newly diagnosed MM subjects
are a powerful marker for prognosis and outcome, such as let-7b and miR-18a.

It is known that MM cells proliferate very fast and the hypoxic status in the BM may
also be a cause of drug resistance, as proven by a study, during long-lasting hypoxia there
was a massive release of EVs as compared to normoxic conditions [130].

Furthermore, it was reported that BM-Mesenchymal Stromal cell-derived EVs provoke
drug resistance in MM cells [45]. Both naive and 5T33 BMSC-derived exosomes caused drug
resistance to BTZ. BMSC-derived exosomes also modulated essential signaling pathways,
including p38, p53, c-Jun N-terminal kinase, and Akt, and also caused drug resistance of
human MM cells [131]. Finally, in a recent study, it was demonstrated a direct correlation
between BTZ sensitivity and EVs-miR-1252-5p expressions which increased with sensitivity
to BTZ [132].

However, our comprehension of the actions of noncoding material on chemoresis-
tance processes is only just beginning and the possible interactions between different
noncoding RNAs other than miRNAs such as long noncoding RNAs in the determining of
chemoresistance are still to be discovered.

LncRNAs indicate a class of RNA transcripts larger than 200 nucleotides with no
function of encoded proteins [133,134]. In the study of MM, lncRNAs were employed as
competitive endogenous RNAs or a miRNA sponge. They contend with miRNAs to block
their action, so modulating miRNA effects at the post-transcriptional level and controlling
its target protein amount.

Few studies have stated the association between lncRNAs and drug resistance in
MM. Reports demonstrated that MCL-1 had an effect on the proliferation of tumor cells
evading drug activity. A study reported that lncRNA H19 was increased in the serum of
MM subjects. It is known that miRNA-29b-3p is the downstream target gene, and MCL-1
is the downstream target protein of miR-29b-3p. So, it was hypothesized that MCL-1 may
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be implicated in the occurrence of drug resistance via H19. It was demonstrated that H19
decreased cell sensitivity to BTZ by operating as a miRNA sponge to reduce the expression
of miRNA-29b-3p, increase MCL-1 transcriptional translation and block programmed cell
death [135].

All these results may aid in obtaining new understanding of the molecular mecha-
nisms of acquired BTZ resistance and generate novel drug targets for the therapy of MM,
but numerous other problems remain to be solved. Some of the challenges in miRNA
therapeutic schemes include miRNA stability, selective uptake by target cells via an active
delivery system, potential off-targets and undesirable toxicities and the alteration of innate
immune responses. Moreover, miRNA-based strategies must deal with the complexity of
miRNA targetome, thus it could be useful to employ approaches based on “integrOmics”
results, obtained from different technology platforms [136].

A further contribution could also be provided by nanotechnologies [137], that can
surmount the biological obstacles for miRNA delivery and decisively take advantage of the
huge potential of miRNA therapeutics. Nanotechnologies will permit extraordinary and
selective penetration of miRNA-containing delivery vesicles into the BM microenviron-
ment [138,139]. Moreover, the favorable pharmacokinetics of chemically modified miRNA
inhibitors, such as LNA-oligonucleotides, offer exciting possibilities for clinical transla-
tion [140] to introduce miRNA therapeutics into the current therapy of MM. This could
decrease the risk of drug resistance by affecting compensatory systems, drug distribution,
metabolism, absorption, and excretion-related genes [141,142].

3. Conclusions

MM is a composite polygenic condition made by genetic alterations, modifications
capable of influencing the onset, progression and response to therapy.

Several reports demonstrated that miRNAs perform a fundamental action in BMSC-
provoked drug resistance of MM cells. Since adhesion to BMSCs may regulate DNA-
methyltransferase concentrations, this suggests new BMSC-driven epigenetic systems
regulate miRNA expression in MM cells. Moreover, BMSCs were demonstrated to dis-
charge miRNAs in exosomes, which could modify the phenotype of MM cells or other cells
of the BM milieu by a paracrine manner [128].

Strengthening our comprehension of miRNA production and activity in the MM
cell−BM relationship will help us to identify novel drug targets to overwhelm CAM-
DR [143,144]. Several miRNAs are correlated with drug resistance, and the regulation of
their production or action might be investigated to reverse it. The employ of antagomirs or
miRNA mimics has been efficaciously demonstrated to have antitumor action and exhibit
synergistic actions with antimyeloma drugs [64,66,73,145].

In any case, different approaches are currently under evaluation to operate on miRNA
expression such as a decrease of upregulated oncomiRs and the replacement of downregu-
lated tumor suppressor miRNAs. For instance, antisense miRNA inhibitors connect solely
to the sense miRNA resulting in its inhibition. Moreover, locked nucleic acid linked to a
phosphorothioate backbone is generally employed to increase the stability and the affinity
of antagomirs to their target miRNAs. Other possibilities include miRNA sponges, which
are transcripts that have numerous binding sites that avoid the binding of oncomiRs to
mRNA. Another strategy could be represented by MASK, a synthesized oligonucleotide
complementary to miRNA binding sites that prevents mRNA recognition [140,146–149].

Recently, to overcome chemoresistance to lenalidomide, a specific target was identified,
Cereblon (CRBN), a brain-associated protein that interacts with DNA damage-binding
protein-1, Cullin 4, and regulator of Cullins 1 to generate the functional E3 ubiquitin
ligase complex that performs proteolysis via the ubiquitin-proteasome pathway. However,
Lenalidomide can also have an action in MM cells by regulating miRNA levels and CRBN
by binding to downstream protein AGO2 expression [72].
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In conclusion, despite no clinical trials currently exploring the possibility of reducing
chemoresistance through a modulation of miRNAs, this seems a fascinating and promising
approach to improve and customize the therapy of MM.
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