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Abstract: Anterior cruciate ligament (ACL) reconstruction is widely used to restore knee stabil-
ity after injury, but the risk of revision surgery increases when the autograft size is inadequate.
Ultrasound (US) measurements of preoperative target tendons have been applied to predict the
intraoperative autograft size, with various outcomes across different studies. This systematic re-
view and meta-analysis aimed to summarize the evidence and investigate the usefulness of US
in predicting autograft size. Electronic databases were searched for relevant studies from incep-
tion to 19 January 2022. The primary outcome was the correlation between the preoperative US
measurements of donor tendons and intraoperative autograft size. The secondary outcomes encom-
passed the predictive performance of US for autograft size and the comparison between US and
magnetic resonance imaging (MRI) for preoperative tendon measurements. Nine studies, comprising
249 patients, were enrolled. The preoperative US measurements of the donor tendons demonstrated a
significant positive correlation with their intraoperative autograft diameter, with a pooled correlation
coefficient of 0.443 (95% confidence interval [CI], 0.266–0.591, p < 0.001) for the gracilis and semi-
tendinosus autograft, 0.525 (95% CI, 0.114–0.783, p = 0.015) for the semitendinosus autograft, and
0.475 (95% CI, 0.187–0.687, p = 0.002) for the gracilis autograft. The pooled sensitivity and specificity
of US imaging in predicting the autograft diameter were 0.83 (95% CI 0.57–0.95) and 0.70 (95% CI,
0.36–0.91), respectively. Moreover, no significant differences were observed between US and MRI
measurements in predicting the sizes of the gracilis and semitendinosus autografts. Preoperative US
measurements of the target tendons were moderately correlated with the intraoperative autograft
size. US imaging has a discriminative performance similar to that of MRI in predicting the autograft
size. A standardized US scanning protocol is needed for future studies to minimize the variations in
tendon measurements across different investigators and increase the comparability of US imaging
with intraoperative findings.

Keywords: knee; sports injury; anterior cruciate ligament; revision surgery; ultrasonography

1. Introduction

Anterior cruciate ligament (ACL) injury is one of the most prevalent sports injuries,
with an incidence ranging from 36.9 to 60.9 per 100,000 person–years [1,2]. Lateral pivoting,
landing, and deceleration are maneuvers that are highly associated with ACL injuries
during sports play [3]. Conservative management for ACL ruptures includes physiotherapy,
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supportive bracing, and physical activity modification [4]. Nonetheless, when patients are
athletes with persistent disability after nonoperative treatments, surgical management is
needed to restore knee joint stability [4].

ACL reconstruction has been widely used, with a satisfactory outcome rate between
75% and 97% [5]. Its benefits include reducing the risk of subluxation and decreasing the
incidence of early posttraumatic osteoarthritis [6]. Herewith, up to 8% of patients have
been reported to undergo revision surgery following ACL reconstruction [7], whereby
the risk factors include low patient-reported functional outcomes and radiographic signs
of tibiofemoral osteoarthritis [8]. The increased rate of revision surgery following ACL
reconstruction has been associated with a hamstring autograft diameter of <8 mm [9,10]. In
this regard, predicting the autograft size before ACL reconstruction appears to be critical
for the surgeon [11].

Various imaging techniques, i.e., three-dimensional computed tomography (3DCT),
magnetic resonance imaging (MRI), and ultrasound (US), have been proposed for predicting
the autograft size in different studies. For instance, the 3DCT-measured semitendinosus
tendon length showed a high positive correlation with graft length [12]. The MRI-measured
tendon cross-sectional area (CSA) yielded a better predictive value than that of the MRI-
measured tendon diameter in estimating the hamstring graft size [13]. US has advantages
over the aforementioned methods such as real-time image acquisition, low cost, zero
ionizing radiation, and high resolution for superficial structures [14]. However, some
studies demonstrated moderate correlations between the US-measured CSA of the donor
tendon and its autograft diameter [14–20], whereas others did not [21,22].

To date, reviews quantifying the effectiveness of the use of preoperative US imaging in
predicting intraoperative autograft size are nonexistent [23]. Therefore, this meta-analysis
aimed to investigate the effectiveness of US imaging in predicting the autograft size in
patients receiving ACL reconstruction.

2. Methods
2.1. Protocol Registration

This systematic review and meta-analysis was based on a preplanned protocol con-
structed in accordance with the standard Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) guidelines [24]. The details are provided in the PRISMA
checklist (supplemental material). The protocol was prospectively registered on inplasy.com
on 23 January 2022 (INPLASY202210114).

2.2. Data Sources and Search Strategy

Five electronic databases, including PubMed, Cochrane CENTRAL, Embase, Clin-
cial.gov, and Web of Science, were searched for relevant studies from inception to
19 January 2022 without language restrictions. The manual retrieval of additional studies
was performed using relevant narratives and systemic reviews. The PICO question was
constructed as follows: P, patients undergoing ACL reconstruction using the autograft;
I, preoperative graft size assessment on US imaging; C, intraoperative graft size; O, pre-
dictive performance of the graft size. The following strategies were used for the literature
search: ((ultrasound) OR (sonography) OR (echography) OR (ultrasonography)) AND
((graft size) OR (graft assessment)) AND ((anterior cruciate ligament surgery) OR (ante-
rior cruciate ligament reconstruction)). The complete search strategy is presented in the
Supplementary Information.

2.3. Inclusion and Exclusion Criteria

The studies were included if they (1) were an original research work investigating
ACL reconstruction using an autograft, (2) were using US imaging for the preoperative
assessment of the donor tendon, (3) had documentation of the intraoperative autograft size,
and (4) were human studies.
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The exclusion criteria were as follows: (1) case reports/series, reviews, study protocols,
editorials, or commentaries; (2) preoperative autograft assessment using CT or MRI only;
(3) lack of information regarding the intraoperative graft size; and (4) studies without avail-
able data either for the correlations between US measurements and intraoperative autograft
size or for the accuracy of US imaging in predicting the adequacy of the autograft size.

2.4. Data Extraction

Following the literature search of the electronic databases, two authors scrutinized
the abstracts from the retrieved articles independently. If there was disagreement between
the two reviewers regarding the selected articles, a decision was made through discussion
or the corresponding author decided. Full texts of the eligible articles were subsequently
downloaded, and data were extracted using a standardized form in Microsoft Excel 2016
(Microsoft Corporation 2016). The excerpted information consisted of the name of the first
author, year of publication, study design, autograft choice, age and sex of participants, US
settings, surgical procedures for ACL reconstruction, interval between US measurement
and ACL reconstruction, outcome of interest, and reference standard.

2.5. Outcomes

The primary outcome of the study was the correlation between the preoperative US
measurements of the donor tendon and intraoperative autograft diameter. The secondary
outcomes included the prediction of the size adequacy of the autograft using US imaging
and the comparison of US and MRI measurements concerning the preoperative size.

2.6. Study Quality Assessment

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 was used to
assess the quality of studies included in the meta-analysis [25]. Accordingly, each article
was evaluated for risks of bias in four domains. A low risk of bias in each domain was
defined as follows: (1) patient selection—the study excluded patients who could introduce
spectrum bias (the performance of a diagnostic test varied according to differences in
disease severity); (2) index test—the preoperative US measurements were interpreted
without knowing the results of the intraoperative autograft size; (3) reference standard—
the intraoperative autograft diameter was measured using calibrated holes; and (4) flow
and timing—all patients received preoperative US and intraoperative measurements of the
autograft size.

Each article was evaluated for its applicability to the research question. Based on the
domains of patient selection, index test, and reference standard, we defined low concern of
applicability as follows: (1) patient selection—patients presented to the health care setting
with ACL injuries who were scheduled for ACL reconstruction; (2) index test—preoperative
tendon measurement was performed using US imaging; and (3) reference standard—the
intraoperative autograft size was measured.

2.7. Statistical Analysis

Correlations between the size of the donor tendon measured by US/MRI and its auto-
graft diameter were summarized using the Hedges–Olkin method based on the Fisher Z
transformation of the variables [26]. The weighted mean difference was used to investigate
the discrepancy between the US and MRI measurements of the donor tendon CSA [27].
The performance of predicting the size adequacy of the autograft was evaluated by the
average sensitivity, specificity, positive/negative likelihood ratios, and diagnostic odds
ratio using a bivariate random-effects model [28,29]. The summary receiver operating
characteristic (SROC) curve was applied to pool and inspect the predictive performance of
each enrolled study as well as to obtain the area under the curve [30]. The size/extent of
variability of the target parameters across the included studies was determined using I2,
which denotes the proportion of variation across studies that is caused by heterogeneity
rather than chance. An I2 > 50% was considered significant [31]. Funnel plots were built
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to examine the publication bias, which was also determined by Egger’s test for continu-
ous variables and Deeks’ funnel plot asymmetry test for diagnostic accuracy [32,33]. All
statistical analyses were conducted using Stata (StataCorp 2015, Stata Statistical Software:
Release 14, StataCorp LP, College Station, TX, USA) and Comprehensive Meta-analysis
Software, version 3 (Biostat, Englewood, NJ, USA); p < 0.05 was considered statistically
significant. Meta-DiSc (version 1.4, Hospital Ramon y Cajal and Universidad Complutense
de, Madrid, Spain) was specifically used to analyze the data for the predictive performance
when the number of available studies was fewer than four.

3. Results
3.1. Literature Search

A total of 509 articles were initially accessed from the electronic databases. After
eliminating duplicates, 439 articles were left, and 37 were related to our topic (based
on their titles/abstracts). After reading their full texts, nine articles met the inclusion
criteria and were enrolled in the meta-analysis [14–22]. The reason for article exclusion is
summarized in Supplementary Table S1. A flow diagram of the literature search is shown
in Figure 1.
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Figure 1. Flow diagram of the literature search based on the Preferred Reporting Items for Systematic
Reviews and Meta Analyses (PRISMA) guidelines. MRI, magnetic resonance imaging; CT, computed
tomography; US, ultrasound.

3.2. Study Characteristics

A total of 1 cross-sectional [21] and 8 cohort studies [14–20,22] comprising 249 partici-
pants undergoing ACL reconstruction were included. The mean age of the patients ranged
from 19.9 to 32 years. The study characteristics are summarized in Table 1. Regarding the
selection of autografts, seven studies used the four-strand semitendinosus and gracilis ten-
dons [14–17,19,21,22], one study used the four-strand semitendinosus tendon [18], and one
study used the quadriceps tendon [20]. Regarding the preoperative US assessment of the
donor tendons, eight studies [14,15,17–22] provided the CSA, and one study [16] measured
the diameter. Other than US, three studies [14,15,20] used additional MRI to evaluate the
preoperative autograft size. Regarding the size adequacy of the intraoperative autograft
diameter, the cutoff values were 8 mm in seven studies [15,16,18–22] and 7.5 mm [14] and
7 mm [17] in the other two studies.
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Table 1. Summary of the retrieved studies investigating the predictive values of ultrasound imaging for autograft size in anterior cruciate ligament reconstruction.

Study,
Year Study Design Autograft Age M/F

Ultrasound Setting

Surgical Procedure Interval
US—OP

Outcome Reference
Standard

Manufacturer,
Transducer

Frequency, CSA
Measurement

Probe Position,
Examinee Posture,

Site of US
Measurements

Erquicia,
2013 [15]

Prospective
cohort 4S-GST 32 (16–59) † 25/8

LOGIQe, GE
Healthcare

Linear array probe,
7–12 MHz, ellipse tool

NA, prone, knee
flexion 90◦, proximal

to the medial joint line

GT, ST harvested
GT, ST paired,

closed-hole sizing
block

15 days

CSA: GT (US, MRI),
ST (US, MRI),

GT + ST (US, MRI)
Diameter: 4S-GST (OP)

No inter-rater, intra-rater
reliability

Autograft
diameter

Galanis,
2016 [14]

Prospective
cohort 4S-GST 31.14 ± 3.11 * 14/0

Siemens Acuson S2000
Linear array probe,
10 MHz, ellipse or

dotted line tool

Perpendicular to the
tendon, prone, knee
flexion 30◦, near the
widest point of the

medial femoral
epicondyle

GT, ST tendons
harvested

GT, ST paired,
closed-hole sizing

block

NA

CSA: GT + ST (US, MRI),
ST (US, MRI),
GT (US, MRI)

Diameter: 4S-GST (OP), ST
(US, MRI), GT (US, MRI)
Inter-rater and intra-rater

reliability

Autograft
diameter

Rodriguez-
Mendez,
2017 [16]

Prospective
cohort 4S-GST (16–43) † 33/0

Siemens Acuson S2000
Linear array probe,

14 MHz, NA

Perpendicular to the
tendon, prone, knee
flexion 0◦, posterior
medial of proximal

tibia with widest zone

GT, ST tendons
harvested

GT, ST folded a
quadruple tendon

NA

Diameter: GT + ST (US),
GT (US, OP), ST (US, OP),

4S-GST (OP)
Length: 4S-GST (OP), ST

(OP), GT (OP)
No inter-rater, intra-rater

reliability

Autograft
diameter

Astur,
2018 [21]

Cross-
sectional 4S-GST 24.8 ± 8.4 * 19/5 Logic P6 device,

7–11 MHz, NA

NA, ventral
recumbent,

the articular line

GT, ST tendons
harvested

ST, GT folded in half to
form a quadruple graft

7 days

CSA: GT + ST (US)
Diameter: GT (US), ST

(US), 4S-GST (OP)
No inter-rater, intra-rater

reliability

Autograft
diameter

Asihin,
2018 [17]

Prospective
cohort 4S-GST 28.48 ± 6.0 * 23/4

Philips HD11 XE
Linear array probe,

5–12 MHz, ellipse tool

NA, prone with knee
flexion in 30◦, the
medial joint line

GT, ST harvested with
a closed-end tendon

harvester
1 day

CSA: ST + GT (US)
Diameter: 4S-GST (OP)

No inter-rater, intra-rater
reliability

Autograft
diameter

Momaya,
2018 [22]

Prospective
cohort 4S-GST 22.8 ± 6.6 * 10/10 Fujifilm SonoSite,

NA, NA
NA, prone with knee

flexion in 30◦
GT, ST harvested with
a closed-loop tendon

stripper
14 days

CSA: ST + GT (US)
Diameter: 4S-GST (OP)
Inter-rater, intra-rater

reliability

Autograft
diameter
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Table 1. Cont.

Study,
Year Study Design Autograft Age M/F

Ultrasound Setting

Surgical Procedure Interval
US—OP

Outcome Reference
Standard

Manufacturer,
Transducer

Frequency, CSA
Measurement

Probe Position,
Examinee Posture,

Site of US
Measurements

Sumanont,
2019 [18]

Prospective
cohort 4S-ST 29.3 ± 9.6 * 37/3 NA, NA, NA

NA, supine with knee
flexion in 30◦, the
posterior medial

aspect of the knee joint

ST harvested with a
closed tendon stripper NA

Diameter: ST (US, OP),
4S-ST (OP)

Length: ST (US)
CSA: ST (US)

Inter-rater, intra-rater
reliability

Autograft
diameter

Takenaga,
2019 [19]

Prospective
cohort 4S-GST 21.9 ± 8.6 * 11/17

Medicine RS80
Prestige

linear-array probe,
4–18 MHz,

freehand tracing

NA, supine with the
hip in maximal ER and
the knee in flexion 20◦,

the myotendinous
junction of the

sartorius muscle

GT, ST harvested with
tendon stripper,

suturing the distal end
of tendon

11.3 ± 9.9
days *

CSA: GT + ST (US), ST
(US), GT (US)

Thickness: GT (US), ST
(US)

Width: GT (US), ST (US)
Diameter: 4S-GST (OP),

2GT (OP), 2ST (OP)
Inter-rater, intra-rater

reliability

Autograft
diameter

Takeuchi,
2021 [20]

Prospective
cohort QT 19.9 ± 5.0 * 18/12

Medicine RS80
Prestige

linear-array probe,
4–18 MHz, NA

Perpendicular to the
tendon, supine with

the knee flexion in 20◦,
anterior knee proximal
to the superior pole of

the patella at a
distance of 15 mm &

30 mm

QT harvested 17.9 ± 22.1
days *

CSA: QT (US, MRI)
Diameter: QT (OP), QT

(US, MRI)
Inter-rater, intra-rater

reliability

Autograft
diameter

* mean ± standard deviation. † minimum to maximum. Abbreviations: CSA, cross-sectional area; ER, external rotation; GT, gracilis tendon; MHZ, megahertz; mm, millimeter;
MRI, magnetic resonance imaging; NA, not applicable; OP, operation; QT, quadriceps tendon; ST, semitendinosus tendon; US, ultrasound; US-OP, interval between the ultrasound
measurement and the anterior cruciate ligament reconstruction; 2GT, doubled gracilis tendon; 2ST, doubled semitendinosus tendon; 4S-GST, 4-strand gracilis plus semitendinosus
tendon; 4S-ST, 4-strand semitendinosus tendon.
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3.3. Quality Assessment

Table 2 illustrates the methodological analysis of the included studies based on
QUADAS-2. All studies showed a low risk of bias regarding the domains of patient
selection, index test, and reference standard. Three studies [14,16,18] showed a high risk of
bias in the domain of flow and timing due to an unclear interval between the index test
and the reference standard. All studies showed low concern regarding applicability.

Table 2. The methodological quality of the included studies assessed by QUADAS-2.

Risk of Bias Applicability Concerns

Study
Patient

Selection

Index Test
(US

Measurement)

Reference
Standard

(Autograft Size)

Flow and
Timing

Patient
Selection

Index Test
(US

Measurement)

Reference
Standard

(Autograft Size)

Erquicia, 2013 [15] Low Low Low Low Low Low Low

Galanis, 2016 [14] Low Low Low High Low Low Low

Rodriguez-Mendez,
2017 [16] Low Low Low High Low Low Low

Astur, 2018 [21] Low Low Low Low Low Low Low

Asihin, 2018 [17] Low Low Low Low Low Low Low

Momaya, 2018 [22] Low Low Low Low Low Low Low

Sumanont, 2019 [18] Low Low Low High Low Low Low

Takenaga, 2019 [19] Low Low Low Low Low Low Low

Takeuchi, 2021 [20] Low Low Low Low Low Low Low

Abbreviations: US, ultrasound; QUADAS, Quality Assessment of Diagnostic Accuracy Studies.

3.4. Outcome
3.4.1. Correlations between Preoperative US and Intraoperative Autograft Measurements

Preoperative US measurements (mainly CSA) of the gracilis and semitendinosus
tendons demonstrated a significant positive correlation with the intraoperative autograft
diameter based on eight enrolled studies [14–19,21,22], with a pooled correlation coefficient
of 0.443 (95% CI, 0.266–0.591, p < 0.001; I2 = 50.88%). No significant publication bias was
detected when examining the symmetry of the effect sizes on the funnel plot and hypothesis
testing using Egger’s test (p = 0.709) (Supplementary Figure S1).

A significant positive correlation (pooled correlation coefficient, 0.525; 95% CI,
0.114–0.783, p = 0.015; I2 = 72.99%) was also identified between the preoperative US
measurements (CSA) of the semitendinosus tendons and the intraoperative autograft diam-
eter from the three included studies [14,18,19]. Similarly, a significant positive correlation
existed between the preoperative US measurements (CSA) of the gracilis tendon and the
autograft diameter based on two enrolled studies [14,19], with a pooled correlation coeffi-
cient of 0.475 (95% CI, 0.187–0.687, p = 0.002; I2 < 0.001). Forest plots of the aforementioned
correlations are shown in Figure 2.

3.4.2. US Imaging in Predicting the Size Adequacy of the Autograft

The average sensitivity and specificity in predicting the size adequacy of the autograft
using US imaging was 0.83 (95% CI, 0.57–0.95, p < 0.001; I2 = 93.25%) and 0.70 (95% CI,
0.36–0.91, p < 0.001; I2= 66.75), respectively (Figure 3).

The pooled positive likelihood, negative likelihood, and diagnostic odds ratios were
2.80 (95% CI, 0.90–8.4), 0.24 (95% CI, 0.06–0.91), and 12 (95% CI, 1–118), respectively. Based
on the SROC curve (Supplementary Figure S2), the area under the curve was 0.84 (95%
CI, 0.81–0.87). The Deeks’ funnel plot asymmetry test revealed no significant evidence of
publication bias (p = 0.21) (Supplementary Figure S3).
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3.4.3. Comparison between US and MRI Measurements in Predicting the Autograft Size

A significant positive correlation was observed between the MRI-measured CSA
and the autograft diameter of the gracilis and semitendinosus tendons based on the two
included studies [14,15], with a pooled correlation coefficient of 0.849 (95% CI, 0.738–0.915,
p < 0.001; I2 = 94.21%; Figure 4A). In addition, no significant difference was found between
the MRI- and US-measured CSA of the gracilis and semitendinosus tendons based on the
two included studies [14,15], with a weighted median difference of −0.533 mm2 (95% CI,
−5.753–4.686, p = 0.841; I2 = 94.21%; Figure 4B).
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Further, we additionally examined the predictive performance of MRI for autograft
diameter adequacy from three included studies [14,15,20]. The average sensitivity and
specificity were 0.97 (95% CI, 0.87–0.99; I2 < 0.01%) and 0.53 (95% CI, 0.34–0.70; I2 ≤ 0.01%),
respectively. The pooled positive likelihood, negative likelihood and diagnostic odds ratios
were 1.50 (95% CI, 0.55–4.05), 0.23 (95% CI, 0.03–1.48), and 10.45 (95% CI, 0.28–389.71),
respectively. The corresponding area under the curve was not computed because of the
inadequacy of the number of studies with available data.

4. Discussion

This meta-analysis unmasked several important findings. First, there was a moderate
correlation between the preoperative US measurements of the donor tendons and the
intraoperative autograft size. Second, the average sensitivity and specificity in predicting
the adequacy of autograft size reached 0.83 and 0.70, respectively. Third, no significant
difference was found between the US and MRI measurements of the donor tendon size.

Some factors need to be considered before interpreting the correlation coefficients
between the US measurements of the donor tendon and the autograft diameter. The size
of the autograft could only be represented by its diameter because tendon integrity is
needed for ACL reconstruction. The transection of the target tendon to obtain the CSA
is not practical. However, as the target tendon may not be in a circular or symmetrically
oval shape, it is challenging to define the diameter on US images. Unlike the diameter,
the CSA can be measured by tracking the border of the tendon. It better represents the
tendon size and can serve as an optimal surrogate for predicting the autograft diameter.
Therefore, the majority of the included studies employed the CSA to estimate the autograft
size. In 2012, Mukaka et al. [34] defined a correlation coefficient between 0.5 and 0.7
to indicate a moderate degree of correlation. In our meta-analysis, the point estimate
of the pooled correlation coefficients ranged between 0.443 and 0.525, indicating a low
to moderate correlation between the US-measured tendon size and autograft diameter.
Since the measurement is two-dimensional for the CSA of the donor tendons and one-
dimensional for the intraoperative autograft diameter, the data discrepancy may cause
lower correlations than anticipated.

Most previous studies have suggested that the diameter of donor tendons should be
>7 mm to avoid graft failure [35]. Similarly, recent large-scale studies have reported an in-
creased revision rate if the hamstring autograft size was <8 mm. In 2013, Mariscalco et al. [36]
reported that among 320 participants, 15.3% with autografts <8 mm needed revision surgery.
In 2021, Alkhalaf et al. [37] enrolled 782 cases and found that patients with an autograft
size <8 mm were 7.2 times more likely to experience ACL reconstruction failure. In most
of our included studies, 8 mm was treated as the threshold of autograft size inadequacy,
although the cutoff points of US-measured CSA varied significantly. Our meta-analysis
revealed that the pooled sensitivity and specificity in predicting autograft size inadequacy
were 0.83 and 0.70, respectively. The point estimate of the diagnostic odds ratio for US
imaging could reach 12, indicating its ability to discriminate participants with and without
an inadequate autograft size.

Our study revealed that the pooled diagnostic odds ratio for MRI was 10.45, indicating
the usefulness of MRI in predicting the autograft size. In 2016, Grawe et al. [38] reported
that a CSA of the donor tendon >22 mm2 could reliably predict a graft diameter >8 mm.
In 2017, Leiter et al. [39] found that the CSA of the semitendinosus and gracilis tendons
measured on MRI was a good surrogate for predicting the autograft diameter. Our meta-
analysis also revealed no significant differences between the US- and MRI-measured CSA
values. In other words, the predictive performance appears to be similar between the two
imaging modalities.

According to our results, the pooled specificity of US imaging is lower than the pooled
sensitivity in discriminating the size inadequacy of the autograft (0.70 vs. 0.83). This
finding suggests that the ability of US imaging to detect donor tendon sizes lower than the
threshold (specificity) was not as good as its ability to identify a tendon size higher than
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the cutoff point (sensitivity). As size inadequacy is associated with an increased risk of
autograft failure, specificity would be more important than sensitivity in clinical practice.

The lower specificity of US imaging may be attributed to several factors. First, the
US scanning protocols varied across different studies. There was a noticeable difference
in donor tendon size between the myotendinous junction and distal attachment levels.
As the sizes of the hamstring tendons are not the same at different levels [40], accurate
comparison is not possible on this basis. Second, it could be challenging to differentiate the
paratenon from the tendon tissues using US imaging. This may lead to variations in the
estimated autograft size as the surrounding connective tissues need to be excised during
ACL reconstruction.

A recent ultrasound study [41] showed that the US-measured CSA was highly cor-
related with that calculated under MRI, with intra-class correlation coefficients ranging
from 0.882 to 0.996. A standardized level of measurements is prerequisite for reaching such
satisfactory reliability, which seems to be lacking in our included studies. Furthermore,
whether the transducer was perpendicular to the tendon or the examined knees were
extended or flexed at a certain angle significantly affects the comparability. Among our
enrolled articles, we also identified no details regarding the transducer used for image
acquisition by Momaya et al. [22] and Sumanont et al. [18], which also made their work not
as reliable as others.

However, although US imaging might be limited by its ability to detect the size
inadequacy of the autograft, it is still beneficial to perform US scanning of the target tendon
before surgery. Because most patients traumatized their ACL due to sport injury, their
hamstring or patellar tendons might be collaterally damaged. US imaging would be helpful
to check whether the donor tendons have scars or tears, which might affect the durability
of the autograft.

5. Limitations

This study has several limitations. First, the interval between the US examination
and the operation was unclear in some of the included studies. Tendon size may vary
at different time points. Second, the number of participants in each study was relatively
small, which limits the power of the present meta-analysis. Third, none of the included
studies stratified the patients’ ages into different groups for analysis. Furthermore, most of
the recruited participants were relatively young, possibly due to injury during sporting.
It may be difficult to generalize our study results to older populations receiving ACL
reconstruction. Future studies should investigate the influence of age regarding the US
measurements of target tendons.

6. Conclusions

This meta-analysis indicated that preoperative US measurements of donor tendons
could be moderately correlated with the intraoperative autograft size. Moreover, US and
MRI had similar discriminative performance with regard to the prediction of autograft size
inadequacy. However, US measurements must be meticulous and comparative; otherwise,
the benefits of US imaging would be lost. Standardized scanning protocols are needed
for future studies to minimize the variations in tendon measurements across different
investigators and increase the comparability of US imaging with intraoperative findings.
As there was only a small number of included studies in this meta-analysis whose statistics
were relatively descriptive, the application of US imaging for the prediction of the autograft
size should be exercised with caution in clinical practice.
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tendons in prediction of the autograft size among the included studies. Figure S2. The summary
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