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Abstract

GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into
the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status
through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The
hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a
GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand
the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A.
fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional
states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the
notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins.
A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed
significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and
adaptability of this class of regulatory signaling proteins.
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Introduction

The survival and growth of an organism in a competitive

environment depends on the precise regulation and availability of

its natural resources. The essential element nitrogen is assimilated

through conversion of nitrate (NO3
2), dinitrogen (N2) or a variety

of amino acids to ammonium (NH4
+), the only modification of

nitrogen that can be readily incorporated into biomolecules.

Consequently, reduced ammonium is also a preferred, direct

nitrogen source for prokaryotes and plants. The uptake of NH4
+/

NH3 into the cell is mediated by a family of ubiquitous

Ammonium Transport (Amt) proteins that form highly stable

trimers within the membrane [1]. Each monomer is composed of

eleven or twelve transmembrane helices and a substrate

translocation pore with a recruitment site and a selectivity filter

[2,3,4,5,6,7]. Once in the cytoplasm, ammonium (pKa = 9.25) is

readily incorporated into glutamate by glutamate dehydrogenase

(GDH) or the ATP-dependent glutamine synthetase (GS).

Glutamate:oxoglutarate amidotransferase (GOGAT) closes this

ammonium assimilation cycle by transferring the amido group of

glutamine to 2-oxoglutarate (2-OG) to yield two molecules of

glutamate [8]. In this process, the action of GS is tightly regulated

at both a post-transcriptional and translational levels [9,10].

Central regulators of GS and Amt are trimeric cytoplasmic

proteins of the PII family, termed GlnB or GlnK, respectively [11].

The distinction between the two is not unambiguous and

according to current nomenclature glnK is the gene that is located

in an operon together with the amt gene encoding the membrane-

integral ammonium transporter, while GlnB is the main regulator

of GS and is encoded elsewhere in the genome [11,12,13,14].

PII proteins are key sensors for the metabolic nitrogen status

[9,15,16,17]. By direct binding they integrate and respond to the

effector molecules 2-oxoglutarate (2-OG) and ATP/ADP, and can

be regulated by covalent modification in response to the

availability of glutamine, thereby acting as sensors for the cellular

levels of carbon, energy and nitrogen, respectively [9,11,16,18].

Prokaryotic and plant PII proteins share a high degree of

similarity [19,20,21], with a strictly conserved tertiary structure

consisting of a four-stranded beta sheet connected by two alpha-

helices, and three loop regions of functional relevance. The B-

loop, connecting strand 4 to helix II, is important for nucleotide

binding, while the extended T-loop between strands 2 and 3

undergoes conformational rearrangements upon effector binding

that alter its affinity to the physiological interaction partner and

are thus the key element of PII signaling [22]. A third functionally

relevant loop region, the C-loop, consists of a carboxyterminal b-

hairpin motif that contains two positively charged residues that

interact with the phosphate groups of the bound nucleotide. In

spite of their highly conserved structure, PII proteins vary strongly

in their effector binding kinetics and in the resulting response

modulation. They interact with a range of downstream partner

proteins, and the underlying, molecular processes are still not fully

understood. We are investigating the role of the three GlnK

proteins of the hyperthermophilic euryarchaeon Archaeoglobus
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fulgidus, each of which is encoded in a transcriptional unit with a

distinct amt gene for an ammonium transporter. We have

structurally characterized the Ammonium transporter Af-Amt1

[2] as well as the PII proteins Af-GlnK1 [23] and Af-GlnK2 [24].

GlnK proteins, when activated, are sequestered to the cytoplasmic

membrane where they bind directly to their corresponding Amt

proteins [25], physically blocking ammonium uptake by inserting

the T-loops deeply into the transporters’ substrate channels

[26,27]. This type of complex formation occurs when the cellular

ATP/ADP ratio is low, or when the cellular nitrogen level is

sufficiently high, indicated by a low concentration of free 2-OG

[28].

The characterization of the binding properties of known effector

molecules to these proteins is an essential prerequisite for

understanding what factors promote the GlnK-Amt interaction

and what are the consequences for metabolic NH4
+/NH3 uptake.

Our previous work on Af-GlnK2 showed a strong and distinct

cooperative binding for ATP and ADP, but unexpectedly, no

binding of 2-OG [24]. To our knowledge, Af-GlnK2 is the first

(and so far only) PII protein that is fully insensitive to 2-OG. In the

present work we have carried out a comparative analysis of the

binding properties of a second GlnK protein from A. fulgidus, Af-

GlnK3, by X-ray crystallography and isothermal titration

calorimetry. We find its properties to be more in line with existing

data on PII functionality, but with distinct differences in the

resulting T-loop conformations that constitute an optimization for

their interaction.

Results and Discussion

Structural Properties of Af-GlnK3
Af-GlnK3 shares the canonical fold of PII proteins, consisting of

a four-stranded, antiparallel beta sheet and two connecting alpha

helices. It forms a tightly packed trimer with approximate

dimensions of 30654 Å (Fig. 1A). The crucial structural feature

is the loop connecting beta strands 2 and 3, the T-loop. It spans 21

amino acid residues from G35 to L56 and undergoes conforma-

tional changes upon binding of effector molecules that directly

affect the affinity of the protein for its interaction partner, Af-

Amt3. The T-loop shows intrinsic flexibility that is key to its

functionality, and in consequence this loop was disordered in most

of the PII protein structures available to date [24]. In the present

work, the thermostable ortholog Af-GlnK3 does allow for the

observation of a defined conformation for the T-loop with the

bound effectors MgATP and 2-OG (PDB code 3TA2) that

prohibits binding to Af-Amt3, as well as with bound ADP (PDB

code 3TA1), in a conformation that promotes this complex

formation.

Af-GlnK3 crystallized in the same space group, monoclinic C2,

without bound ligand (PDB code 3T9Z) and in the presence of

either MgATP (PDB code 3TA0) or MgADP (Table 1). The unit

cell of these crystals contained two complete trimers of the protein,

and – as commonly observed in crystal structures of PII proteins –

the T-loop regions were not involved in the formation of crystal

contacts. They were partially defined in electron density maps, but

showed elevated B-factors after refinement as an indication of their

flexibility. Only in the ADP-bound state it was possible to model

the entire T-loop regions. MgATP and MgADP bound to the

protein in a highly conserved nucleotide-binding pocket, a cleft

located at the interface of two monomers where the ligands are in

direct contact with the B-, C- and the T-loop. The precise modes

of ligand binding are highly conserved in all known structures of

PII proteins, as is the conformation of the structural core of the

trimeric protein itself. Functional differences are largely realized

by the actual T-loop conformation that is obtained as a result of

ligand binding, and here an immense structural diversity is

observed.

Control of T-loop conformation
Af-GlnK3 was isolated without the addition of nucleotides

during protein purification, resulting in a structure without any

bound ligand and T-loops that were disordered in the crystal

packing. Given that the intracellular concentrations of the

nucleotide ligands [29] as well as of free Mg2+ are estimated to

be rather high [30], it remains doubtful whether this ligand-free

structure is of physiological relevance. Without bound ligands, the

T-loops were not found to be fixed in a distinct conformation and

were consequently disordered in the crystal structure.

As under good nutritional conditions the ATP/ADP ratio in the

cell is presumed to be high, the ATP-bound state of Af-GlnK3

should represent the common physiological situation, signaling a

state of sufficient metabolic energy. Even in crystallization trials

with high concentrations of magnesium salts, no Mg2+ ions could

Figure 1. Af-GlnK3 and its physiological role in ammonium uptake. A) Top view of the trimer Af-GlnK3, highlighting the ligand binding sites
between the monomers and the protruding T-loops that are required for blocking ammonium transport. B) As discussed previously [1,33],
ammonium is actively taken up by Amt proteins and used to aminate glutamate in the ATP-dependent reaction of glutamine synthetase (GS). This
reaction is coupled to glutamate:oxoglutarate amidotransferase (GOGAT) that forms two molecules of glutamate from glutamine and 2-oxoglutarate.
doi:10.1371/journal.pone.0026327.g001
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be unambiguously identified in the binding pocket. Structural

variations in the conformation of the three phosphate moieties of

the ATP ligand were observed within the asymmetric unit, and the

T-loops were still disordered. This situation changed to a uniform

conformation with ordered T-loops upon binding of the third

known ligand, 2-oxoglutarate. While our previous work on Af-

GlnK2 yielded the unexpected result that this particular PII family

member does not show any affinity for this ligand, 2-OG did bind

strongly and specifically to Af-GlnK3 (see below), inducing

significant structural changes. 2-OG bound to Af-GlnK3 with

high affinity, but it did so exclusively in the presence of ATP and

Mg2+. The observed binding mode corresponded exactly to the

one described for the PII protein GlnZ from Azospirillum brasilense

[31], a regulator of nitrogenase activity rather than of an Amt

protein. A second PII-ATP:2-OG complex was most recently

presented for the protein from the cyanobacterium Synechococcus

elongatus that functionally regulates the activity of N-acetyl-L-

glutamate kinase as the committed step in arginine biosynthesis

[32]. In all cases the binding of 2-OG precludes the formation of

an inhibitory complex of the PII protein with its regulatory target

and the observed binding mode of the ligand is virtually identical.

In the presence of 2-OG, a Mg2+ ion is clearly identified in the

binding pocket by its near perfect octahedral coordination. Its

ligands are three oxo groups from all three phosphates of ATP

(thereby discerning ATP form ADP), and one a-carboxy oxygen

atom and the a-keto-oxygen of 2-OG. The c-amido oxygen atom

of residue Gln 39 completes the six-fold coordination. This

conserved residue is key to the regulatory switch of the protein. It

is located directly at the basis of the T-loop, and its actual

conformation in Af-GlnK3 is dependent on the bound ligand.

Under conditions of sufficient energy and nitrogen, both ATP and

2-oxoglutarate levels will be high and the GlnK protein will reside

in this blocked state.

A decrease of the cytoplasmic concentration of 2-OG is

indicative of either a low carbon status (depletion through

kataplerotic reactions) or of a high nitrogen status (conversion to

glutamate/glutamine) [28]. In both cases Amt-mediated import of

ammonium is no longer desired. Af-GlnK3 will return to the ATP-

bound state, but will not yet form an inhibitory complex with Af-

Amt3. Ammonium uptake will continue without negative effects

on the cell, unless the energy level of the cell, expressed in the ratio

ATP/ADP, starts to drop. At this stage the nucleotide diphosphate

will replace ATP as a ligand of the PII protein, and it is this switch

that gives the trimeric regulator the competence to bind tightly to

Af-Amt3 and block transport. Energetic considerations strongly

suggest the uptake of ammonium by Amt proteins to be an active

mechanism driven by the proton motive force [1,2]. At the same

time, the intracellular accumulation of ammonium is unwanted, as

the passive efflux of uncharged ammonia (that is in a protonation

equilibrium with ammonium with a pKa of 9.25) would create a

Table 1. Data collection and refinement statistics.

value for the indicated crystal type

Data set as isolated MgATP MgADP MgATP:OG

Space group C2 C2 C2 P6322

Unit cell constants (Å)

a 123.4 123.8 123.2 79.2

b (b) 92.8 (133.6u) 93.6 (133.6u) 91.9 (134.3u) 79.2

c 88.4 88.6 89.3 223.1

No. monomers per a.u. 6 6 6 3

Resolution range (Å)* 64.4–1.82
(1.92–1.82)

29.44–2.30
(2.40–2.30)

64.02–1.90
(2.0–1.9)

19.71–1.90
(2.0–1.9)

No. unique reflections 63,525 (9,300) 32,450 (3,674) 55,158 (8,111) 33,612 (4,666)

Completeness (%) 98.2 (98.7) 98.3 (93.4) 98.7 (99.6) 99.8 (100)

Multiplicity 3.0 (3.1) 3.5 (3.3) 3.2 (3.3) 16.0 (12.9)

Mean I/s (I) 11.0 (3.1) 10.2 (2.3) 10.9 (2.4) 18.0 (4.7)

Rsym 0.048 (0.288) 0.092 (0.363) 0.048 (0.415) 0.135 (0.517)

Rpim 0.034 (0.191) 0.057 (0.229) 0.032 (0.262) 0.034 (0.144)

No. atoms in model 4,680 4,735 5,329 3,066

No. solvent molecules 353 120 130 389

Final Rcryst 0.207 (0.236) 0.235 (0.271) 0.212 (0.343) 0.165 (0.192)

Final Rfree 0.236 (0.255) 0.267 (0.328) 0.241 (0.348) 0.197 (0.230)

r.m.s.d. bonds (Å) 0.010 0.009 0.009 0.010

r.m.s.d. bond angles (6) 1.13 1.19 1.26 1.14

Mean B factor (Å2)

protein 39.8 66.5 62.4 19.5

water 50.2 65.5 67.9 32.2

ligand – 54.9 63.7 11.8

PDB accession # 3T9Z 3TA0 3TA1 3TA2

*Values in brackets represent the highest resolution shells.
doi:10.1371/journal.pone.0026327.t001
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futile cycle to degrade the proton gradient [33,34]. Ammonium is

thus swiftly incorporated into glutamate or glutamine, at the

expense of one molecule of NADPH or ATP, respectively. In a low

energy situation, nitrogen is not required for growth, high-energy

metabolites are scarce and the accumulation of intracellular

ammonium places further stress on the proton motive force.

Consequently, if ATP levels are too low to displace ADP from the

GlnK protein, it efficiently shuts off ammonium uptake. In the

structure of Af-GlnK3 with ADP, key residue Gln 39 was found to

point inward to form a short (2.8 Å) hydrogen bond with the side

chain of Lys 58 above the nucleotide. At the same time Glu 38 and

Lys 101 form a salt bridge at the outward end of the nucleotide

binding pocket and Phe 86 in the B-loop closes the remaining gap,

effectively sealing up the nucleotide diphosphate within the Af-

GlnK3 trimer (Fig. 2B). No Mg2+ ion was identified in the

nucleotide binding pocket in this structure, and the overall

conformation was very similar to that of Escherichia coli GlnK when

bound to the ammonium transporter AmtB [27]. Consequently,

this state of Af-GlnK3 is the one that is competent to bind to its

transporter, Af-Amt3.

Upon recovery of the cellular energy status, ADP will once more

be displaced by ATP. The bulky c-phosphate moiety cannot be

accommodated without breaking both the salt bridge between Glu

38 and Lys 101 and the hydrogen bond between Glu 39 and Lys

58. In consequence, the base of the T-loop loses its fixation points

and the entire region becomes disordered. Whether this state of

the protein is competent to associate with the Amt protein remains

to be elucidated. While a requirement for the presence of ATP was

reported to be a prerequisite to observe complex formation, [35]

the available structures of GlnK/AmtB complexes invariably show

ADP bound to the PII protein [27]. Structurally, the release of Gln

39 from its hydrogen bond to Lys 58 creates an open binding

pocket above the nucleotide that in the ADP complex was

occupied by the side chain of Gln 39. Now, however, three oxo

groups from the three phosphates of ATP form a pocket for Mg2+

and 2-OG, whose binding closes the reaction cycle and leads back

to the stable, quaternary complex of Af-GlnK3 with ATP, Mg2+

and 2-OG. As in A. brasilense GlnZ [31], the c-carboxy group of 2-

OG was bound in the same position as the amido group of Gln 39

in the ADP complex.

Although the binding modes of 2-OG in the three structures

available to date are almost identical (and distinct from an earlier

observation of a single 2-OG molecule bound to a very different

position in Methanococcus jannaschii GlnK1) [36], the effect on the

conformation of the T-loop is fundamentally different. In the

structure of the PII protein from S. elongatus the loop is disordered

[32], while in A. brasilense GlnZ it shows a defined conformation,

but points away laterally from the disc-shaped trimer [31]. In Af-

GlnK3 the T-loops shift to attain a highly ordered b-hairpin

conformation stabilized by six hydrogen bonds involving peptide

amides, and are fully ordered in the crystal structure (Fig. 2A, 3).

Residue Arg 47 that is crucial for insertion into the substrate

channels of the Amt protein upon complex formation, remains

poised at the apex of the loop. However, 2-OG is fixed at the base

of the loop in a wedge-like manner and pushes the T-loops

outward with respect to their conformation in the ADP-bound

state. In both structures, the Ca atoms of residue Arg 47 form an

equilateral triangle, but while the sides of this triangle in a complex

with the Amt protein have a length of 31 Å, they are extended to

46 Å in the form with bound 2-OG (Fig. 4). They thus lose their

Figure 2. Structural differences between (A) the ATP:Mg2+:2-OG complex and (B) the ADP complex of Af-GlnK3. In (A) the key ligand 2-
oxolutarate requires the presence of ATP for binding and is located at the base of the T-loop (blue), with its ã-carboxy group forming a hydrogen
bond to the conserved K58. Residue Q39 is the only protein ligand to the Mg2+ ion (grey sphere), and it is this residue that in the ADP complex (B)
attains the exact position of 2-OG in (A), forming an analogous hydrogen bond to K58. The resulting tilt and shift of the base of the T-loop leads to a
stable â-hairpin structure in (A), compared to a less well-ordered loop in (B) that moves inward by 20utowards the trimer. In both structures, the
respective other T-loop conformation is indicated.
doi:10.1371/journal.pone.0026327.g002
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structural flexibility and are pried apart too far to be able to insert

into the substrate exit channels of Af-Amt3. For A. brasilense GlnZ,

whose direct interaction partner remains to be identified, there is

likely no similarly strict requirement and its T-loops, although

based on the identical ligand-binding mode, orient differently.

The comparison of the three known complexes of PII proteins

with MgATP and 2-OG underlines that the observed binding

mode very likely represents the productive and physiological

complex of the effectors with all those PII family members that do

show affinity to 2-OG. The relevant readout of the PII protein as a

signal-processing unit in the prokaryotic and plant cell is the

resulting T-loop conformation, and the available structures clearly

show that beside the conserved mode of ligand binding, this

conformation strongly depends on the respective T-loop itself, i.e.

its amino acid sequence. This finding explains why PII proteins, in

spite of their highly conserved three-dimensional structures and

ligand binding modes, are commonly found to be specific for a

single target protein and are not interchangeable.

Thermodynamics of nucleotide and 2-OG binding
Isothermal titration calorimetry was frequently used in recent

studies to investigate the properties of ligand binding to PII

proteins [24,32,37,38,39], and once more the members of this

highly conserved protein family revealed striking differences in

their ligand binding behavior. The GlnB protein from S. elongatus

showed binding of ATP, ADP and 2-OG, but did not show any

cooperativity [32]. In contrast, Af-GlnK2 bound ATP and ADP

with distinct negative cooperativity, but was unexpectedly unable

to bind 2-OG in the presence or absence of any nucleotide [24].

In the present work we carried out analogous experiments with

Af-GlnK3, and again the results differ from the previous

examples. As are all PII family members studied to date, the

Figure 3. Binding mode of the ligands ATP, Mg2+ and 2-oxoglutarate to Af-GlnK3. The stereo image shows a view into the ligand-binding
cleft located at the interface of two monomers, one of which (dark green) provides the T-loop (blue) and B-loop regions to the binding site, the other
monomer (light green) the C-loop. The Mg2+ ion (grey sphere) shows octahedral coordination by all three phosphate groups of ATP, by the á-carboxy
and á-keto functions of 2-oxoglutarate and by the ã-amido oxygen atom of residue Q39.
doi:10.1371/journal.pone.0026327.g003

Figure 4. Structural consequences of ligand binding to GlnK proteins. (A) With the ligand 2-OG (shown in CPK representation) placed in a
wedge-like manner at the base, the T-loops of Af-GlnK3 are pried apart in a locked conformation. In the trimer, residues R47 of the monomers are 46.2
Å apart, a distance too large to be able to insert into the substrate channels of the cognate ammonium transporter. (B) Structure of the E. coli
ortholog GlnK as seen in complex with the ammonium transporter AmtB (PDB-ID 2NS1) [27]. The T-loops are ordered and are positioned to fit the
substrate channels of the transporter trimer, at a distance of 31.3 Å between residues R47.
doi:10.1371/journal.pone.0026327.g004
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protein is insensitive towards glutamine and glutamate, and this is

rationalized by the structural data that pointed out that the a-

keto group of 2-OG is required for Mg2+ coordination, so that its

replacement with an a-amino group rules out the observed mode

of binding (Fig. 3).

Af-GlnK3 bound MgATP and MgADP, and the binding of 2-

OG required pre-incubation of the protein with MgATP, in line

with data published on A. brasilense GlnZ, E. coli GlnK and S.

elongatus PII [31,32,40,41]. Binding of MgATP to Af-GlnK3 was

roughly two-fold stronger than binding of MgADP, either at 30

or 70uC although the binding affinity for both nucleotide

molecules is clearly higher at 30uC (Table 2). The effect of

replacing the bulky F86 for isoleucine, a more common residue

among the PII protein family, or proline (as it occurs in Af-GlnK2)

resulted in a general increase in the nucleotide binding affinities.

The F86I variant bound MgATP and MgADP with about 2-fold

increased affinity when compared to the wild-type protein, but

still displayed a 2-3 fold preference for MgATP binding. Similarly

the F86P variant also showed higher binding constants for both

nucleotides than the wild-type protein. The affinity constants for

MgATP were identical for both variants, but Af-GlnK3 F86P

showed 5–6-fold higher affinity to MgADP and 1–2 fold stronger

binding of MgATP than the wild type (Table 2). The total Gibbs

free energy calculations confirm that replacing F86 for an

Table 2. Thermodynamic parameters derived from calorimetric titrations of ATP and ADP nucleotides to Af-GlnK3.

Ligand GlnK3

Temp.

(6C)
No. binding
sites per trimer

Association
constant
KA (M21)

Dissociation
constant
KD (mM)

Entalphy
DH
(cal?mol21)

Entropy
DS
(cal?mol21?K21)

Gibbs Free
Energy
DG (cal?mol21)

MgATP Wild-type 30 2.660.2 29606250 338 270786799 27.5 24804

70 3 763642 1311 249556147 21.2 24543

F86I 30 3.060.2 66906824 149 21115685 13.8 25298

F86P 30 2.8760.04 78406307 128 2120006242 221.8 25391

MgADP Wild-type 30 2.860.2 1760689 568 235386305 3.2 24508

70 3 413613 2421 24379691 20.8 24104

F86I 30 2.160.3 26806230 373 257306805 23.2 24760

F86P 30 2.360.3 980061300 102 225716188 9.8 25542

doi:10.1371/journal.pone.0026327.t002

Figure 5. Binding of ATP and ADP to Af-GlnK3. Contrary to observations made with the homologous Af-GlnK2 the titrations of (A) ATP and (B)
ADP in the presence of 25 mM Mg2+ do not show signs of cooperative behavior. The integrated heat data (bottom panel) was fit with a model
implying identical sites. The resulting enthalpies and dissociation constants underline that ATP is a much stronger ligand than ADP (Table 2).
doi:10.1371/journal.pone.0026327.g005
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isoleucine resulted in a variant that bound MgATP and MgADP

more favorably than the wild type by about 0.5 and 0.3 kcal.-

mol21, while replacement with a proline resulted in 0.6 and

1.0 kcal.mol21, respectively, changing the nucleotide preference

in favor of ADP. When compared to Af-GlnK2, the observed

affinities for the nucleotides were lower. More importantly, the

distinct cooperative binding behavior of the trimeric molecule

was absent. The heat developed during the titration experiments

of Af-GlnK3 with MgATP and MgADP yielded data that could

be fit with a single sigmoidal profile derived from a single-site

model with three independent sites that did not show coopera-

tivity (Fig. 5, Table 2). However, this was not the case when 2-

OG was titrated to Af-GlnK3 with bound MgATP. Here the

experimental curves showed a complex, cooperative binding

scheme that could be fitted using a sequential binding model with

three sites. An analysis of the population microstates for 2-OG

binding provided the first detailed evidence for the negative

cooperativity in this second ligand binding step that is generally

assumed for GlnK proteins (Fig. 6) and that allows the proteins to

sample a wide range of ligand concentrations.

We further studied the effect of Mg2+ on ATP or ADP binding

and found that nucleotide binding to Af-GlnK3 is far less

susceptible to the presence or absence of Mg2+ ions than Af-

GlnK2. Note that in spite of the clear effect of Mg2+ on Af-

GlnK2, the cation was not identified in the complex structures

[24]. As these proteins originate from a hyperthermophilic

archaeon with an optimal growth temperature of 83uC,

calorimetric titrations were also carried out at 70uC, the useful

maximum temperature of the calorimeter. These experiments

consistently yielded an inferior signal to noise ratio, but did show

Figure 6. 2-OG binding to Af-GlnK3 and temperature dependence. A) A titration at 30uC shows an initial endothermic event indicating an
entropy-driven process that is followed by a strongly exothermic, enthalpy-driven event. In the analysis of population microstates (bottom panel) this
translates to an initial accumulation of the singly occupied species (m) due to negative cooperativity for the second site (&), but strong positive
cooperativity for binding the third ligand (N). Only singly or fully occupied binding sites will be present in relevant amounts. B) At 70uC the initial
binding event becomes exothermic, leading to a very different overall shape of the experimental curve (top panel). However, analysis of the
population microstates shows the same qualitative behavior as in (A).
doi:10.1371/journal.pone.0026327.g006
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the same characteristics of binding (Fig. 6B, Table 3). Note that

the titration of 2-OG was an endothermic process at 30uC
(Fig. 6A) but became exothermic at 70uC (Fig. 6B), in line with

thermodynamic expectations. Nevertheless, as evidenced by the

population analysis, the mode and type of cooperativity remained

unchanged.

Functional differences within the PII family
The unique inability of Af-GlnK2 to bind 2-OG in spite of a

high degree of similarity to Af-GlnK3 both in amino acid sequence

[23] and tertiary structure raises the question for the functional

determinants of ligand binding and cooperativity in these proteins.

Strikingly, the amino acid residues lining the substrate binding

pockets are virtually identical in both cases, and the most obvious

discrepancy is found in residue 86, a phenylalanine in Af-GlnK1

and Af-GlnK3, but a proline in Af-GlnK2. In many other

orthologs, such as the ones from E. coli and S. elongatus, this

residue is an isoleucine, and in a recent study on revertants for the

interaction of S. elongatus PII with its effector NAGK, two mutants

at this position, I86N and I86T have emerged prominently [32].

Both variants were unable to bind 2-OG, but still showed binding

of ATP or ADP. In the aberrant Af-GlnK2, residue 86 is a proline,

and in order to assess whether this single point mutation was

sufficient to abolish binding of the ligand we have created and

analyzed the P86F and the F86P variant of Af-GlnK2 and Af-

GlnK3, respectively. In addition we have studied the P86I and

F86I variants that mimic the situation in wild type E. coli GlnK

and S. elongatus PII that do not show binding cooperativity for 2-

OG.

As evidenced by the ITC analysis (Fig. 7) both Af-GlnK3

variants retained the ability to bind 2-OG, and in both cases this

binding still showed cooperative behavior. The two Af-GlnK2

variants however, persisted in their incapacity to bind 2-OG under

all tested conditions. Although this disproved our initial hypothesis

that residue 86 might be the key to 2-OG binding and

cooperativity, the analysis of population microstates did reveal

significant differences with respect to wild type Af-GlnK3. In the

F86I variant, the degree of negative cooperativity in 2-OG binding

is reduced (Fig. 7A). The population with two bound ligands –

virtually undetectable in the wild type (Fig. 6A) – is significantly

populated. In the F86P protein this effect is even more

pronounced, to the point that the three sites are sequentially

populated and their mutual influence is reduced to a minimum.

Residue 86 in the B-loop is thus not essential for 2-OG binding,

but it does play a role in tuning the degree of cooperativity that we

observe in the different members of the PII family.

Conclusion
Members of the PII protein family function along conserved lines

on the basis of an invariant structural scaffold. They interact with

ATP, ADP and 2-OG in a conserved manner, with ligation of ADP

acting as an activating signal, while ATP and 2-OG prevent binding

to an interaction partner (Fig. 1B). Yet the nature and architecture

of this interaction partner are highly variable and diverse, and the

available structures point out that this diversity is reached through

differences in the conformation of the T-loops in the activated state.

This explains why in spite of their structural similarity PII proteins

are generally highly specific for their interaction partner. The fine-

Table 3. Thermodynamic parameters derived from calorimetric titrations of 2-oxoglutarate to Af-GlnK3 pre-incubated with
MgATP.

Wild-type F86I F86P

Temp. (6C) 30 70 30 30

Association constant (M21)

KA1 1.24E562.7E4 2.33E469.2E3 2.22E564.2E4 1.02E466.4E2

KA2 2.62E369.1E2 7.67E262.9E2 1.40E463.5E3 4.09E362.6E2

KA3 3.29E469.6E3 4.97E361.2E3 2.41E464.6E3 2.02E365.2E1

Dissociation constant (mM)

KD1 8.06 429.18 4.50 98.04

KD2 381.68 1303.78 71.43 244.50

KD3 30.40 201.21 41.49 495.05

Free Enthalpy change (cal?mol21)

DH1 423631 253676956 2852660 2005668

DH2 2275461170 246460620100 228386883 25506171

DH3 736761120 641162140 91976800 132206147

Entropy (cal?mol21?K21)

DS1 24.7 4.4 21.7 24.9

DS2 6.6 2122.0 9.6 14.7

DS3 45.0 35.6 50.4 58.7

Gibbs Free Energy (cal?mol21)

DG1 27064.8 26868.4 27430.3 25543.4

DG2 24739.6 24595.7 25748.2 25006.3

DG3 26274.75 25805.1 26081.8 24574.9

Values are given for the first, second and third binding event.
doi:10.1371/journal.pone.0026327.t003
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tuning of binding properties is reached through variations in the

sequence of the T-loop itself that, in addition, may or may not

contain sites for further regulation through covalent modification.

The second important functional property of PII proteins is in the

kinetic properties of ligand binding. Different members of the family

again show striking variations in cooperativity for the two sequential

events of ATP/ADP and 2-OG binding. With the A. fulgidus Af-

GlnK2 and Af-GlnK3 proteins we have now characterized two close

orthologs that differ strongly in these properties and shown that

these changes likely can not be traced to such simple variations as a

F to P mutation in residue 86. Further studies will be required, from

which we expect that the A. fulgidus GlnK proteins prove to be ideal,

stable models for understanding the regulation and optimization of

this important class of bacterial signaling molecules.

Materials and Methods

Cloning, Overexpression and Purification of Af-GlnK3
The glnk3 gene was obtained from genomic DNA of Archaeoglobus

fulgidus by PCR using forward (F) and reverse (R) primers carrying

the NdeI and XhoI restriction sites, respectively:

(F) 59- GGCATATGAAGATGGTTGTCGCTGTAATAAG - 39

(R) 59- GACGGGTGATGAGGAAGTTCTCGAGCC - 39

The PCR product was purified, restriction-digested and ligated

into the multiple cloning site of a pre-digested pET21a expression

vector (Novagen), yielding a construct with a carboxyterminal

pentahistidine affinity tag. The resulting plasmid construct was

transformed into E. coli BL21(DE3) Rosetta cells (Novagen) for

recombinant production. Optimal protein levels were obtained for

Figure 7. ITC analysis of 2-OG binding to the Af-GlnK3 variants F86I and F86P at 306C. A) With respect to the wild type, the F86I variant
shows reduced anticooperativity. The population microstate analysis (bottom panel) reveals that initially the singly-occupied species (m) is
populated, but that the negative cooperativity then is weaker so that the state with two bound ligands (&) does accumulate before it yields to the
fully occupied state (N) around a molar ratio of protein vs. ligand of 3. B) This effect is further enhanced in the F86P variant, where cooperativity is
hardly seen in the microstate analysis and the binding sites are occupied sequentially. However, unlike in Af-GlnK2 that natively has P86, 2-OG is still
bound.
doi:10.1371/journal.pone.0026327.g007
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cells grown at 30uC in Luria-Bertani medium under agitation at

180 rpm. Three hours after induction with 0.1 mM IPTG, cells

were harvested by a centrifugation step at 4800 rpm for 15 min at

4uC. Protein was isolated following the protocols established for

the orthologs Af-GlnK1 and Af-GlnK2 [23,24]. A significant

improvement in the final protein yield was obtained after

increasing the accessibility of the affinity tag by insertion of three

alanine residues (Ala113–115) in the linker between the end of the

protein and the pentahistidine tag [23]. This variant was obtained

by site-directed mutagenesis using the following forward (and

respective reverse) primer:

59- GGACGGGTGATGAGGAAGTTGCTGCAGCTCTC-

GAGCACCACCACCACCAC-3 9

SDS-PAGE analysis [42] of pure Af-GlnK3 showed a single

band corresponding to the monomer of 13 kDa, while gel filtration

chromatography allowed for the separation of the trimeric protein

peak from a minor fraction of aggregated protein. The buffer used

to purify Af-GlnK3 was 50 mM Tris-HCl at pH 8.0, supplement-

ed with 300 mM NaCl. Exceptionally, Tris-HCl was replaced by

50 mM HEPES/NaOH at pH 8.0 with the addition of 25 mM

MgCl2 when purifying protein for ITC measurements at 70uC.

Crystallization and Diffraction Experiments
The Af-GlnK3 trimer fraction from size exclusion chromatog-

raphy was crystallized by the vapor diffusion method in a sitting

drop of 1 mL, containing a 1:1 mixture of 10 mg/mL Af-GlnK3

and a reservoir solution composed of 0.1 M citrate/citric acid

buffer at pH 3.5 and 17% (w/v) of polyethylene glycol (PEG) 3350.

This mixture was equilibrated against 200 mL of reservoir solution

and single crystals appeared within one to two days.

Nucleotide-bound (MgATP and MgADP) Af-GlnK3 crystals

were obtained by soaking with a solution containing 100 mM of

the respective nucleotide and 4 mM MgCl2, prepared in a buffer

solution containing 50 mM Tris-HCl at pH 8.0 and 300 mM

NaCl. For cryo-cooling the crystals prior to X-ray exposure, the

PEG percentage in the reservoir solution was increased to 27%,

together with an extra addition of 5% glycerol.

To obtain crystals of 2-OG-bound to Af-GlnK3, a solution of

protein was pre-incubated with 2.6 mM ATP in 25 mM MgCl2
and 2.6 mM 2-OG were added for co-crystallization. Optimal

crystals were formed in a reservoir solution composed of 0.1 M

sodium acetate buffer at pH 4.6, 0.2 M NaCl and 30% of 2-

methyl-2,4-pentane diol. Crystals were flash-cooled in liquid

nitrogen directly from the drop.

Diffraction data sets for the as-isolated and MgADP-bound Af-

GlnK3 crystals were collected at the Swiss Light Source, SLS,

Villingen, Switzerland. GlnK-3 crystals with bound MgATP and

MgATP:2-OG were collected on an in-house rotating Cu-anode

X-ray generator (Rigaku Micromax 007HF) equipped with a

CCD detector (Rigaku Saturn 944+). Data were indexed and

integrated using mosflm [43] or XDS [44] in combination with

XPREP (Bruker) and scaled with SCALA [43]. Phase information

was obtained by molecular replacement with MOLREP [43],

using the structure of Af-GlnK1 (PDB-ID 3O8W) as a search

model. Model building was done in COOT [45] and REFMAC5

[43] was used for refinement. For data collection and refinement

statistics see Table 1.

Isothermal Titration Calorimetry
The calorimetric titration experiments were done according to

protocols published previously [24]. Binding of ATP and ADP to

the protein in solution was optimized using 0.1–0.13 mM Af-

GlnK3 (with or without 25 mM MgCl2) in the calorimeter cell and

9 mM or 7 mM of the respective nucleotide (with or without

25 mM MgCl2) in the titration syringe. All solutions were degassed

immediately prior to the experiment, and following a first injection

of 2 mL, 21 consecutive injections of 14 mL each were automat-

ically mixed within the stirred assay cell. Temperature variations

between the experimental and the reference cells were measured

after each injection and recorded as reaction heat vs. the molar

ratio of ligand to protein, corrected for the successive volume

displacement [24]. A 4 min delay between injections was set in the

instrument in order to allow re-equilibration of the temperature

back to baseline. Different buffers were used for assays at different

temperatures: For titration experiments carried out at 30uC, all

solutions were prepared in 50 mM Tris-HCl at pH 8.0, 300 mM

NaCl with/without 25 mM MgCl2 while at 70uC, 50 mM

HEPES/NaOH buffer at pH 8.0 with 300 mM NaCl was used.

Kinetic Simulations
Simulation of the experimental curves recorded for all the

ligands that bound to Af-GlnK3 was carried out with Origin 7.0

(Microcal) using a simple one-site model for events that did not

show cooperative behavior. More complex binding curves were

treated as described for the thermodynamic analysis of Af-GlnK2,

based on an analysis of population microstates [24].

Protein Data Bank Accession Codes
Structural data were deposited with the Protein Data Bank.

Accession codes 3T9Z (as isolated), 3TA0 (MgATP complex),

3TA1 (MgADP complex) and 3TA2 (MgATP:2-OG complex).
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