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Abstract

Background

EuroAmerican land-use and its legacies have transformed forest structure and composition

across the United States (US). More accurate reconstructions of historical states are critical

to understanding the processes governing past, current, and future forest dynamics. Here

we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composi-

tion and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michi-

gan), using 19th Century Public Land Survey System (PLSS), with estimates of relative

composition, above-ground biomass, stem density, and basal area for 28 tree types. This

mapping is more robust than past efforts, using spatially varying correction factors to accom-

modate sampling design, azimuthal censoring, and biases in tree selection.

Changes in Forest Structure

We compare pre-settlement to modern forests using US Forest Service Forest Inventory

and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with

no current analog), and novel forests (modern forests with no past analogs). Differences

between pre-settlement and modern forests are spatially structured owing to differences in

land-use impacts and accompanying ecological responses. Modern forests are more
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homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest

assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer

exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota,

hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Pen-

insula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie

boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages

are distributed evenly across the region, but novelty shows a strong relationship to spatial

distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to

60km from remnants, depending on historical forest type. The spatial relationships between

remnant and novel forests, shifts in ecotone structure and the loss of historic forest types

point to significant challenges for land managers if landscape restoration is a priority. The

spatial signals of novelty and ecological change also point to potential challenges in using

modern spatial distributions of species and communities and their relationship to underlying

geophysical and climatic attributes in understanding potential responses to changing cli-

mate. The signal of human settlement on modern forests is broad, spatially varying and acts

to homogenize modern forests relative to their historic counterparts, with significant implica-

tions for future management.

Introduction

Composition, demography, and structure of forests in eastern North America has changed

continuously over the last millennium, driven by changes in human land-use [1–5] and cli-

mate variability [6–9]. While human effects have been a component of these systems for mil-

lennia, the EuroAmerican settlement and industrialization period has increased

anthropogenic effects by orders of magnitude [10–12]. Legacies of post-settlement land-use in

the upper Midwest [13] and elsewhere have been shown to persist at local and regional scales

[5,14,15], and nearly all North American forests have been affected by the intensification of

land-use in the past three centuries. Hence, contemporary ecological processes in North

American forests integrate the contemporary and historical anthropogenic impacts of the

EuroAmerican settlement period and natural influences at decadal to centennial scales.

Multiple major ecotones exist within the upper Midwestern United States (US), including

the prairie-forest boundary, historic savanna, and the Tension Zone between southern and

northern forests [16]. Large and well-documented changes in forest structure and composition

have occurred in this region since EuroAmerican settlement [13,17–20]. The extent to which

ecotones have shifted, and their extent both prior to and following EuroAmerican settlement is

of critical importance to biogeochemical and biogeophysical vegetation-atmosphere feedbacks

[21], carbon sequestration [17], and regional management and conservation policy [22–25].

At a regional scale many modern forests in the upper Midwest (i.e., Minnesota, Wisconsin

and Michigan) have low species richness and functional diversity relative to forests of the pre-

EuroAmerican settlement (hereafter pre-settlement, ca. mid-late 1800s) period [26–28] due to

near-complete logging, often followed by severe wildfire. For example, forests in Wisconsin

are in a state of regrowth, with an unfilled carbon sequestration potential of 69 TgC [17] as a

consequence of land cover conversion and subsequent recovery following abandonment of

farm lands in the 1930s. Differences in land-use history across the Midwest, superimposed on

original vegetation patterns and modern environmental gradients, may have led, not only to
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broad spatial patterns, but also to significant local-to-regional variation. For example, while

fire suppression occurred throughout the region, effects of suppression have and will continue

to manifest themselves differently depending on the historical vegetation and biophysical char-

acteristics of the site or region.

Land-use legacies emerge at regional scales [29–31]. Under intensive land-use change, natu-

ral processes of succession, senescence and recruitment may be heavily altered or redirected.

Broad-scale land-use change can drive changes in forest structure, species pools, and ecosys-

tem properties that may not be apparent on the relatively narrow time scales at which ecologi-

cal processes are traditionally observed [30,32]; modern chronosequences may miss important

changes in structure and composition. The recolonization of forested landscapes following

agricultural clearance in the upper Midwest [20], highlights the importance of understanding

ecological trajectories and land-use legacies in understanding modern forest dynamics [29].

Cramer el al. [33] cite successional theory to suggest that many old fields will return to a ’natu-

ral’ state, but point out that recovery is not universal. In particular, intense fragmentation of

the landscape can deplete the regional species pool, leading to failures of recruitment that

might favor species with longer distance seed dispersal [34].

While debate persists over how to conceptualize and identify novel ecosystems, and their

scientific and management implications [35–37], the fact remains that there are now forest

and vegetation communities on the landscape without historic analogues that must be man-

aged [38]. Long-term management of forest ecosystems and their associated services requires

understanding the extent to which landscapes have been modified by historic land-use and the

spatial (and temporal) scales at which novel ecosystems arise. While restoration efforts have

generally focused on ecosystems at local scales, there is an increasing need to focus on manage-

ment and restoration at landscape scales [39]. An understanding of landscape-level processes

driving ecological novelty can help prioritize intervention strategies at local scales [40], and

provide a better understanding of the role of remnant patches in restoring hybrid or novel

landscapes.

Building upon prior work [18,26,27,27,41–47] and the United States Forest Service—

Northern Central Research Station (http://www.ncrs.fs.fed.us/gla/), we use the Public Land

Survey System (PLSS) to derive estimates of pre-settlement (ca. mid-late 1800s) forest compo-

sition, basal area, stem density, and biomass. Most prior PLS-based reconstructions are for

individual states or smaller extents [17,18,27,31,48] often aggregated at the scale of regional

forest zones [26,27], although aggregation may also occur at the section [17] or township scale

[49]. With spatially extensive historical datasets for the Upper Midwestern United States it

becomes possible to quantify the extent of change in forest structure and composition since

EuroAmerican Settlement. There is a critical need for a rigorously vetted, and quantitatively

robust mapping of historical forest communities that is compatible with modern forest cover

data such as the Forest Inventory and Analysis data produced by the US Forest Service. Forest

cover data at two time points, separated by major land use conversion can provide greater

insight into forest structure and function than any single dataset, and, further, will allow us to

cross time-scales, for example, with the use of pollen data [50].

Forest Inventory and Analysis (FIA) forest surveys, which began in the 1930s, are the closest

modern equivalent of the spatially extensive PLSS data. Modern forest structure and composi-

tion data [51] play a ubiquitous role in forest management, conservation, carbon accounting,

and basic research on forest ecosystems and community dynamics. In general, FIA datasets

are systematically organized and widely available to the forest ecology and modelling commu-

nity [52], whereas most PLSS data compilations are of local, or at most, state-level extents. This

absence of widely available data on settlement-era forest composition and structure has been a

major barrier to understanding and modeling the current and future processes governing
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forest dynamics at broader, regional scales. For example, distributional models of tree species

often rely upon FIA or other contemporary observational data to build species-climate rela-

tionships that can be used to predict potential range shifts [53,54], without consideration of

historical forest data.

Our work develops new approaches to address well known and substantial challenges to the

ecological interpretation and application of PLSS data, including lack of standardization in

tree species names [55], azimuthal censoring by surveyors [41], variations in sampling design

over time [56], and differential biases in tree selection among different kinds of survey points

within the survey design at any point in time [42,57]. The correction factors developed here

are spatially varying, allowing us to accommodate temporal and spatial variations in surveyor

methods.

We aggregate point-based estimates of stem density, basal area and biomass to an 8 x 8km

grid, and classify forest types in the upper Midwest to facilitate comparisons between FIA and

PLSS data. We compare the PLSS data to late-20th-century estimates of forest composition,

tree stem density, and basal area. Using analog analyses, we identify lost forests with no close

compositional counterpart today, and novel forests with no close historical analogs, and we

model the spatial relationships between cells with novel forest types and those that had close

historical counterparts. We explore how forest homogenization has changed the structure of

two major ecotones from southern deciduous to northern evergreen forests, and the forest-

prairie boundary. This work provides insight into the compositional and structural changes

between historic and contemporary forests, while setting the methodological foundation for a

new generation of regional to subcontinental-scale maps and analyses of settlement-era forests

in the Eastern US.

Methods

Public Lands Survey Data: Assembly, and Standardization

The PLSS was designed to facilitate the division and sale of federal lands from Ohio westward

and south. The survey created a 1 mile2 (2.56 km2) grid (sections) on the landscape. At each

section corner and half-mile (quarter-section) point, a stake was placed as the official location

marker. To mark these survey points, PLSS surveyors recorded tree stem diameters, measured

distances and azimuths of the two to four trees ’closest’ to the survey point and identified tree

taxa using common (and often regionally idiosyncratic) names. PLSS data thus represent mea-

surements by hundreds of surveyors from 1832 until 1907, with changing sets of instructions

over time [56,58]. The work presented here builds upon prior digitization and classification of

PLSS data for Wisconsin [46,47], Minnesota [43] and Michigan (USFS-NCRS).

The PLSS replaced earlier Town Proprietor Surveys (TPS) used in the northeastern US and

British Colonies [2,59]. The TPS provided estimates of relative forest composition at the town-

ship level, but no structural attributes. The PLSS produced spatially explicit point level data,

with information about tree spacing and diameter, which can be used to estimate absolute tree

density and biomass. PLSS notes include tree identification at the point level, disturbance [60]

and other features of the pre-settlement landscape. However, uncertainties exist within the

PLSS [61].

Ecological uncertainty in the PLSS arises from the dispersed spatial sampling design (fixed

sampling every half mile), precision and accuracy in converting surveyor’s use of common

names for tree species to scientific nomenclature [55], digitization of the original survey notes,

and surveyor bias during sampling [42,61–63]. Estimates vary regarding the ecological signifi-

cance of surveyor bias. Terrail et al. [64] show strong fidelity between taxon abundance in

early land surveys versus old growth plot surveys. Liu et al [42] estimate the ecological

Forest Change in the Upper Midwestern United States
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significance of some of the underlying sources of bias in the PLSS and show ecologically signif-

icant (>10% difference between classes) bias in species and size selection for corner trees.

However Liu et al. [42] also indicate that the true sampling error cannot be determined, partic-

ularly because most of these historic ecosystems are largely lost to us.

Kronenfeld and Wang [41], working with historical witness tree datasets in western New

York, indicate that direct estimates of density using plotless estimators may be off by nearly

37% due to azimuthal censoring (i.e., the tendency of surveyors to avoid trees close to cardinal

directions), while species composition estimates may be adjusted by between -4 to +6%, vary-

ing by taxon, although Kronenfeld [57] shows adjustments of less than 1%. These biases can be

minimized by appropriate analytical decisions; many efforts over the years have assessed and

corrected for the biases and idiosyncrasies in the original surveyor data [27,41,42,63,65–69].

Even given these caveats, PLSS records remain the best source of data about both forest com-

position and structure in the United States prior to EuroAmerican settlement.

This analysis builds upon and merges previous state-level efforts to digitize and database the

point-level PLSS data for Wisconsin, Minnesota and the Upper Peninsula and upper third of

the Lower Peninsula of Michigan. These datasets were combined using spatial tools in R [70,71]

to form a common dataset for the upper Midwest (Fig 1) using the Albers Great Lakes and St

Lawrence projection (see code in S1 File: step_one_clean_bind.R; proj4: +init:EPSG:3175).

We took several steps to standardize the dataset and minimize the potential effects of sur-

veyor bias upon estimates of forest composition, density, and biomass. All steps are preserved

in the supplementary R code (S1 File: step_one_clean_bind.R). We excluded line and meander

trees (i.e. trees encountered along survey lines, versus trees located at section or quarter-sec-

tion corners). Surveyor selection biases for tree size and species appear to have been more

strongly expressed for line trees. Meander trees were used to avoid obstacles, such as water-

bodies, and so have non-random habitat preferences [42]. Lastly, there are inherent differences

in sampling design between line, meander and corner points. We used only the closest two

trees at each corner point because the third and fourth farthest trees have stronger biases with

respect to species composition and diameter [42]. Corner points were used only if 1) there

were at least two trees (or non-tree records, e.g. "rock" or "No Tree"), 2) the two trees were

from different quadrants (defined by the cardinal directions), and 3) there were valid azimuths

to the trees (a defined quadrant with an angle between 0 and 90) and valid diameters (numeric,

non-zero).

Many species-level identifications used by PLSS surveyors are ambiguous. Statistical models

can predict the identity of ambiguous species [55], but these models introduce a second layer

of uncertainty into the compositional data, both from the initial surveyors’ identification, and

from the statistical disambiguation. Given the regional scale of the analysis, and the inherent

uncertainty in the survey data itself, we chose to avoid this layer of taxonomic uncertainty, and

retained only genus-level identification (S2 File). The ecological implications for the use of

genera-level taxonomies are important for this region. While fire tolerance is fairly well con-

served within genera, shade tolerance can vary. Betula contains shade intolerant B. papyrifera
and the intermediate B. alleghaniensis, while Pinus contains the very shade intolerant P. banksi-
ana, the intolerant P. resinosa and the moderately tolerant P. strobus. For cases where shade

tolerance (or fire tolerance) varies strongly within a genera we examine the data to determine

the suitability of the assignment, or extent of confusion within the assigned genera.

In areas of open prairie or other treeless areas, e.g. southwestern Minnesota, surveyors

recorded distances and bearings to ’Non Tree’ objects. When points were to be located in

water bodies the point data indicates ’Water’. Points recorded ’No Tree’ are considered to have

been from extremely open vegetation, with an estimated point-level stem density of 0 stems

ha-1. We based our estimates on terrestrial coverage, so water cells are excluded completely.

Forest Change in the Upper Midwestern United States
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Hence, absence of trees at ’No Tree’ locations does reduce the gridded estimates of terrestrial

stem density, but absence of trees at ’Water’ locations does not.

Digitization of the original surveyor notebooks introduces the possibility of transcription

errors. The Wisconsin dataset was compiled by the Mladenoff lab group, and has undergone

several revisions over the last two decades in an effort to provide accurate data

[22,42,46,47,55]. The Minnesota transcription error rate is likely between 1 and 5%, and the

treatment of azimuths to trees varies across the dataset [43]. Michigan surveyor observations

were transcribed to Mylar sheets overlaid on State Quadrangle maps, so that the points were

displayed geographically, and then digitized to a point based shapefile (Ed Schools, pers.

Fig 1. The domain of the Public Land Survey investigated in this study. The broad domain includes Minnesota, Wisconsin and the upper

two thirds of Michigan state (greyed cells). A 8x8km grid is superimposed over the region to aggregate data, resulting in a total of 7940 cells

containing data. The striped band represents the Tension Zone [16], adapted across the region from Andersen [72].

doi:10.1371/journal.pone.0151935.g001
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comm.; Great Lakes Ecological Assessment. USDA Forest Service Northern Research Station.

Rhinelander, WI. http://www.ncrs.fs.fed.us/gla/), carrying two potential sources of transcrip-

tion error. Preliminary assessment of Southern Michigan data indicates a transcription error

rate of 3–6%. To reduce errors associated with transcription across all datasets, we exclude

sites for which multiple large trees have a distance of 1 link (20.12 cm) to point center, trees

with very large diameters (diameter at breast height—dbh > 100 in; 254 cm), points where the

azimuth to the tree is unclear, and points where the tree is at point center but has a recorded

azimuth. All removed points are documented in the code used for analysis (S1 File: step_one_
clean_bind.R) and are commented for review.

Data Aggregation

We binned the point data using a 64km2 grid (Albers Gt. Lakes St Lawrence projection; S1

File: base_calculations.R) to create a dataset that has sufficient numerical power for spatial sta-

tistical modeling and sufficient resolution for regional scale analysis [73]. This resolution is

finer than the 100km2 gridded scale used in Freidman and Reich [18], but coarser than town-

ship grids used in other studies [17,57] to provide a scale comparable to aggregated FIA data at

a broader scale. Forest compositional data is based on the number of individuals of each genus

or plant functional type (PFT) present at all points within a cell. Stem density, basal area and

biomass are averaged across all trees at all points within the cell.

Stem Density

Estimating stem density from PLSS data is based on a plotless density estimator that uses the

measured distances from each survey point to the nearest trees at the point location, the Mori-

sita density estimator [74,75]. The Morisita density estimate is then corrected to minimize

error due to different sampling geometries and several known surveyor biases

[27,41,42,63,65,67–69]. The standardized approach for this method is well validated, however

surveyors did not use a consistent approach to point level sampling. Survey sampling instruc-

tions changed throughout the implementation of the PLSS in this region and differed between

section and quarter-section points and between internal and external points within a township

[42,56]. Our approach allows for spatial variation in surveyor methods by applying correction

factors based on the empirical sample geometry, and known surveyor biases deviating from

this design (Cogbill, pers. comm.). These estimates are based on empirical examination of the

underlying data, and have been validated using simulations on stem mapped stands (Cogbill,

pers. comm.).

We estimate stem density (stems m-2) based on the Morisita two-tree density estimator,

which uses the distance-to-tree measurements for the two closest trees at each point [76]. The

correction to the estimate uses explicit and spatially varying factors that account for variations

in sampling designs over time and among surveyors. All code to perform the analysis is

included in S1 File (misc.functionsv1.4.R).

We estimate the basic stem density (stems m-2) using the point-to-tree distances for the

closest trees to each point within a defined number of sectors around the point [74]:

lm̂2
¼

k � 1

p� n
�
XN

i¼1

k
Pk

j¼1
ðrijÞ

2

where λ is density; k is the number of sectors within which trees are sampled, N is the number

of points over which estimates are aggregated, r is the distance of point-to-tree (as m). This

estimate can be modified [76,77], which creates a correction, herein called κ, that accounts for
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different sampling designs. This "Cottam" correction factor recognizes that different sampling

designs, which affect the number and order of the distances in different quadrants (or sectors),

will lead to different apparent tree densities. When either four quadrants or trees are sampled

(point quarter design), or when two trees in opposite semicircles (point halves design) are sam-

pled, the equation is accurate and κ = 1; when the two trees are in the nearest of two quadrants

(two nearest quadrants design), κ = 0.857; and when two trees are in quadrants on the same

side of the direction of travel (one-sided or interior half design), κ = 2. This parameter, in Cot-

tam’s notation [77], is a divisor of the denominator above, or here, the mathematically equiva-

lent multiplier in the numerator of the reciprocal of the squared distances.

We further simplify the density equation so that it is calculated at each point (N = 1) and

for two sample trees only (k = 2):

lM ¼
2

p�
P2

j¼1
rj

2

Then the point values for any sampling design can be Cottam corrected (κ × λM). For exam-

ple, the basic Morisita equation for two sectors assumes trees are located in opposite halves, so

if the actual design is the nearest tree in the two nearest quadrants, the density from the simpli-

fied equation will be overestimated and must be correspondingly corrected by multiplying by

κ = 0.857.

Further corrections account for the restriction of trees to less than the full sector (θ), censor-

ing of trees near the cardinal azimuths (z), and under-sampling of trees smaller than a certain

diameter limit (ϕ). These parameters are derived from analyses of measurements of bearing

angles and diameters actually observed in surveys of witness trees within a subset of townships

across the upper Midwest.

Sector bias (θ). Although the density model for two tree points assumes that the trees are on

opposite sides of a sample line (point halves), the actual sample is often more restricted

(< 180˚) within the sector, or is a less restricted (> 180˚) angle beyond the sector (see S3 File).

This deviation from the equation’s assumption of equal distribution of angles across the 180˚

sector is quantified using the empirical angle between the bearings of the two trees (pair

angle). The pair angle frequencies (S3 File) that the observed proportion of trees (p) within

any restricted sector divided by the proportion of that angle within the circle (α) are an esti-

mate of the bias imposed by the actual sampling [41]. The factor (θ = p/α) indicates bias associ-

ated with differences in geometry of two tree samples. This parameter (θ) varies from 0.71 to

1.27, indicating sampling from effectively 253˚ to 141˚ sectors.

Azimuthal censoring (z). In addition to sector bias, surveyors did not always sample trees

near the cardinal directions [41,67,68]. This azimuthal censoring is commonly found along the

line of travel on section lines and sometimes on the perpendicular quarter-section lines. Trees

near the cardinal directions were passed over, and a replacement was found within a more

restricted angular region. The correction for this bias is calculated following Kronenfeld and

Wang [41] in a manner similar to the sector bias. The factor z is the ratio of the proportion of

trees in the restricted area (p) divided by the proportion of the complete circle (α) that is used.

The azimuthal censoring parameter (z) ranges from 1.03 to 1.25 indicating an equivalent to

complete elimination of trees from 10˚ to 72˚ azimuths adjacent to the cardinal directions.

Diameter limit (ϕ). Examination of the diameter distributions from settlement era surveys

across the upper Midwest clearly demonstrate witness trees less than 8 inches (20 cm) in diam-

eter were under-sampled [42,66,68]. We have confirmed this bias in our own inspection of

plots of diameter frequency in the PLSS data, which show a sharp drop in the frequency of

reported diameters below 8". This bias can be accommodated by setting a diameter limit, and

Forest Change in the Upper Midwestern United States
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only calculating the density for trees with diameters above this limit. Total density calculated

from all trees is reduced to this reference limit by simply multiplying the total by the percent-

age of trees above this limit. This effectively eliminates the smaller trees from the total and nor-

malizes the value of trees above this standard. The parameter (ϕ) represents diameter size bias

is simply the percentage of trees� 8" and, in practice, ranges from 0.6–0.95.

If all surveyor bias corrections are independent and do not overlap, they are simple multi-

pliers of the model density, and the bias-minimized estimate of the point density of trees� 8"

(20 cm) is:

lMcorrected ¼ k� y� z� �� lM

Estimates for each point i can be averaged for all N points in any region. Correction factors

are calculated separately for different regions, years, internal versus external lines, section ver-

sus quarter-section points, and surveyor sampling designs (S4 File). All code to perform the

analyses is included in S1 File. Simulations using stem mapped stands from the region (Cog-

bill, pers comm) supports the robustness of this method, as opposed to other methods pre-

sented in the literature.

Basal Area and Biomass Estimates

Forest basal area is calculated by multiplying the point-based stem density estimate by the

average stem basal area from the reported diameters at breast height for the closest two trees at

the point (n = 2). Aboveground dry biomass (Mg ha-1) is calculated using the USFS FIA tree

volume and dry aboveground biomass allometry equations for the United States [78].

Biomass equations share the basic form:

m ¼ Expðb0 þ b1 � lndbhÞ

where m represents stem biomass for an individual tree in kg. β0 and β1 are parameters derived

from [78] and described in Table 1. dbh is the stem diameter at breast height (converted to

cm) recorded in the survey notes. The biomass estimates are averaged across both trees at a

survey point and multiplied by the stem density calculated at that point to produce an estimate

of aboveground biomass reported in Mg ha-1 [78].

Matching PLSS tree genera to the species groups defined by Jenkins et al. [78] is straightfor-

ward, placing the 28 genera used in this study into 8 allometric groups (Table 1). However, all

maples are assigned to the generic "Hardwood" group since separate allometric relationships

Table 1. Biomass parameters used for the calculation of biomass in the pre-settlement dataset

(rounded for clarity).

Jenkins Species Group β0 β1 PalEON Taxa Included (Supp. 2)

Aspen, Alder, Poplar,

Willow

-2.20 2.38 Poplar, Willow, Alder

Soft Maple, Birch -1.91 2.36 Birch

Mixed Hardwood -2.48 2.48 Ash, Elm, Maple, Basswood, Ironwood, Walnut, Hackberry,

Cherries, Dogwood, Buckeye

Hard Maple, Oak,

Hickory, Beech

-2.01 2.43 Oak, Hickory, Beech, Other Hardwood

Cedar and Larch -2.03 2.26 Tamarack, Cedar

Fir and Hemlock -2.54 2.43 Fir, Hemlock

Pine -2.54 2.43 Pine

Spruce -2.08 2.33 Spruce

doi:10.1371/journal.pone.0151935.t001
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exist for soft and hard maple (Table 1). Biomass estimates for "Non tree" survey points are

assigned 0 Mg ha-1.

We use the stem density thresholds of Anderson and Anderson [44] to discriminate prairie,

savanna, and forest.

FIA Stem Density, and Basal Area

The United States Forest Service has monitored the nation’s forests through the FIA Program

since 1929, with an annualized state inventory system implemented in 1998 [52]. On average

there is one permanent FIA plot per 2,428 ha of land in the United States classified as forested.

Each FIA plot consists of four 7.2m fixed-radius subplots in which measurements are made of

all trees >12.7cm dbh [52]. We used data from the most recent full plot inventory (2007–

2011). The FIA plot inventory provides a median of 3 FIA plots per cell using the 64km2 grid.

We calculated mean basal area (m2 ha-1), stem density (stems ha-1), and mean diameter at

breast height (cm) for all live trees with dbh greater than 20.32cm (8in). All calculations fol-

lowed instructions in Woudenberg et al [52].

One critical issue is the reliance on forested condition for the FIA sampling. This reduces

our capacity to compare forest state between PLSS and FIA cover in regions with historical

prairie and savanna coverage that are now patches of closed canopy forest among a largely

agricultural landscape. In addition, it may result in the overestimation of modern density and

basal area at the mesoscale in these same regions by drawing from a sample biased specifically

towards plots with > 10% forest cover [52], however, the 10% cover threshold is fairly low, but

more likely in line with "open forest" [44] than savanna.

Gridding and Analysing PLSS and FIA Data

Maps of stem density, basal area and biomass (for PLSS) were generated by averaging all PLSS

point or FIA plot estimates within a 64km2 raster cell. Differences in sampling design between

PLSS and FIA data combined with spatially structured forest heterogeneity will affect the parti-

tioning of within-cell versus between-cell variance, but not the expected estimates. Most

64km2 cells have one or a few intensively sampled FIA plots. Therefore at this scale of aggrega-

tion, the low density of FIA plots in heterogeneous forests could result in high within-cell vari-

ance and high between-cell variability. For the PLSS plotless (point based) estimates, stem

density estimates are sensitive to trees close to the corner. Point-level estimates with very high

stem densities can skew the rasterized values, and it is difficult to distinguish artifacts from

locations truly characterized by high densities. To accommodate points with exceptionally

high densities we carry all values through the analysis, but exclude the top 2.5 percentile when

reporting means and standard deviations in our analysis. PLSS-based estimates are highly vari-

able among points due to the small sample size, but have low variance among 64 km2 raster

cells due to the uniform sampling pattern of the data. Thus, within-cell variance is expected to

be high for the PLSS point data, but spatial patterns are expected to be robust at the cell level.

The base raster and all rasterized data are available as S3 File.

Standard statistical analysis of the gridded data, including correlations, paired t-tests and

regression, was carried out in R [70], and is documented in supplementary material that

includes a subset of the raw data to allow reproducibility. Analysis and presentation uses ele-

ments from the following R packages: cluster [79], ggplot2 [80,81], gridExtra [82], igraph [83],

mgcv [84], plyr [85], raster [86], reshape2 [87], rgdal [71], rgeos [88], sp [89,90], statmod [91],

and spdep [92].

We identify analogs and examine differences in composition between and within PLSS and

FIA datasets using Bray-Curtis dissimilarity [93] for proportional composition within raster
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cells using the relative basal area of each species. For the analog analysis we are interested only

in the minimum compositional distance between a focal cell and its nearest compositional

(not spatial) neighbor. The distribution of compositional dissimilarities within datasets indi-

cates forest heterogeneity within each time period, while the search for closest analogs between

datasets indicates whether contemporary forests lack analogs in pre-settlement forests (’novel

forests’), or vice versa (’lost forests’). For the analog analyses, we compute Bray-Curtis distance

between each 64km2 cell in either the FIA or the PLSS periods to all other cells within the

other dataset (FIA to FIA, PLSS to PLSS), and between datasets (PLSS to FIA and FIA to

PLSS), retaining only the minimum. For within era analyses (FIA to FIA and PLSS to PLSS),

cells were not allowed to match themselves. We define vegetation classes for lost and novel for-

ests using k-medoid clustering [79].

The differences in sampling design and scale between the PLSS and FIA datasets, described

above, potentially affect between-era assessments of compositional similarity [49]. The effects

of differences in scale should be strongest in regions where there are few FIA plots per 64 km2

cell, or where within-cell heterogeneity is high. For the analog analyses, this effect should

increase the compositional differences between the FIA and PLSS datasets.

Because Bray-Curtis dissimilarity is sensitive both to species turnover and to species rich-

ness, we expect that more FIA plots within a cell should result in greater richness (due to sam-

pling effects) and thus, greater turnover between cells. We test for the importance of this effect

on our analog analyses via a sensitivity analysis in which we test whether dissimilarities

between FIA and PLSS grid cells are affected by the number of FIA plots per cell. In this region

richness, dissimilarity and FIA plot number are all collinear because of a regional collinearity

in species richness that exists in spite of sampling effect. Because of this colinearity we limit

our analysis to a simple test for cell number effect since it becomes increasingly difficult to par-

tition the effects of the shift from monotypic oak savanna, which has low forest cover, and thus

low FIA sampling intensity, to the diverse mixedwood forests of north-central Wisconsin. We

do find a small but significant effect (see below), suggesting that our analyses are mainly sensi-

tive to the compositional and structural processes operating on large spatial scales.

To understand the extent to which the processes governing novelty operate at landscape

scales, we relate the novelty of a cell to the spatial distance between individual novel cells and

the nearest ’remnant’ forest cell, i.e., what is the minimum distance from a remnant forest cell

at which all cells are predicted to be novel. Novel forests are defined as any cell in the FIA data-

set for which dissimilarity to the PLSS era is above the 95%ile of dissimilarities within the PLSS

data. We examine whether the distance to novel forest relationship varies between forest types,

and whether it is different than the relationship we might see if the dissimilarity values were

distributed randomly on the landscape. The definition of "remnant" forest is likely to be arbi-

trary and, possibly, contentious. We use a threshold, the lowest 25%ile of compositional dis-

similarity within the PLSS data, as our cutoff. This means that all FIA cells with nearest

neighbor dissimilarities to the PLSS era forests below this cutoff are considered to be represen-

tative of the PLSS era forests. The analysis presented below is robust to higher cutoffs for the

remnant forest threshold.

We use a generalized linear model with a binomial family to relate novelty (as a binomial,

either novel or not) to the spatial distance from the nearest ’remnant’ cell for each of the five

major forest types within the PLSS data (Oak savanna, Oak-Poplar-Basswood-Maple, Pine,

Hemlock-Cedar-Birch-Maple and Tamarack-Pine-Spruce-Poplar forests). Because the geo-

graphic extent of this region is complex, with islands, peninsulas and political boundaries, we

use permutation, resampling the FIA to PLSS nearest neighbor distances without replacement,

to estimate the expected distance to novelty if FIA to PLSS nearest neighbor dissimilarities

were distributed randomly on the landscape.
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We expect a weak relationship will indicate that novelty, following landscape-scale land-use

change, is moderated by a species pool culled from small remnant patches, individual speci-

mens, or local scale restoration efforts. A significant relationship between distance from rem-

nant forest and novelty indicates that small patches have been insufficient to restore natural

forest cover within the region, and would indicate that greater efforts are needed to restore

landscapes at regional scales.

To illustrate the spatial effects of land use changes on forest composition, we select two lin-

ear transects through the region and model vegetation using smooth splines as part of a gener-

alized additive model [84] using R [70]. This smoothing is used for visualization purposes

only, but is applied to each individual taxon using the beta regression family ("betar"). We use

smoothing to reduce the noise of the individual species curves. The raw data neccessary to plot

the curve is available from the supplemental material.

All datasets and analytic codes presented here are publicly available and open source at

http://github.com/PalEON-Project/WitnessTrees, with the goal of enabling further analyses of

ecological patterns across the region and the effects of post-settlement land-use on forest com-

position and structure. Data are also archived at the Long Term Ecological Research Network

Data Portal (https://portal.lternet.edu/nis/home.jsp).

Results

Data Standardization

The original PLSS dataset contains 490,818 corner points (excluding line and meander points),

with 166,607 points from Wisconsin, 231,083 points from Minnesota and 93,095 points from

Michigan. Standardizing data and accounting for potential outliers, described above, removed

1.5% of points from the dataset, yielding a final total of 367,209 corner points.

Rasterizing the PLSS dataset to the Albers 64km2 grid produces 7,377 raster cells with data.

Each cell contains between 0 and 101 corner points, with a mean of 66.5 (σ = 16.4) and a

median of 72 corners (S3 File). Cells with a low number of points were mainly near water bod-

ies or along political boundaries such as the Canadian/Minnesota border, or southern Minne-

sota and Wisconsin borders. Only 2.49% of cells have fewer than 10 points per cell.

Species assignments to genera were rarely problematic. Only 18 PLSS trees were assigned to

the Unknown Tree category, representing less than 0.01% of all points. These unknown trees

largely consisted of corner trees for which taxon could not be interpreted, but for which diam-

eter and azimuth data was recorded. A further 0.011% of trees were assigned to the "Other

hardwood" taxon (e.g., hawthorn, "may cherry", and "white thorn").

Maple has very high within-genera specificity for a number of assignments. A total of

78,478 trees are assigned to "Maple". Of these, surveyors do use common names that can be

ascribed to the species level (e.g., A. saccharum, n = 56,331), but a large number of the remain-

ing assignments are above the species level (n = 21,356). This lack of specificity for a large

number of records causes challenges in using the species level data. A similar pattern is found

for pine, where many individual trees (n = 125,639) can be identified to the level of species (P.

strobus, n = 41,673; P. banksiana, n = 28,784; P. resinosa, n = 28,766), but there remains a large

number of pine identified only at the genus level, or with unclear assignment (n = 17,606).

The data for ash includes both surveyor attributions to "brown ash" (likely a vernacular syn-

onym for Fraxinus nigra) and black ash (n = 9,312), and white ash (n = 2,350), but again, also

includes a large number of ash for which no distinction is made within the genera (n = 7,423).

These patterns are repeated throughout the data. For spruce this within-genera confusion is

even higher, with 50,188 assignments to genera-level classes and only 17 to either black or

white spruce.
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Spatial Patterns of Settlement-Era Forest Composition: Taxa and PFTs

Stem Density, Basal Area and Biomass. The mean stem density for the region (Fig 2a) is

158 stems ha-1. Stem density exclusive of prairie is 177 stems ha-1 and is 221 stems ha-1 when

both prairie and savanna are excluded. The 95th percentile range is 0–441 stems ha-1, and

within-cell standard deviations between 0 and 447 stems ha-1. Basal area in the domain

Fig 2. Structural characteristics of PLS era forests. Total stem density (a) in the Upper Midwest, along with forest type classification (b)

based on PLSS data and the stem density thresholds defined by Anderson and Anderson [44] (Prairie: < 0.5 stems ha-1; Savanna: 0.5–47 stems

ha-1; Forested: > 47 stems ha-1). Fine lines represent major rivers. To a first order, basal area (c) and biomass (d) show similar patterns to stem

density (but see Fig 3).

doi:10.1371/journal.pone.0151935.g002
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(Fig 2c) has a 95th percentile range between 0 and 66.1 m2 ha-1, a mean of 23.1 m2 ha-1,

within-cell standard deviations range from 0 to 79.2 m2 ha-1. Biomass ranges from 0 to 218 Mg

ha-1 (Fig 2d), with cell level standard deviations between 0 and 596 Mg ha-1. High within-cell

standard deviations relative to mean values within cells for density, basal area and biomass

indicate high levels of heterogeneity within cells, as expected for the PLSS data, given its dis-

persed sampling design.

In the PLSS data, stem density is lowest in the western and southwestern portions of the

region, regions defined as prairie and savanna (Fig 2b). When the Anderson and Anderson

[44] stem density thresholds (0.5–47 stems ha-1 for Savanna) are used, the extent of area classi-

fied as savanna is roughly equivalent to prior reconstructions [16,20,45] (Fig 2b). The highest

stem densities occur in north-central Minnesota and in northeastern Wisconsin (Fig 2a), indi-

cating younger forests and/or regions of lower forest productivity.

Forest structure during the settlement era can be understood in part by examining the ratio

of stem density to biomass, a measure that incorporates both tree size and stocking. Regions in

northern Minnesota and northwestern Wisconsin had low biomass and high stem densities

(Fig 3, brown). This indicates the presence of young, small-diameter, even-aged stands, possi-

bly due to frequent stand-replacing fire disturbance in the pre-EuroAmerican period or to

poor edaphic conditions. Fire-originated vegetation is supported by co-location with fire-

prone landscapes in Wisconsin [94]. High-density, low-biomass regions also have shallower

soils, colder climate, and resulting lower productivity. High-biomass values relative to stem

density (Fig 3, green) are found in Michigan and southern Wisconsin. These regions have

higher proportions of deciduous species, with higher tree diameters than in northern

Minnesota.

Pre-Settlement Composition. Taxon composition (percent composition, based on stem

density, unless otherwise indicated) within settlement-era forests is spatially structured along

gradients from south to north (deciduous dominated to conifer dominated forests) and from

east to west (mixed wood forests to open prairie) (Fig 4). Oak is dominant in the south of the

region, with an average composition of 21%, however, that proportion drops to 9% when only

forested cells (cells with stem density > 47 stems/ha) are considered, due to its prevalence as a

monotypic dominant in the savanna and prairie. Pine distributions represent three dominant

taxa, Pinus strobus, Pinus resinosa and Pinus banksiana. These three species have overlapping

but ecologically dissimilar distributions, occurring in close proximity in some regions, such as

central Wisconsin, and are typically associated with sandy soils with low water availability.

Other taxa with high average composition in forested cells include maple (10%), birch (10%),

tamarack (9%) and hemlock (8%).

Spruce in the PLSS represents two species (Picea glauca, Picea mariana) with overlapping

distributions, but complex site preferences that vary in space. P. glauca is generally associated

with dry upland to wet-mesic sites, while P. mariana is associated with hydric sites, but P. mar-
iana also frequently occupies upland sites in northern Minnesota. Both cedar (Thuja occiden-
talis) and fir (Abies balsamea) are mono-specific genera in this region.

Northern hardwoods, such as yellow birch, sugar maple, and beech, are much less common

in the lower peninsula of Michigan, and southern Wisconsin, except along Lake Michigan.

Birch has extensive cover in the north, likely reflecting high pre-settlement proportions of yel-

low birch (Betula alleghaniensis) on mesic soils, and paper birch (B. papyrifera) on sandy fire-

prone soils and in northern Minnesota (birch proportions reach upwards of 34.1% in north-

eastern Minnesota). Hardwoods in the southwest, such as oak, elm, ironwood and basswood,

are most typically mono-specific groupings, with the exception of oak, which comprises 7 spe-

cies (see S2 File). Hardwoods in the southwest are located primarily along the savanna and

southern forest margins, or in the southern temperate deciduous forests. Finally, maple and
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poplar (aspen) have a broad regional distribution, occupying nearly the entire wooded

domain. Poplar comprises four species in the region, while maple comprises five species (S2

File). Both hardwood classes, those limited to the southern portions of the region, and those

with distributions across the domain, correspond to well-defined vegetation patterns for the

region [16].

Individual species distributions result in a mosaic of forest classes across the region (Fig 5).

The dominant class is the Hemlock-Cedar-Birch-Maple assemblage in northern Wisconsin

and upper Michigan (Fig 5, yellow). This mixedwood assemblage is interspersed by both Pine

dominated landscapes (Fig 5, orange) and, to a lesser degree, the softwood assemblage Tama-

rack-Pine-Spruce-Poplar (Fig 5, green), which dominates in north-eastern Minnesota. The

softwood assemblage is itself interspersed with Pine dominated landscapes, and grades into a

mixed-hardwood assemblage of Oak-Poplar-Basswood-Maple (Fig 5, light purple) to the west.

Fig 3. The ratio between biomass and stem density as an indicator of forest structure. Regions with high stem density to biomass ratios

(brown) indicate dense stands of smaller trees, while regions with low stem density to biomass ratios (green) indicate larger trees with wider

spacings.

doi:10.1371/journal.pone.0151935.g003
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This mixed- softwood forest assemblage grades south into mono-specific Oak savanna (Fig 5,

dark blue).

The broad distributions of most plant functional types (Fig 6) results in patterns within

individual PFTs that are dissimilar to the forest cover classes (Fig 5). Thus overlap among PFT

distributions (Fig 6) emerges from the changing composition within the plant functional type

from deciduous broadleaved species associated with the southern, deciduous dominated

region, to broadleaved deciduous species associated with more northern regions in the upper

Midwest.

Structural Changes between PLSS and FIA Forests

Comparing cell by cell in aggregate across the entire region, modern forests (FIA) have higher

stem densities (+123 stems ha-1, t1,5177 = 43.9, p< 0.01) than PLSS forests, but lower basal

areas (-5.67 m2 ha-1, t1,5177 = -19.3, p< 0.01) (Fig 7). We use only point pairs where both FIA

and PLSS data occur since non-forested regions are excluded from the FIA and as such cannot

be directly compared with PLSS estimates.

Every one of the five historical PLSS zones shows an increase in stem density (Table 2). The

two forest types bordering the prairie, Oak Savanna and Oak-Poplar-Basswood-Maple both

show increases in density and basal area that likely reflect, in part, the issues addressed earlier

with respect to the sampling of forested plots in the FIA (over 10% cover). Density in the Oak

Fig 4. Forest composition (%, using stem density) for the 15 most abundant tree taxa in the PLSS. The scale is drawn using a square-root

transform to emphasize low abundances. Shading of the bar above individual taxon maps indicates plant functional type assignments (dark gray:

needleleaved deciduous; light gray: needleleaved evergreen; white: broadleaved deciduous).

doi:10.1371/journal.pone.0151935.g004
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Savanna in currently forested areas increases (Table 2). Oak-Poplar-Basswood-Maple forests

were historically open forest and have seen a large increase in estimated FIA-era stem density,

and a negligible increase in basal area (Table 2). The largest forest zone, Hemlock-Cedar-

Birch-Maple shows the largest decline in basal area (Table 2).

Fig 5. The five dominant forest types in the Upper Midwest as defined by k-medoid clustering. Forest types (from largest to smallest)

include Hemlock-Cedar-Birch-Maple (yellow), Oak-Poplar-Basswood-Maple (light purple), Tamarack-Pine-Spruce-Poplar (light green), Oak

Savanna (dark purple) and Pine (orange). These forest types represent meso-scale (64km2) forest associations, rather than local-scale

associations.

doi:10.1371/journal.pone.0151935.g005
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Across the forested region, pre-settlement forests have lower overall mean stem diameter

than the FIA (Δdiam = -4.93 cm, 95%CI from -27.8 to 8.04cm). This difference is strongest in

the northwestern and western parts of the domain (on average modern forest data has 8.67 cm

higher diameters), overlapping almost exactly with regions with low biomass to stem density

ratios (Fig 3, brown regions). Conversely, regions with high biomass to stem density ratios, in

north central Wisconsin, and the Upper and Lower Peninsulas of Michigan, had higher aver-

age diameters during the PLSS than in the FIA, by 3.79 cm. Hence, tree size has increased in

the sub-boreal region and decreased in temperate mixedwood forests.

Differences between FIA and PLSS data in sampling design are unlikely to be a factor for

most measures (see below); these differences are expected to affect how these datasets sample

Fig 6. Proportional distribution of Plant Functional Types (PFTs) in the upper Midwest from PLSS data. Broadleaved deciduous tree (BDT),

needleleaved deciduous tree (NDT), and needleleaved evergreen tree (NET) distributions are shown as proportions relative to total basal area, total

biomass, and composition (Fig 2). The grassland PFT is mapped onto non-tree cells with the assumption that if trees were available surveyors would have

sampled them.

doi:10.1371/journal.pone.0151935.g006
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local- to landscape-scale heterogeneity, but should not affect the overall trends between data-

sets. Differences in variability introduce noise into the relationship, but given the large number

of samples used here, the trends should be robust.

Compositional Changes between PLSS and FIA Forests: Novel and Lost

Forests

Both the PLS- and FIA-era compositional data show similar patterns of within-dataset dissimi-

larity, with the highest dissimilarities found in central Minnesota and northwestern Wiscon-

sin. High within-PLSS dissimilarities are associated with high proportions of maple, birch and

fir while high within-FIA dissimilarities are associated with high proportions of hemlock,

cedar and fir. Dissimilarity values in the FIA dataset are less spatially structured than in the

PLSS. Moran’s I for dissimilarities within the FIA (IFIA = 0.17, p< 0.001) are lower than the

dissimilarities within the PLSS (IPLSS = 0.495, p< 0.001), suggesting lower spatial

Fig 7. PLSS to FIA comparisons for stem density and basal area. Scatter plots of the relationship between (a) average stem density and (b)

total basal area in the PLSS and FIA datasets. Stem density tends to be higher in the FIA, but total basal area tends to be higher in the PLSS. A

1:1 line has been added to the panels to indicate equality.

doi:10.1371/journal.pone.0151935.g007

Table 2. Mean cell-wise change in forest zone density and basal area since the PLSS for cells with

coverage in both PLSS and FIA eras by forest class. All forest zones show increases in stem density

since the PLSS era (positive values, historical values are included in parentheses). Oak Savanna and the

Oak/Poplar/Basswood/Maple are the only zones with increasing basal area since the PLSS, all other zones

show declines.

Forest Type Area km2 Δ Stem Density stems ha-1 Δ Basal Area m2 ha-1

Hemlock/Cedar/Birch/Maple 1734 111.4 (280) -18.3 (45.4)

Tamarack/Pine/Spruce/Poplar 1111 71.7 (224.4) -4.8 (23.5)

Pine 966 167.6 (184.1) -3.2 (27.1)

Oak/Poplar/Basswood/Maple 817 112.3 (93.5) 0.4 (14.8)

Oak Savanna 657 193.4 (29) 13.8 (4.7)

doi:10.1371/journal.pone.0151935.t002
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autocorrelation in the FIA dataset. Cells with identical pairs represent 5.56% of the PLSS cells

and 8.43% of FIA cells. Identical cells in the PLSS are largely located along the southern margin

and most (69.9%) are composed entirely of oak. Cells in the FIA with identical compositional

neighbors are composed of either pure oak (16.3%), pure poplar (24%) or pure ash (11%).

There is a small but significant positive relationship (F1,5094 = 13.5, p< 0.001) between the

number of FIA plots and within-FIA dissimilarity once the spatial relationship has been

accounted for. The relationship accounts for < 1% of total variance and estimates an increase

of Δd = 0.00176 for every FIA plot within a cell. This increase represents only 0.306% of the

total range of dissimilarity values for the FIA data. There is a gradient of species richness that

is co-linear with the number of FIA plots within a cell, where the number of plots increases

from open forest in the south-west to closed canopy, mixed forest in the Upper Peninsula of

Michigan. There is also a significant positive relationship between taxon richness and plot

number, which complicates the analysis. Hence, differences in within- and between-cell vari-

ability between the PLSS and FIA datasets seem to have only a minor effect on these regional-

scale dissimilarity analyses.

We define novel communities as those whose nearest neighbor is beyond the 95%ile for dis-

similarities within a particular dataset. In the PLSS dataset, forests that have no modern ana-

logs are defined as "lost forests", while forest types in the FIA with no past analogs are defined

as "novel forests". More than 28% of PLSS sites have no analog in the FIA dataset (’lost forests’;

PLS-FIA dissimilarity, Fig 8c), while 28% of FIA sites have no analog in the PLSS data (’novel

forests’; FIA-PLSS dissimilarity, Fig 8d).

Lost forests are drawn from across the domain, and show strong ecological and spatial coher-

ence (Fig 8c). The lost forests fall into five classes: Tamarack-Pine-Birch-Spruce-Poplar accounts

for 26.9% of all lost forests and 8.2% of the total region. This forest type is largely found in north

eastern Minnesota, extending southward to central Minnesota, into Wisconsin and along the

Upper Peninsula of Michigan, as well as in scattered locations on the Lower Peninsula of Michi-

gan (Fig 8c). This forest likely represents a mesic to hydric forest assemblage, particularly further

eastward. Modern forests spatially overlapping this lost type are largely composed of poplar (�xFIA

= 17.4%), ash (�xFIA = 16.6%) and oak (�xFIA = 16.4%). Tamarack in these forests has declined sig-

nificantly, from 19.1% to only 3.48% in the FIA, while poplar has increased from 9.25% to

17.4%, resulting in forests that look more like early successional forests.

Cedar/Juniper-Pine-Maple-Hemlock accounts for 20.9% of all lost forests and 6.39% of the

total region. This forest type is found largely in northeastern Wisconsin, and the Upper and

Lower Peninsulas of Michigan. This lost forest type has been predominantly replaced by

maple, poplar, and pine, retaining relatively high levels of cedar (�xPLS = 21.4%; �xFIA = 17.9%).

The loss of hemlock is widespread across the region, but particularly within this forest type,

declining to only 1.08% from a pre-settlement average of 11.7%.

Elm-Oak-Basswood-Ironwood accounts for 17.2% of all lost forests and 5.25% of the total

region. The region is centered largely within savanna and prairie-forest margins, both in

south-central Minnesota and in eastern Wisconsin, but, is largely absent from savanna in the

Driftless area of southwestern Wisconsin. In particular, much of this zone lies in the Big

Woods region of Minnesota [95,96]. These forests were historically elm dominated (�xPLS =

16.4%), not oak dominated savanna, as elsewhere (particularly in the Driftless). Modern for-

ests replacing these stands are dominated by oak and ash, with strong components of maple,

and basswood. Elm has declined strongly in modern forests (�xFIA = 5.97%), possibly in part

due to Dutch Elm Disease and land-use. The increase in ash in these forests is substantial,

from �xPLS = 6.52% to �xFIA = 15.1%.

Hemlock-Birch-Maple accounts for 20.1% of all lost forests and 6.13% of the total region.

This forest type, dominant in north central Wisconsin, was dominated by hemlock
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Fig 8. Minimum dissimilarity maps. Distributions of minimum (within dataset) dissimilarities during the PLSS (a) and FIA (b) show

spatially structured patterns of dissimilarity, with stronger spatial coherence for the PLS. Lost forests (c) show strong compositional and

spatial coherence, and have more taxa with percent composition > 10% than within Novel forests during the FIA era (d). The lost Elm-Oak-

Basswood-Ironwood zone lies south of the Tension Zone [16,72], while the other zones lie largely north or east of the Tension Zone. The

spatial structure of the novel forests is less well defined.

doi:10.1371/journal.pone.0151935.g008
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(�xPLS = 26.9%) and what was likely late seral yellow birch (�xPLS = 22.2%), replaced largely by

maple (from �xPLS = 12.1% to �xFIA = 29.3%). Poplar increases from 1.06% to 12.7% in the FIA,

again indicating a shift to earlier seral forests in the FIA. Hemlock is almost entirely lost from

the forests, declining from 26.9% to 4.23% in the FIA.

Lastly, Beech-Hemlock-Maple accounts for 14.9% of all lost forests and 4.55% of the total

region. This forest type is found exclusively on the central, western shore of Lake Michigan

and in the Lower Peninsula, in part due to the limited geographic range of Beech in the PLSS

dataset (Fig 4). Beech is almost entirely excluded from the modern forests in this region,

declining from �xPLS = 35.6% to �xFIA = 3.94%. Pine in the region increases from 5.89% to 5.79%,

while maple, the dominant taxa in the modern forests, increases from 17.4 to 27.2%.

On average lost forests contain higher proportions of beech (r = 0.278), hemlock

(r = 0.233), birch (r = 0.22) and ironwood (r = 0.199) than the average PLSS forest, and lower

proportions of oak (r = -0.311), poplar (r = -0.149), and pine (r = -0.126).

The distribution of novel ecosystems (Fig 8d) is spatially diffuse relative to the lost forest of

the PLSS and the forest types tend to have fewer co-dominant taxa. FIA novel forest types also

have a more uneven distribution in proportion than the PLSS lost forests and much weaker

relationships with individual taxa, with no taxon association higher than 0.141 (ash) or lower

than -0.233 (tamarack). This suggests that the loss of particular forest types associated with

post-settlement land-use was concentrated in mesic deciduous forests and the ecotonal transi-

tion between southern and northern hardwood forests, while novel forests were more dis-

persed, resulting from an overall decline in seral age.

By far the largest novel forest type is Ash-Maple-Cedar/Juniper-Birch, which accounts for

35.5% of all novel forests and 9.07% of the total region. As with all novel forest types, this forest

type is broadly distributed across the region. This forest type is associated with co-dominant

maple (�xFIA = 23%) and ash (�xFIA = 22%). Hemlock has declined significantly across this forest

type, from �xPLS = 12.3% to �xFIA = 3.48%, as has tamarack (from �xPLS = 10.2% to �xFIA = 2.71%)

while ash has increased from, from �xPLS = 3.75% to �xFIA = 22.9%

Maple-Poplar-Spruce, accounts for 22.9% of all novel forests and 5.85% of the total region.

The broad distribution of these novel forests makes assigning a past forest type more difficult

than for the PLSS lost forests, the distribution is coincident with two classes of pre-settlement

forest, Oak Savanna and Hemlock-Cedar-Birch-Maple (Figs 5 and 8). Here maple has

increased significantly, from �xPLS = 10.9% to �xFIA = 15.7%. This gain comes at the expense of

hemlock and birch, both of which decline by over 10% from the PLS to the modern era.

Poplar-Maple-Ash forest accounts for 15.6% of all novel forests and 3.97% of the total

region. This forest type is again broadly distributed across the region, representing a homoge-

nous, early seral forest type, likely associated with more mesic sites. Oak-Maple forest accounts

for 14.4% of all novel forests and 3.69% of the total region. The last novel assemblage Poplar-

Maple-Ash accounts for 15.6% of all novel forests and 3.97% of the total region. Among all

novel assemblages we see maple and ash as significant components (increasing on average by

>10% across the novel forest zones), replacing hemlock, tamarch and birch, which decrease

by> 6% within the novel forest zones.

Spatial Correlates of Novelty

Modern compositional dissimilarity from the PLSS data is related to distance from ’remnant’

forest. The dissimilarity quantile of FIA-PLSS distances increases with increasing distance to

remnant cells, and this relationship is robust to higher thresholds for defining remnant forest

classification, up to the 90%ile of within-PLSS near neighbor dissimilarities. Using the 25%ile

for within-PLSS dissimilarity, approximately 69% of FIA cells can be classed as ’remnant’
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forest. The mean distance to remnant forests for cells with dissimilarities above the 25%ile is

15.2 km, higher than the mean of ~9.6km expected if each 8x8km cell had at least one adjacent

’remnant’ cell.

The GLM shows that distance from remnant forests in the FIA is significantly related to the

probability of a cell being novel (χ1,4 = 623, p< 0.001). The mean distance to novel forest var-

ies by pre-settlement forest class (Figs 5 and 9), but is between approximately 20 and 60km for

the four forest types examined here (Fig 9), while the null model would predict a distance of

10 – 20km to novelty from remnant cells if dissimilarities were distributed randomly on the

landscape (Table 3). Novel forests are generally further from remnant patches than expected in

the null model, regardless of forest type, but the distance to novelty is greater for modern for-

ests that are, generally, more similar to their PLSS state (pine and tamarack dominated forests),

and closer for forests that are more dissimilar.

The Hemlock-Cedar-Birch-Maple forest class (Figs 5 & 10b, yellow), appearing as a flat

line, predicting novel forest continuously, from distance 0. This is due, in part, to the very

Fig 9. The model relating the probability of novel forests to spatial distance from remnant forest. Here

the 25%ile is used to indicate remnant forest, and the 95%ile is defined as novelty. Binomial regression

predicts the probability of novel forest, the red dashed line indicates a response greater than 0.5. The curves

represent the relationship between spatial distance and dissimilarity for each of the five major historic forest

types (Fig 5) defined here as Oak Savanna (blue), Oak-Poplar-Basswood-Maple (light purple), Tamarack-

Pine-Spruce-Poplar (green), Hemlock-Cedar-Birch-Maple (yellow) and Pine (orange). Points are jittered to

improve display. Points at 1 are cells whose dissimilarity is greater than the 95th %ile of dissimilarities within

the PLSS, here considered novel forest.

doi:10.1371/journal.pone.0151935.g009

Table 3. Spatial distance to novelty—modeled as a binomial—from remnant forests (forests within

the first 25th percentile of nearest neighbor distances). The null model uses permutation (n = 100) where

quantiles are resampled without replacement.

Zone Min Max Min (Null) Max (Null)

Tamarack-Pine-Spruce-Poplar 23 31 10.88 13.57

Oak-Poplar-Basswood-Maple 20 26 17.26 17.26

Pine 31 43 9.34 11

Hemlock-Cedar-Birch-Maple 22 36 11.87 14.06

Oak Savanna 18 25 11.97 15.84

doi:10.1371/journal.pone.0151935.t003

Forest Change in the Upper Midwestern United States

PLOS ONE | DOI:10.1371/journal.pone.0151935 December 9, 2016 23 / 34



small proportion of Hemlock-Cedar-Birch-Maple cells that are considered residual (only 63 of

1780 FIA cells within the historical zone are considered remnant) and the very high proportion

of novel cells in the zone (923 of 1780 cells, or 52% of all cells).

Distance to novel forests within the Oak Savanna have a confidence interval that overlaps

the interval predicted from the null model (Table 3). Northern softwood forests (Tamarack-

Pine-Spruce-Poplar, Fig 5, light green) are considered novel at between 29 and 43km, northern

Oak forests (Oak-Poplar-Basswood-Maple; Fig 5, light purple) are predicted to be novel at 23–

33 km, slightly higher than the 14 – 19km predicted by the null model. Pine forests (Fig 5,

orange) are predicted to be novel at a distance three times further than expected by the null, at

32 – 56km (Table 3).

Compositional Changes between PLSS and FIA Forests: Ecotone

Structure

To understand how the ecotonal structure has been transformed by post-settlement land-use,

we constructed two transects of the FIA and PLSS data (Fig 10a), and fitted GAM models to

genus abundances along these transects. Transect One (T1) runs from northern prairie (in

northern Minnesota) to southern deciduous savanna in southeastern Wisconsin (left to right

in Fig 10c–10f), while Transect Two (T2) runs from southern prairie in southwestern

Fig 10. Transects (a) across the region show clear changes in the ecotonal strength. Transect One shows shifts in broadleaved taxon distributions

from the PLSS to FIA (b and c) and in needleleaved distributions (d and e). Transect Two broadleaf (f and g) and needleleaf (h and i) taxa show shifts that

again appear to represent regional scale homogenization. Ecotones in the pre-settlement era were stronger in the past than they are in the present. Fitted

curves represent smoothed estimates across the transects using Generalized Additive Models using a beta family.

doi:10.1371/journal.pone.0151935.g010
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Minnesota to northern mixedwood forest in the Upper Peninsula of Michigan (left to right in

Fig 10g–10j). In general, these transect analyses show: 1) significant differences in ecotonal

structure between the present and pre-settlement, and 2) steeper ecotones in the past and

more diffuse ecotones today.

For T1, GAM models show significant differences (using AIC) between time periods in

curves for all broadleaved taxa (Fig 10b & 10c) and for al needleleaved taxa (Fig 10d and 10e).

The PLSS curves show a transition in the northwest from poplar dominated open forest to a

needleleaved forest composed of pine, spruce and tamarack. Tamarack and poplar proportions

decline gradually from the east, being replaced first by pine, then briefly by maple and birch,

and then, ultimately by oak as the transect grades into oak savanna. In the FIA dataset poplar

in the northwest grades into mixedwood forests. While the PLSS transect shows distinct vege-

tation types in the central part of the transect, the FIA shows relatively constant proportions of

oak, pine, spruce, poplar and maple before pine, oak and elm increase in the southeastern por-

tions of the transect.

The second transect (T2) shows a similar pattern, with well-defined ecotones in the pre-set-

tlement period (Fig 10f and 10h). Although a sharp increase in poplar appears just east of the

Tension Zone in (Fig 10g), there are no major changes in any other taxon (Fig 10g and 10i).

Oak forest, with a component of elm and poplar in the southwest grades slowly to a rapid tran-

sition zone where pine, elm, maple (first), then rapidly birch, hemlock and tamarack, and

later, spruce, increase. This region, the Tension Zone, extends from 3 x 105 to 4.5x105 meters

East, eventually becoming a forest that shows co-dominance between birch, pine, maple,

spruce and tamarack, likely reflecting some local variability as a result of topographic and

hydrological factors. Missing data at the beginning of the FIA transect reflects a lack of FIA

plots in unforested regions in the west

Contemporary forests show broader homogenization and increased heterogeneity (evi-

denced by the lower within-FIA Moran’s I estimates for near-neighbor distances) at a local

scale in the region. Homogenization is evident across T1, where Bray-Curtis dissimilarity

between adjacent cells declines from the PLSS to the FIA (Δbeta = -0.22, t113 = -7.93, p<0.001),

mirroring declines in the Pine Barrens between the 1950s and the present [28]. The PLSS

shows strong differentiation in the central region of T2 where maple-pine-oak shifts to pine-

poplar-birch forest (Fig 10d). This sharp ecotone is not apparent in the FIA data, which shows

gradual and blurred changes in species composition across the ecotone (Fig 10i). β-diversity

along T2 is lower in the FIA than in the PLSS (Δbeta = -0.19, t65 = -7.34, p< 0.01), indicating

higher heterogeneity in the PLSS data at the 64 km2 meso-scale.

Across the entire domain, β diversity is lower in the FIA than in the PLSS (Δβ = -0.172,

t1.3e7 = 2480, p<0.001), lending support to the hypothesis of overall homogenization. Differ-

ences in sampling design between PLSS and FIA data cannot explain this homogenzation,

since its effect would have been expected to increase β-diversity along linear transects and at

larger spatial scales.

Discussion

The records of the Public Land Survey System (PLSS) provide broad spatial coverage for the

Upper Midwestern United States and elsewhere at a time immediately prior to widespread

land use change. Many of the forests of the PLSS are no longer represented on the landscape.

We identify five key forest-types that have vanished at the 64 km2 mesoscale, and five new for-

est types that have been gained. The joint controls of broad-scale climatic structuring and local

hydrology on forest composition and density can be seen in the pre-settlement forests. For

example, along the Minnesota River in south-western Minnesota a corridor of savanna was
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sustained in a region occupied by prairie (Fig 2b). Composition gradients in the FIA are

weaker now than in the past (Fig 10), with clear signs of increased homogenization at local and

regional scales and decreased spatial structure among forest-types (Fig 8).

The loss of ecotones in the upper Midwestern United States suggests that ability to predict

abiotic controls on species distributions at the landscape scale may be weaker than in the past,

reducing the apparent influence of climatic or edaphic factors, and increasing the relative

influence of recent land-use history, a factor that is often not considered [30].

Recent land-use history and historical vegetation cover play a large role in recovery from

the large-scale disturbance following EuroAmerican settlement. Our results show decreased β
diversity along regional transects (shown in Fig 10), which indicates homogenization at meso-

scales of 100s of km2, while the overall reduction in Moran’s I for dissimilarity in the FIA indi-

cates a regional reduction in heterogeneity on the scale of 1000s of km2. The selective loss or

weakening of major vegetation ecotones, particularly in central Wisconsin, and the develop-

ment of novel species assemblages across the region further suggests that modern correlational

studies, examining regional relationships between species and climate (for example) may fail

to capture the full range of edaphic controls on species distributions. These changes are the

result of land-use, both agricultural and logging, but affect forests in contrasting ways across

the domain. Maple has become one of the most dominant taxa across the region, largely red

maple (Acer rubrum), while in northern Minnesota, species shifts have reflected increases in

poplar and pine, while in south central and eastern Wisconsin hemlock has been lost almost

completely.

Recent work in eastern North America suggests the utility of including spatial structure in

species distribution models to improve predictive ability [97]. Accounting for spatial structure

may improve models by capturing missing covariates within species distribution models [97],

but if recent land-use history has strongly shaped species distributions, or co-occurrence, then

the spatial effect is likely to be non-stationary at longer temporal scales. Observations at longer

time-scales, and multiple baselines from which to build distributional models are critical to

avoid conflating recent land-use effects with the long-term ecological processes structuring the

landscape [32,98].

Anthropogenic shifts in forest composition over decades and centuries seen here and else-

where [2,59] are embedded within a set of interacting systems that operate on multiple scales of

space and time [99]. Combining regional historical baselines, long-term ecological studies and

high frequency analyses can reveal complex responses to climate change at local and regional

scales [100]. Estimates of pre-settlement forest composition and structure are critical to under-

standing the processes that govern forest dynamics because they represent a snapshot of the

landscape prior to major EuroAmerican land-use conversion [42,62]. Pre-settlement vegetation

provides an opportunity to test forest-climate relationships prior to land-use conversion and to

test dynamic vegetation models in a data assimilation framework [101]. For these reason, the

widespread loss of regional forest associations common in the PLSS (Fig 8d), and the rapid rise

of novel forest assemblages (Fig 8e) have important implications for our ability to understand

ecological responses to changing climate. The loss of historical forest types implies the modern

understanding of forest cover, climate relationships, realized and potential niches and species

associations may be biased in this region, given that 28% of the total regional cover is novel rel-

ative to forests only two centuries ago and that forests prior to EuroAmerican change were also

undergoing shifts in composition on relatively short time-scales [95,96]

Beyond shifts in composition at a meso-scale, the broader shifts in ecotones can strongly

impact models of species responses and co-occurrence on the landscape. For example, the het-

erogeneity, distribution, and control of savanna-forest boundaries [102] is of particular inter-

est to ecologists and modelers given the ecological implications of current woody
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encroachment on savanna ecosystems [103]. Declines in landscape heterogeneity may also

strongly affect ecosystem models, and predictions of future change. Our data show higher lev-

els of vegetation heterogeneity at mesoscales during the pre-settlement era, and greater fine

scaled turnover along transects. Lower β diversity shown here and elsewhere [28] indicate

increasing homogeneity at a very large spatial scale, and the loss of resolution along major his-

torical ecotones.

This study also points to the need for a deeper understanding of some of the landscape- and

regional-scale drivers of novelty, given the likely role for climatic and land-use change (includ-

ing land abandonment) to continue to drive ecological novelty [35,104]. In particular the role

of regional species pools and remnant patches of forest in driving or mitigating compositional

novelty. This work shows that the baseline forest type, and its structure on the landscape mod-

erates the degree to which landscape scale patterns can drive compositional novelty. To some

degree relationships between compositional novelty and distance from remnant patches may

be dependent on the size or diversity of the species pool and the sensitivity of dissimilarity met-

rics to β diversity [105]. Our results indicate that diversity alone cannot be the driving factor in

determining post-settlement dissimilarity since all forest classes show this pattern of change.

Both Pine and the Oak-Poplar-Basswood-Maple forest types are the most fragmented across

the region. There is strong evidence that, in some locations, pine forests have persisted over

very long timescales in the region [106], although there is also evidence, in other regions, that

these states may shift strongly in response to interactions between landscape level processes

such as fire and geophysical features [107]. Thus complex interactions between landscape-sc

ale processes, including fire and land-use change, or geophysical features, and the species

assemblages themselves, point to the difficulty in making simplifying assumptions about spe-

cies assemblages. Caution in simplifying species assignments is necessary since this region is

dominated by forests that respond very differently to the settlement-era (and pre-settlement)

disturbance, even though they are composed of different species within the same genera or

plant functional type. Recent ecosystem model benchmarking using pre-settlement vegetation

has shown significant mismatch between climate representations of plant functional types

across a range of ecosystem models [21]. In the model intercomparison, no ecosystem model

accurately represented the true climate space of plant functional types in the northeastern

United States, indicating simplifying assumptions within dynamic models of vegetation fail to

accurately represent the complexity of vegetation in this region with respect to climate [21].

The analysis relating to the distance-to-novel forests (Fig 9) points to the possibility that

landscape-scale restoration has high likelihood of success if local-scale restoration focuses on

sites where restoration potential is high, as suggested for Hemlock-Cedar-Birch-Maple forests

in northern Wisconsin [45]. If some of the novelty is driven by depauparate species pools

beyond certain threshold distances from remnant forests then it should also be possible to

restore these forest at a regional scale through the translocation of key species [108]. This work

is supported by a number of other studies at smaller scales [109–111]. For example, the pres-

ence of white pine in mesic sites during the PLSS era has been attributed to its presence as a

seed source on marginal sites at scales of hundreds of meters [112]. Simulations show that

seed-source distribution can affect community composition over hundreds of years at large

spatial scales in a region spatially coincident with this current study [113]. Thus, land-use

change has significantly altered the landscape, both by "resetting" the successional clock, but

also, because of the extent of change, by impacting the regional species pool and seed source

for re-establishing forests that are compositionally similar to pre-settlement forests.

Methodological advances of the current work include 1) the systematic standardization of

PLSS data to enable mapping at broad spatial extent and high spatial resolution, 2) the use of

spatially varying correction factors to accommodate variations among surveyors in sampling
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design, and 3) parallel analysis of FIA datasets to enable comparisons of forest composition

and structure between contemporary and historical time periods. This approach is currently

being extended to TPS and PLSS datasets across the north-central and northeastern US, with

the goal of providing consistent reconstructions of forest composition and structure for north-

eastern US forests at the time of EuroAmerican forests.

Our results support the consensus that robust estimates of pre-settlement forest composi-

tion and structure can be obtained from PLSS data [47,48,65,114,115]. Patterns of density,

basal area and biomass are roughly equivalent to previous estimates [17,26], but show variabil-

ity across the region, largely structured by historical vegetation type (Table 3). Our results for

stem density are lower than those estimated by Hanberrry et al. [27] for eastern Minnesota, but

density and basal area are similar to those in the northern Lower Peninsula of Michigan [19]

and biomass estimates are in line with estimates of aboveground carbon for Wisconsin [17].

These maps of settlement-era forest composition and structure can provide a useful calibra-

tion dataset for pollen-based vegetation reconstructions for time periods predating the histori-

cal record [50]. Many papers have used calibration datasets comprised of modern pollen

samples to build transfer functions for inferring past climates and vegetation from fossil pollen

records [116–119]. However, modern pollen datasets are potentially confounded by recent

land-use, which can alter paleoclimatic reconstructions using pollen data [118]. By linking pol-

len and vegetation at modern and historical periods we develop capacity to provide composi-

tional datasets at broader spatio-temporal scales, providing more data for model validation

and improvement. Ultimately, it should be possible to assimilate these empirical reconstruc-

tions of past vegetation with dynamic vegetation models in order to infer forest composition

and biomass during past climate changes. Data assimilation, however, requires assessment of

observational and model uncertainty in the data sources used for data assimilation. Spatio-

temporal models of uncertainty have been developed for the compositional data [73].

Ultimately the pre-settlement vegetation data present an opportunity to develop and refine

statistical and mechanistic models of terrestrial vegetation that can take multiple structural

and compositional forest attributes into account. The future development of uncertainty esti-

mates for the data remains an opportunity that can help integrate pre-settlement estimates of

composition and structure into a data assimilation framework to build more complete and

more accurate reconstructions of past vegetation dynamics, and to help improve predictions

of future vegetation under global change scenarios.
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