
Resistance to RAF inhibitors revisited

Edward Hartsough1, Yongping Shao1, and Andrew E. Aplin1,2

1Department of Cancer Biology, Thomas Jefferson University, Philadelphia PA 19107

2Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia 
PA 19107

Abstract

In early 2011, we reviewed the initial success of the RAF inhibitor, vemurafenib, in mutant V600 

BRAF melanoma patients. It was soon evident that the response to RAF inhibitor is heterogeneous 

and that the short-term benefits are burdened by the development of resistance. The field has 

progressed rapidly with the FDA-approval of vemurafenib and the development of other RAF and 

MEK inhibitors. Despite these advances, the issue of RAF inhibitor resistance remains. Here, we 

review recent clinical advances in the field, the growing number of resistance mechanisms, 

preclinical evidence for combinatorial trials using RAF inhibitors as the building blocks, and the 

new challenges that are arising.
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Introduction

The introduction of RAF inhibitors has dramatically changed the treatment options for the 

~50% of melanoma patients that harbor V600 BRAF mutations. However, as with other 

targeted therapies, mechanisms of primary/intrinsic and acquired resistance exist. We will 

initially review the phase 2 and phase 3 trial results with vemurafenib and the findings with 

the selective RAF inhibitor, dabrafenib, and new MEK inhibitors. Second, we will outline 

resistance mechanisms and elaborate on our model of compensatory pathways being 

important in the primary response and re-activation of the MEK-ERK1/2 pathway (Figure 

1).

Clinical trials lead the way

The findings from the phase 1 vemurafenib trials in melanoma were a breakthrough for the 

field (Flaherty et al., 2010) and were rapidly supported by the phase 2 and 3 findings. In the 
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phase 2 trial of vemurafenib, 132 melanoma patients were enrolled who were confirmed for 

BRAF V600 status but had not previously received other drug regimens (Sosman et al., 

2012). Patients were dosed with 960 mg of vemurafenib taken orally twice daily. The study 

yielded promising results with a confirmed overall response rate of 53% and median 

progression free survival (PFS) of 6.8 months. Notably, 25% of patients tested demonstrated 

a PFS of greater than 12.9 months. The phase 3 trial comprised of 675 therapy-naïve patients 

and directly compared the efficacy of vemurafenib to the previous first line therapy, 

dacarbazine (Chapman et al., 2011; Chapman et al., 2012b). Patients testing positive for a 

stage IIIC or IV BRAF V600 melanoma were randomly assigned to the vemurafenib group 

or the dacarbazine group. A dramatic difference between overall response rates was 

observed: 48% for vemurafenib versus 5% for dacarbazine. Median overall survival rates 

were calculated to be 13.2 months, and 9.6 months for vemurafenib and dacarbizine, 

respectively (Chapman et al., 2012b). Additionally, vemurafenib provided a median PFS of 

5.3 months compared to 1.6 months with dacarbazine.

Other selective RAF inhibitors including dabrafenib (GSK2118436) with preference for the 

V600 mutant form of BRAF have also been developed. Initial clinical data with dabrafenib 

was promising (Hauschild et al., 2012) and this RAF inhibitor was given FDA approval in 

May 2013 for V600E BRAF-driven melanoma. An open-labeled randomized phase 3 trial 

was conducted with 250 patients randomly selected to receive either dabrafenib (150 mg 

twice daily) or dacarbazine. A recent update of this trail showed that dabrafenib elicited a 

median PFS of 6.9 months compared to 2.7 months with dacarbazine (Hauschild et al., 

2013). It was also found that dabrafinib provided an overall survival rate of 18.2 months 

compared to 15.6 months with dacarbazine treatment. Importantly in a phase 2 trial of 

dabrafenib, patients with previously untreated or treated brain metastases exhibited response 

rates of 22% and 31%, respectively (Long et al., 2012). These findings are notable given the 

frequency of brain metastasis in melanoma.

Next generation MEK inhibitors with improved pharmacokinetic properties have also shown 

promise as a treatment option for mutant BRAF melanomas leading to the FDA approval of 

trametinib (GSK1120212) in May 2013 for the treatment of V600E/K BRAF melanoma. In 

a phase I trial, trametinib provided 5.7 months of PFS in V600 mutant BRAF metastatic 

melanoma patients compared to 2.0 months in wild type BRAF patients (Falchook et al., 

2012). In a phase 3 study of V600E/K BRAF patients, median PFS was 4.8 months in the 

trametinib-treated cohort compared to 1.5 months with standard chemotherapy (Flaherty et 

al., 2012b). Trametinib has also been tested in a larger scale phase II study comprising of 2 

arms, a cohort of patients having mutant BRAF melanoma progressing under BRAF 

inhibitor treatment and a cohort with mutant BRAF having had no previous BRAF targeted 

treatments. Results demonstrate that trametinib is quite effective against BRAF inhibitor 

naïve patients exhibiting a PFS of 4.0 months. However, PFS was only 1.8 months in the 

cohort of patients who have been treated previously with a selective BRAF inhibitor (Kim et 

al., 2013). In the latter, BRAF inhibitor treatment was stopped prior to trametinib treatment 

perhaps suggesting that MEK inhibitors alone are not able to sufficiently inhibit the ERK1/2 

pathway in resistant patients.
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Although it might seem counterintuitive to target the same pathway at multiple points, 

evidence from the vemurafenib alone trials indicated a need for >80% inhibition of phospho-

ERK1/2 for clinical effect (Bollag et al., 2010). Thus, combinational therapies of RAF and 

MEK inhibitors are currently being evaluated. A phase I/II trial of dabrafenib and trametinib 

was conducted to address the safety and the possibility of an adverse drug interaction 

(Flaherty et al., 2012a). Median PFS was improved by 3.6 months in patients receiving 

dabrafenib concurrently with a 2 mg/day dose of trametinib when compared to patients only 

being treated with dabrafenib. Additionally, a partial or complete response was observed in 

76% of the dual-therapy patients, while a response rate of 54% was elicited in patients 

receiving the dabrafenib monotherapy. The combined treatment regimen is well tolerated by 

patients and even reduces the risk of cutaneous squamous cell carcinoma/keratoacanthoma 

(cuSCC/KA) from 19% in a dabrafenib monotherapy to 2–7% (depending on the 

concentration of MEK inhibitor used). In the studies with trametinib alone, there was no 

induction of keratoacanthoma (Kim et al., 2013).

Immunological effects of RAF inhibitors

While BRAF inhibitors block MEK-ERK1/2 activation in cells possessing V600E BRAF, a 

paradox exists in that RAF inhibitors cause induction of the pathway in wild-type BRAF 

cells with high RAS activity (Kaplan et al., 2010). This paradoxical ERK1/2 activation can 

induce cuSCC/KA, adenomas and in one case leukemia (Callahan et al., 2012; Chapman et 

al., 2012a; Su et al., 2012b). However, the same paradoxical signaling has some positive 

effects. One example is vemurafenib stimulation of the immune response. Koya et al. 

describe that tumor-infiltrating lymphocytes possessed higher secretion of the potent 

immunostimulant, interferon-γ, following vemurafenib treatment and this observation 

correlated with an increased intrinsic cytotoxic ability (Koya et al., 2012). Furthermore, they 

demonstrated an enhanced anti-tumor effect against a subcutaneously implanted, mouse-

derived V600E BRAF melanoma line using vemurafenib in combination with adoptively 

transferred splenocytes designed to target the melanocyte marker gp100. Vemurafenib 

paradoxically enhanced ERK1/2 signaling in these cells, and the authors believe this may be 

the mechanism responsible for the enhanced immune response and contribute to the overall 

anti-tumoral effect.

The effect of ERK1/2 pathway inhibitors on the immune system was also investigated by 

Wargo and colleagues. This group demonstrated that both RAF and MEK inhibitors 

increased the expression of melanocyte differentiation antigens (MDAs) on melanoma cells 

and that these MDAs are targets for T-lymphocytes (Boni et al., 2010). The group further 

demonstrated that the pantropic effects of the MEK inhibitors depress the efficacy of the T-

lymphocytes themselves, but importantly, that selective RAF inhibitors are not suppressive. 

These data raise important differences between RAF inhibitor alone versus MEK inhibitor-

containing treatments and suggest that selective RAF inhibitors combined with 

immunotherapy may be an efficacious approach to melanoma therapy.

A phase I trial was conducted based on some of these data utilizing a dual treatment of 

vemurafenib combined with the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) 

blocking antibody, ipilimumab. However, this study was ended with patients experiencing 
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significant hepatotoxic effects, and trial organizers needed to curtail drug exposure (Ribas et 

al., 2013). While these results were disappointing, there have been significant other 

advances in the immunotherapy field utilizing antibodies against programmed death 1 

(PD-1) (Hamid et al., 2013; Wolchok et al., 2013). Therefore, trials testing the combination 

of RAF inhibitor and anti-PD-1 antibodies are likely.

Mechanisms of resistance to RAF inhibitors

As noted above, the durable benefit provided by RAF inhibitors is limited by resistance. The 

mechanisms of resistance fall into two broad categories. Intrinsic/primary resistance is 

displayed by approximately 50% of patients- ~15% of patients show no tumor shrinkage in 

response to vemurafenib, while ~35% of patients achieve a degree of tumor shrinkage that is 

not sufficient to meet the RECIST criteria for a partial response (Chapman et al., 2011; 

Flaherty et al., 2010; Sosman et al., 2012). The other 50% of the patients initially respond 

(>30% tumor shrinkage) to RAF inhibitor but subsequently develop progressive disease 

associated with acquired/secondary resistance to RAF inhibitor. These two categories are 

not mutually exclusive since nearly all responders have remaining disease and, thus, may 

display intrinsic resistance. Here, we review the mechanisms associated with each category.

Reactivation of ERK1/2 pathway associated with acquired resistance

Multiple studies have treated mutant BRAF melanoma lines that are susceptible to BRAF 

perturbation with vemurafenib for prolonged periods in vitro until drug resistant colonies 

develop. From these studies, it is clear that numerous mechanisms of resistance can develop, 

even from within a single cell line (Gowrishankar et al., 2012). A consistent theme among 

these mechanisms is ERK1/2 pathway re-activation in the presence of RAF inhibitor. 

Several of these mechanisms have been validated in patient samples.

In 2010, the initial studies on RAF inhibitor resistance from Nazarian and colleagues 

elucidated two mutually exclusive mechanisms to negate the blockade of BRAF V600E 

signaling. The first was up-regulation and activation of the receptor tyrosine kinase (RTK), 

PDGFR-β, and the second was expression of mutant Q61 NRAS (Nazarian et al., 2010). 

More recently, NRAS mutations were discovered in 4 of 19 patient samples (Poulikakos et 

al., 2011), validating NRAS mutations coexisting with BRAF V600E as a frequent 

mechanism of resistance. While NRAS is the most frequent form of RAS that is mutated in 

melanoma, HRAS and KRAS mutations occur in 1% and 2% of patients, respectively. These 

may also be important in the setting of acquired resistance to RAF inhibitors, since acquired 

KRAS mutations have been reported in vemurafenib-treated A375 V600E melanoma cell 

line (Su et al., 2012a).

A second mechanism of resistance that relies on ERK1/2 re-activation is alternative splicing 

of V600E BRAF. Poulikakos et al. detected a 61-kDa form of V600E BRAF, which lacked 

exons 4–8 (encoding the RAS binding domain of BRAF) from in vitro resistant cell lines 

(Poulikakos et al., 2011). This V600E BRAF variant possesses a markedly higher 

dimerization property irrespective of RAS status and strongly activates MEK and ERK1/2 in 

the presence of vemurafenib. Additionally, V600E BRAF copy number amplification has 

also been implicated as a mechanism of resistance. Whole exome sequencing of twenty 
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patients comparing base-line melanoma to that of a RAF inhibitor progressing tumor 

revealed that 20% (4 out of 20) harbored increased V600E BRAF copy number, which 

ranged from 2.2- to 12.8-fold. Further profiling of the patients with increased copy number 

did not identify other known mechanisms of vemurafenib resistance, such as acquired 

NRAS mutation or RTK amplification, raising the possibility that V600E BRAF 

amplification alone is sufficient for BRAF inhibitor resistance (Shi et al., 2012b). In a small 

percentage of cases, activating MEK1 mutations have also been implicated as a mechanism 

of vemurafenib resistance. Targeted sequencing of a cancer gene panel revealed an 

activating mutation in the RAF target, MEK1 (Wagle et al., 2011). A tumor biopsied from a 

patient whom became resistant to vemurafenib treatment harbored a cysteine to serine 

mutation at codon 121 (C121S) of MEK1. The phosphorylation of ERK1/2 in cells 

expressing C121S MEK1 was elevated and this variant was permissive for growth in 

vemurafenib-treated mutant BRAF cell lines. However, the significance of other MEK1 

mutations has been called into question since P124S and I111S alterations have been 

detected in pre-treatment samples and do not provide resistance to RAF inhibitors (Shi et al., 

2012a). The frequency of acquired MEK mutations is likely to become an area of active 

interest as RAF/MEK inhibitor combinations are more frequently utilized.

Up-regulated RTK signaling associated with acquired resistance

Up-regulation of RTKs has been frequently linked to resistance to targeted inhibitors. As 

previously reviewed (Aplin et al., 2011), up-regulation of PDGFRβ and IGF-1R expression 

is found in vemurafenib-resistant melanoma cell lines evolved in vitro and in patient tumor 

samples following disease progression. Further studies are starting to shed light on the 

mechanisms of resistance provided by RTKs. In follow-up work on PDGFRβ, Lo and 

colleagues showed that the inhibition of ERK1/2 phosphorylation by vemurafenib in 

PDGFRβ-resistant cells is transient with a robust rebound of phospho-ERK1/2 within 24 

hours (Shi et al., 2011). The contribution of this ERK1/2 signal rebound to resistance and 

whether PDGFRβ is involved in regulating this rebound signal remain to be determined. In 

addition to the ERK1/2 pathway, PDGFRβ may also signal via phosphatidylinositide 3-

kinase (PI3K)/AKT. In support of this, Shi et al. reported increased phosphorylation of AKT 

and its downstream effector, p70S6K, in PDGFRβ-mediated resistant melanoma cells (Shi et 

al., 2011). Based on these findings, the authors have proposed to use a combination of MEK 

inhibitor, AKT inhibitor, and mTORC inhibitor to overcome PDGFRβ-mediated resistance. 

Although this mechanism of resistance depends on PDGFRβ for growth, PDGFRβ-

overexpressing cells are surprisingly resistant to the PDGFRβ inhibitor, imatinib. This is not 

due to a failure of the drug to inhibit PDGFRβ kinase activity as the phosphorylation of 

PDGFRβ was successfully blocked by imatinib (Shi et al., 2011). These findings raise the 

possibility that PDGFRβ functions as a scaffold protein in addition to its kinase activity to 

promote resistance.

Other studies have shed light on how vemurafenib-resistant cells that express high PDGFRβ 

levels evade apoptosis downstream of re-activation of ERK1/2 signaling. Vemurafenib 

induces apoptosis through up-regulation of two pro-apoptotic BH3-only proteins, Bim-EL 

and Bmf (Shao and Aplin, 2010). Studies in a subset of vemurafenib-resistant cells which 

display high levels of PDGFRβ show that the up-regulation of Bim-EL and Bmf is silenced 
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(Shao and Aplin, 2012). Importantly, the repression of these genes is largely ERK1/2-

independent. Although the mechanism for Bmf repression is not clear, Bim-EL is silenced 

epigenetically. Treatment with the histone deacetylase (HDAC) inhibitor, vorinostat 

(suberoylanilide hydroxamic acid), reversed the repression of Bim-EL and re-sensitized 

resistant cells to vemurafenib (Shao and Aplin, 2012), suggesting that combinational 

treatment of vemurafenib with HDAC inhibitors may prove useful in fighting resistance. In 

vitro work done by Peter Hersey's group has demonstrated a strong synergism in the 

induction of apoptosis when vemurafenib and HDAC inhibitors are administered to V600E 

mutant BRAF melanoma cells (Lai et al., 2012). Given the importance of Bim-EL in 

apoptosis, it may serve as a good maker for vemurafenib responsiveness and resistance. 

Indeed, Faber et al., have shown that Bim expression predicts responsiveness to kinase 

inhibitor in treatment-naive cancers (Faber et al., 2011).

Mechanisms of primary/intrinsic resistance

Approximately 15% of patients treated with vemurafenib exhibit disease progression. In 

cell-based assays, loss or inactivation of key tumor suppressors contribute to this intrinsic 

resistance to vemurafenib. Both the retinoblastoma susceptibility gene (pRB) and the lipid 

phosphatase, phosphatase and tensin homolog (PTEN), have been implicated in intrinsic 

mutant BRAF inhibitor resistance. V600E BRAF melanoma cell lines null for PTEN tend to 

be more resistant to vemurafenib treatment compared wild type PTEN counterparts (Paraiso 

et al., 2011; Xing et al., 2012). Similar findings have been observed in response to MEK 

inhibitors (Gopal et al., 2010) and are consistent with findings that activated AKT3 is 

sufficient to provide resistance to PLX4720-mediated apoptosis (Shao and Aplin, 2010). 

This apparent decrease for BRAF oncogene addiction in mutant PTEN tumors was also 

demonstrated in the clinic. Nathanson and colleagues have evidence that in V600E BRAF 

melanoma patients with wild type PTEN, dabrafenib may elicit a longer progression free 

survival when compared to patients harboring at least one mutated allele of PTEN (32.1 

weeks compared to 18.3 weeks, respectively) (Nathanson et al., 2013). While this set of data 

did not reach a statistically significant difference (p= 0.066), a larger sample size may 

confirm their findings.

Alterations in RTK signaling have been implicated in the primary resistance setting as well 

as in acquired resistance. Wilson and colleagues demonstrated that addition of hepatocyte 

growth factor (HGF) to V600E BRAF melanoma cell lines was sufficient to confer 

resistance to vemurafenib through c-MET receptor activation of ERK1/2 (Wilson et al., 

2012). This resistance mechanism was attenuated by the c-MET inhibitor, crizotinib, in vitro 

and in a xenograft model. Furthermore, in patients, high serum HGF levels prior to a 

vemurafenib treatment is predictive of a shorter PFS and reduced overall survival (Wilson et 

al., 2012). A related study examined RAF inhibitor resistance as a result of co-culturing 

mutant BRAF melanoma tumor cells with stromal cells. It was found that stromal cells 

producing high levels of HGF conferred the strongest resistance to vemurafenib through 

activation of c-MET and downstream ERK1/2 signaling (Straussman et al., 2012).

In addition to pre-existing primary resistance mechanisms, tumor cells may elicit an 

adaptive response as an escape mechanism. Recently, our group has demonstrated adaptive 

Hartsough et al. Page 6

J Invest Dermatol. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



up-regulation of the stemness factor, FOXD3, in response to vemurafenib treatment (Abel 

and Aplin, 2010). This drug-induced increase in FOXD3 modifies the apoptotic response to 

vemurafenib such that FOXD3 knockdown in intrinsically resistant cells dramatically 

enhanced vemurafenib-induced apoptosis (Basile et al., 2012). Conversely FOXD3 

expression in RAF inhibitor-sensitive cells provided protection (Basile et al., 2012). One 

target of FOXD3 is the RTK, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 

(ERBB3)/human epidermal growth factor receptor (HER) 3. Activation of ERBB3 and its 

signaling to AKT were enhanced in vemurafenib-inhibited melanoma cells in vitro, 

melanoma cell xenografts in mice, and in patients samples from RAF inhibitor clinical trials 

(Abel et al., 2013). ERBB3 signaling was dependent on its related family member, ERBB2, 

and targeting ERBB3-ERBB2 signaling either molecularly or with lapatinib in combination 

with the RAF inhibitor, PLX4720, reduced tumor burden and extended latency of tumor 

regrowth in vivo versus PLX4720 alone. These results suggest that enhanced ERBB3 

signaling may serve as a mechanism of adaptive resistance to RAF and MEK inhibitors in 

melanoma and that co-targeting this pathway may enhance the clinical efficacy and extend 

therapeutic duration of RAF inhibitors.

A separate study focused on RAF inhibitors causing a relief of feedback inhibition of RTK 

signaling and re-setting of the ERK1/2 pathway in a subset of mutant BRAF melanoma cells 

(Lito et al., 2012). Lito and colleagues demonstrated an ERK1/2 activation rebound in the 

presence of RAF inhibitors associated with activated RTK, specifically ERBB/HER family 

members. The level of reactivation is modest and/or cell line-dependent since other studies 

have not detected reactivation in mutant BRAF melanoma cells (Corcoran et al., 2012; 

Montero-Conde et al., 2013). They correlate this RTK-driven ERK rebound with an elevated 

Ras-GTP bound state, which induces the formation of RAF inhibitor-resistant RAF dimers. 

These RAF dimers can then stimulate MEK and ERK1/2, irrespective of RAF inhibitor. The 

group also showed that blockade of the elevated RTK signaling allowed mutant BRAF 

melanoma cells to become sensitized to RAF inhibitors; however, pathways in addition to 

ERK1/2 are targeted in this scenario. Nevertheless, these findings add to the growing 

evidence for up-regulated RTK signaling as an adaptive response to RAF inhibitors. Future 

avenues will have to investigate what determines the range of adaptive response and 

optimize co-targeting approaches.

Adaptive responses may also impact on additional pathways. Haq and colleagues described 

an adaptive response to ERK1/2 pathway suppression that leads to the upregulation of 

mitochondrial synthesis and oxidative metabolism (Haq et al., 2013). They found that when 

RAF inhibitors are used to suppress mutated BRAF, the transcription factor, 

microphthalmia-associated transcription factor (MITF), is upregulated, and controls 

expression of the mitochondrial regulator peroxisome proliferator-activated receptor γ, 

coactivator 1α (PGC1α). PCG1α was sufficient for the observed increase in mitochondrial 

number and output, and was associated with enhanced oxygen consumption. The group also 

demonstrated that mutant BRAF cells treated with RAF inhibitors are susceptible to 

mitochondrial uncouplers suggesting that ERK1/2 suppressed melanoma cells are addicted 

to oxidative phosphorylation. Indeed, this idea was substantiated in xenograft models and 

Hartsough et al. Page 7

J Invest Dermatol. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ushers in a new possibility of treatment options by combining ERK1/2 pathway inhibitors 

with mitochondrial uncouplers.

The notion of oxidative phosphorylation state as a marker for intrinsic resistance was also 

recently explored by the Herlyn group. They demonstrated that a small subset of melanoma 

cells contain a high level of the H3K4 demethylase, jumonji AT rich interactive domain 1B 

(JARID1B), and these slow-cycling cells are inherently more resistant to chemotherapies, as 

well as targeted therapies such as vemurafenib (Roesch et al., 2013). They correlated high 

JARID1B expression with elevated levels of proteins associated with mitochondrial 

respiration. Similar to Haq et al., the Herlyn group also found that inhibition of 

mitochondrial function further sensitized cells to therapeutics. In fact, they demonstrated 

that various mitochondrial blockers ablated the formation of the slow-cycling JARID1Bhigh 

sub population, suggesting that intrinsic drug resistance is associated with elevated oxidative 

phosphorylation.

Pre-clinical basis for additional combinatorial strategies

The introduction of vemurafenib and dabrafenib has been a significant breakthrough in the 

melanoma field; and these inhibitors now represent the building blocks for combined 

targeted therapeutic strategies. Already clinical trials combining RAF inhibitors with other 

targeted agents have been shown to significantly increase PFS over RAF inhibitor 

monotherapy. As the clinical field quickly progresses, so do pre-clinical studies that form 

the basis for future combinations. Clinically effective ERK1/2 inhibitors are being 

developed and cell lines with an acquired MEK1 gate-keeper mutation are resistant to MEK 

inhibitors but susceptible to ERK1/2 inhibitor treatment (Hatzivassiliou et al., 2012). These 

data support the notion that multiple attacks on a linear pathway will be clinically 

efficacious.

Building upon the idea that RTK amplification and hyperactivation is a major mechanism of 

resistance, a study by Metzner et al. demonstrated that FGF ligands and receptors are 

expressed in high levels in melanoma cells (Metzner et al., 2011). The group demonstrated a 

synergistic effect in reduced proliferation and enhanced apoptosis when an FGF inhibitor, 

either SU5402 or PD166866, was combined with RAF inhibitor. The authors postulated that 

a greater level of clinical efficacy may be obtained if both the presumed tumor specific 

oncogene is targeted as well as a “universally hyperactivated” upstream molecule.

Several studies have examined the synergism/additive nature of targeting the PI3K/AKT 

pathway in combination with either RAF or MEK inhibitors in preclinical models. While 

many of these studies show promise in vitro (Table 1), their utility in patients is often 

burdened by toxicity issues. Xing and colleagues were able to demonstrate a synergism 

associated with melanoma apoptosis when combining a MEK inhibitor with a PI3K inhibitor 

(Xing et al., 2012). Furthermore, a recent phase II study of the MEK inhibitor, selumetinib, 

found that a low patient response rate is associated with high basal levels of phosphoAKT 

(Catalanotti et al., 2013). This further supports the rationale that stronger anti-tumoral 

efficacy will be obtained when multiple pathways are targeted.
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Alternative treatment approaches

An alternative approach is to selective targeting of signaling pathways is to broadly attack 

resistance nodes, which arise as a result of vemurafenib treatment. Based on the observation 

that several of the aforementioned resistance mechanisms are mediated by client proteins 

heat shock protein 90 (HSP90), the Smalley group utilized the selective HSP90 inhibitor, 

XL888 (Paraiso et al., 2012). Their data demonstrate that upon XL888 treatment, various 

molecules known to have a role in RAF inhibitor resistance such as PDGFRβ, IGF1R, and 

CRAF are quickly degraded as a result of loss of HSP90 chaperone function. Ultimately, 

this leads to an enhanced susceptibility to apoptosis compared to a combined treatment of 

MEK and PI3K inhibition.

More recently, the McMahon and Stuart groups demonstrated efficacy when utilizing a 

“drug holiday” regimen in a xeongraft model (Das Thakur et al., 2013). With an on-again, 

off-again BRAF inhibitor treatment regimen, they were able to demonstrate tumor shrinkage 

during the periods of drug removal after the initial tumor relapse, suggesting a drug 

addiction. Over time, in the non-treated state, cells would adapt and begin to grow, however 

a second treatment wave of BRAF inhibitor would shrink the tumor again. They 

demonstrated a cyclical pattern of tumor growth/shrinkage, which was linked to BRAF 

inhibitor addiction.

Conclusions

Vemurafenib is one of the first successful small molecule inhibitors for personalized, 

targeted, cancer treatment; however, it will likely serve as a building block for further 

improvements to treatment. New studies have highlighted the benefits of utilizing a 

combined treatment regimen and it is likely that a dual or even a cocktail of selective 

inhibitor agents will emerge as the standard of melanoma care in the near future. There is 

now strong evidence to support combining inhibitors in the same linear pathway or attacking 

multiple deregulated proteins that primarily act in distinct signaling pathways. It is hoped 

that these combinatorial approaches will ultimately lead to a better patient outcome.
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Abbreviations

cuSCC cutaneous squamous cell carcinoma

ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3

HDAC histone deacetylase

HSP90 heat shock protein 90

HER human epidermal growth factor receptor
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HGF hepatocyte growth factor

JARID1B jumonji AT rich interactive domain 1B

KA keratoacanthoma

MDA melanocyte differentiation antigen

MITF microphthalmia-associated transcription factor

PFS progression free survival

PGC1α peroxisome proliferator-activated receptor γ coactivator 1α

PI3K phosphatidylinositide 3-kinase

PTEN phosphatase and tensin homolog

RTK receptor tyrosine kinase

RB retinoblastoma
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Figure 1. 
Overview of resistance mechanisms to RAF inhibitors in mutant BRAF melanoma.
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Table 1

RAF/MEK and PI3K/AKT combination studies

Combination Significance Citation

MEK inhibitor + PI3K/AKT 
inhibitor

PD0325901 (MEKi) + PI-103 
(PI3Kalpha inhibitor)

Synergism was found in combination treatment which strongly induced 
apoptosis in mutant BRAF/PTEN null melanoma cell lines

(Xing et al., 2012)

Trametinib + GSK2126458 (PI3K/
mTORi)

RAF inhibitor-resistant A375 and YUSIT1 cells were sensitive to MEK and 
PI3K inhibition

(Greger et al., 2012)

AZD6244 (MEKi) + VIII (AKTi) Multiple in vitro-derived and patient-derived resistant lines were 
synergistically affected by combination treatment.

(Atefi et al., 2011)

GDC-0973 (MEKi) + GDC-0941 
(PI3Ki)

Comparisons were made between xenograft growth rates of single agent 
compared to combination treatment. An additive effect on growth inhibition 
was observed when combining the inhibitors.

(Choo et al., 2013)

RAF inhibitor + PI3K/AKT 
inhibitor

Vemurafenib + MK-2206 (AKTi) Dose escalation of MK-2206 with vemurafenib demonstrated a combinatorial 
inhibitory effect on in vitro proliferation. The combination treatment reduced 
cyclinD1 expression and upregulated p27Kip1 and Bim-EL.

(Su et al., 2012a)

Vemurafenib + VIII (AKTi) In vitro-derived and patient-derived resistant melanomas were found to be 
synergistically affected by combination treatment.

(Atefi et al., 2011)
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