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Spin‑orbit coupling effects 
on transport properties 
of electronic Lieb lattice 
in the presence of magnetic field
Elham Sadeghi & Hamed Rezania*

In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered 
square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, 
we address the temperature dependence of electrical and thermal conductivities as well as Seebeck 
coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to 
study thermoelectric and transport properties of Lieb lattice in the context of Kane–Mele model 
Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the 
presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates 
that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease 
of gap parameter causes the reduction of thermal conductivity. There is a peak in temperature 
dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. 
Both electrical and thermal conductivities increase with increasing the temperature at low amounts 
of temperature due to the increasing of transition rate of charge carriers and excitation of them to the 
conduction bands. Also we have studied the temperature dependence of Seebeck coefficient of Lieb 
monolayer due to both spin orbit coupling and magnetic field factors in details.

A line-centered square lattice, called Lieb lattice1 has attracted much attention both theoretically and experi-
mentally as its novel topological properties. This lattice includes three atoms in a square unit cell. Moreover the 
energy spectrum of this structure is characterized by a three band structure with particle-hole symmetry and 
a flat band touching two linearity dispersing interesting bands at a Dirac point. It is well established that Dirac 
cones cause to unusual behavior, such as effectively massless fermions. Flat bands may potentially facilitate the 
realization of magnetic order2 causes to the fractional Hall effect3,4 and increase the superconducting transition 
temperature5. The Lieb lattice introduces an interesting lattice structure for magnetism topic so that the theoreti-
cal studies on the flat-band ferromagnetism in the two dimensional Lieb lattice have been performed6,7. In the 
CuO2 planes of cuprate superconductors, atoms are just arranged in the Lieb lattice8,9. Moreover the Lieb lattice 
can be realized in optical lattices3.

One of the most important models for describing topological insulator as quantum spin Hall effect with a 
low-energy Dirac structure is the 2 dimensional Lieb lattice. Such model have been shown to support topo-
logical states10,11. The original model on the Lieb lattice was realized by superposing two copies of the Haldane 
model12, one for spin up and other for spin down electrons moving in opposite directions along the edge13. The 
experimental results show the realization of a dispersionless localized flat-band state in Lieb photonic lattices14.

The intrinsic spin-orbit coupling is applied to the Lieb lattice so that a topologic bulk gap is opened and it 
gives rise to the quantum spin Hall effect characterized by two pairs of gapless helical edge states within the bulk 
gap15. The topological phase transition due to different parameters on the Lieb lattice have also been further 
addressed16–18. Moreover, it was also found that the edge geometries of two-dimensional Lieb lattice topological 
insulators have significant influences on the edge modes and the finite size effect of quantum spin Hall states19,20.

It was found that intrinsic spin-orbit coupling due to a perpendicular electric field or interaction with a sub-
strate plays an important role on the topological properties of nano structures. It was predicted that spin orbit 
coupling and exchange field together open a nontrivial bulk gap in two dimensional non structures leading to 
the quantum spin hall effect21,22. The topological phase transitions in the 2D crystals can be understood based 
on intrinsic spin orbit coupling which arises due to perpendicular electric field or interaction with a substrate.
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A simple model introduced by Kane and Mele23 has been applied to describe topological insulators. Such 
model consists of a hopping and an intrinsic spin-orbit term on the nano structures. The Kane–Mele model essen-
tially includes two copies with different sign for up and down spins of a model introduced earlier by Haldane12. 
Moreover it has been shown that in-plane magnetic field induces two dimensional Lieb lattice magneto resist-
ance which is negative for extrinsic gapless structure. Also magneto-resistance has a positive value for fields 
lower than the critical magnetic field and negative above the critical magnetic24. Microwave magneto transport 
in doped Lieb lattice is an open problem25.

The well prepared samples of nanostructures such as Lieb lattice have high electric and thermal conduc-
tivity, high transparency with respect to white light, impermeability to gases, and the ability to be chemically 
functionlized26. Electronic gaps in Lieb lattice can be controlled and thus this nanostructure is an extremely 
flexible. This can be accomplished with an electric or magnetic field applied perpendicular to the plane. It was 
shown theoretically27,28 and demonstrated experimentally29,30 that a Lieb nanostructure is the only material with 
semiconducting properties that can be controlled by electric field effect31. The size of the gap between conduction 
and valence bands depending on spin orbit coupling strength and various atoms on different sublattices can be 
as large as 0.1–0.3 eV, allowing for novel terahertz devices30.

Static transport in some of the nanostructures have been studied for both without and in the presence of 
a magnetic field. It is established that charged impurity scattering is primarily responsible for the transport 
behavior observed in monolayer graphene32,33. A comprehensive study of the electronic properties of the carbon 
based nanostructure in the presence of defects as a function of temperature, external frequency, gate voltage, 
and magnetic field has been presented by Peres and coworkers34. Thus the investigation of transport properties 
of low dimensional Lieb lattice in the presence of spin-orbit coupling and magnetic field can be an interesting 
theoretical topic in nanostructures studies.

Full band calculation has been implemented to derive in-plane transport properties of the structure. We 
have exploited Green’s function approach35 to calculate the transport coefficients, i.e. the time ordered heat and 
electrical current correlation functions. Using transport coefficients, we can find the electrical and thermal con-
ductivities. Moreover the sign of thermopower (Seebeck coefficient) determines the sign of majority of charge 
carriers. A negative (positive) thermopower shows that negative (positive) charge carriers, i.e. electrons (holes), 
in transport process are dominant. The effects of coupling of electron spin degree of freedom with magnetic field 
on the transport and thermoelectric properties of Lieb nanostructure have been studied via adding the Zeeman 
term to the original model Hamiltonian. Also we discuss and analyze to show how spin-orbit coupling strength 
and magnetic field affects the temperature dependence of the electrical and thermal conductivities and Seebeck 
coefficient of Lieb nano lattice.

The aim of this paper is to provide a Kane Mele model including intrinsic spin-orbit interaction for studying 
the transport properties of monolayer Lieb lattice in the presence of magnetic field perpendicular to the plane. 
Using the spin-orbit coupling strength and on-site energy parameter values, the band dispersion of electrons 
on Lieb lattice has been calculated. The difference between on-site energies of sublattice atoms is introduced by 
gap parameter. We have exploited Green’s function approach to calculate the transport coefficients, i.e. the time 
ordered correlation between heat and electrical currents. Specially we have calculated electrical conductivity, 
thermal conductivity and Seebeck coefficient as transport properties of Lieb lattice. The effects of coupling of 
electron spin degree of freedom with magnetic field on the conductivities and Seebeck coefficient have been 
studied via adding the Zeeman term to the original model Hamiltonian. Also we discuss and analyze to show how 
gap parameter affects the temperature dependence of the thermal and electrical conductivities. Also we study 
the behavior of static thermal conductivity and Seebeck coefficient of Lieb lattice versus temperature due to the 
magnetic field effects. Moreover the effects of spin-orbit coupling on transport and thermoelectric properties of 
Lieb lattice have been addressed in details.

Model Hamiltonian and density of states
The crystal structure of Lieb lattice has been shown in left panel of Fig. 1. Each unit cell on the Lieb lattice con-
tains three atoms (A, B and C) according to left panel of Fig. 1. The primitive unit cell vectors of Lieb lattice have 
been shown by a1 = ai and a2 = aj so that i and j denote the unit vectors along the x and y axis respectively. 
Also a implies the length of each unit cell vector. We will assume only single electron orbital gives the major 
contribution to the band structure of electrons.

In the presence of longitudinal magnetic field, the Kane–Mele model23 (H) for Germanene structure includes 
the tight binding model ( HTB ), the intrinsic spin-orbit coupling ( HISOC ) and the Zeeman term ( HZeeman ) due to 
the coupling of spin degrees of freedom of electrons with external longitudinal magnetic field B

The tight binding part of model Hamiltonian consists the nearest neighbor hopping parameter t. The tight bind-
ing part of model Hamiltonian under nearest neighbor approximation takes the following form

Also the intrinsic spin-orbit coupling and Zeeman terms of model Hamiltonian are given by23

(1)H =HTB +HISOC +HZeeman.

(2)
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Here cσi,α is an annihilation operator of electron with spin σ on sublattice α = A,B,C in unit cell with index i. The 
operators fulfill the fermionic standard anti commutation relations {cσi,α , c

σ ′†
j,β } = δijδσσ ′δα,β

35. As usual t denotes 
the nearest neighbor hopping integral amplitude. We consider the sublattice symmetry breaking mechanism in 
which the on-site energies for A, B and C sublattices are different.

Based on Eq. (2), these different on-site energies are named � and −� for B and C sublattices, respectively. 
It should be noted that the on site energy for sublattice A is considered to be zero. The parameter � introduces 
the spin-orbit coupling strength. Since � describes the spin-orbit coupling strength and t introduces the hop-
ping amplitude of electrons and t is related to kintetic energy of electrons, there is no relation between hopping 
amplitude t and � . In other words spin orbit coupling has no effect on t. Also B refers to strength of applied 
magnetic field. g and µB introduce the gyromagnetic and Bohr magneton constants, respectively. �σ is the vector 
of Pauli spin matrices. Based on Fig. 2, a1 and a2 are the primitive vectors of unit cell and the length of them is 
assumed to be unit.

We consider the intrinsic spin-orbit term23 of the KM Hamiltonian in Eq. (2). Since the operator form of 
HISOC in Eq. (3) makes the coupling between next nearest neighbor lattice sites and based on crystal structure of 
Lieb lattice in left panel of Fig. 1, the sublattices indices α,β in Eq. (3) should be α = B,β = C or α = C,β = B . 
In addition, djβ and diα in Eq. (3) are the two unit vectors along the nearest neighbor bonds connecting lattice 
site in unit cell i on sublattice α to its next-nearest neighbor site in unit cell j on sublattice β.

Because of three sublattice atoms, the band wave function ψn(k, r) can be expanded in terms of Bloch func-
tions �α(k, r) . The index α implies two inequivalent sublattice atoms A, B, C in the unit cell, r denotes the 
position vector of electron, k is the wave function belonging in the first Brillouin zone of square structure, i,e. 
− π

2a < kx < π
2a , − π

2a < ky <
π
2a . Such band wave function can be written as36

where Cn
α(k) is the expansion coefficients and n refers to energy band spectrum index. Also we expand the Bloch 

wave function in terms of Wannier wave function as36

(3)

HISOC =i�
∑

��iα,jβ��,σ

(

(djβ × diα) · σ̃σσ ′c†σj,β c
σ ′
i,α

)

,

HZeeman =−
∑

i,σ ,α

σ gµBB
(

cσ†i,α c
σ
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)

.

(4)ψn(k, r) =
∑

α=A,B,C

Cn
α(k)�α(k, r),

(5)�α(k, r) =
1

√
N

∑

Ri

eik.Riφα(r − Ri),

Figure 1.   Lieb lattice showing three-site basis in unit cell, with unit cell vectors a1, a2.
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so that Ri implies the position vector of ith unit cell in the crystal and φα is the Wannier wave function of electron 
in the vicinity of atom in i th unit cell on sublattice index α . The matrix forms of HTB and HISOC in Bloch wave 
function space are introduced by

A note is in order here. Based on commutation of total model Hamiltonian H with Pauli matrix σz , the matrix 
representation of Hamiltonian in Eqs. (1, 2 and 3) is diagonal in Hilbert space of eigenfunctions of Pauli matrix 
σz and moreover the matrix elements of HTB and HISOC are independent of spin index quantum number σ =↑,↓ . 
Using the Bloch wave functions, i.e. �α(k) , the matrix elements of H are given by

Up to nearest neighbor approximation, one can obtain the matrix form of tight binding part of total Hamiltonian, 
i.e. HTB , as follows

The based vectors connecting next nearest neighbor atomic sites in left panel of Fig. 1 are given by

so that the matrix form of HISOC is obtained by

Using the matrix forms in Eqs. (8 and 10), the total model Hamiltonian in Eq. (1) takes the following form

(6)

H
TB
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
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αβ (k) = ��α(k)|HISOC |�β(k)�.
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σ (k) =





−µ 2tcos(kxa/2) 2tcos(kya/2)
2tcos(kxa/2) �− µ 0

2tcos(kya/2) 0 −�− µ



.

(9)
R1 = −

a

2
i −

a

2
j , R2 =

a

2
i −

a

2
j,

R3 =
a

2
i +

a

2
j , R4 = −

a

2
i +

a

2
j,

(10)H
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σ (k) =
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0 0 0
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(11)Hσ (k) =
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
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Figure 2.   Left Panel: Thermal conductivity of Lieb lattice as a function of normalized temperature kBT/t 
for different values of normalized gap parameter �/t in the absence of magnetic field. Normalized chemical 
potential and normalized spin-orbit coupling have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively. Right 
Panel: Thermal conductivity of Lieb lattice as a function of normalized temperature kBT/t for different values 
of normalized spin-orbit coupling �/t in the absence of magnetic field. Normalized chemical potential and 
normalized gap parameter have been fixed at µ/t = 1.0 and �/t = 0.3 , respectively.
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The matrix elements of Hσ (k) are expressed based on hopping amplitude and spin-orbit coupling between two 
neighbor atoms on lattice sites and can be expanded in terms of hopping amplitude t, spin orbit coupling � and 
gap parameter � . The off-diagonal elements of matrixes H in Eq. (11) arise from hopping amplitude of electrons 
between nearest neighbor atoms on the different sublattices and spin-orbit coupling. Using the Hamiltonian 
form in Eq. (11), the band structure of electrons, i.e. Eση (k) has been found by solving equation 
det

(

H(k)− E(k)
)

= 0 . We have applied the following definitions

In Appendix A, we have presented the explicit relations of electronic band structure of total Hamiltonian in Eq. 
(11). Using band energy spectrum, the Hamiltonian of Lieb lattice in Eq. (1) can be rewritten by36

where cσ
η,k defines the creation operator of electron with spin σ in band index η at wave vector k . The electronic 

Green’s function can be defined using the Hamiltonian in Eq. (13) as following expression35

where τ is imaginary time. Using the model Hamiltonian in Eq. (13), the Fourier transformations of Green’s 
function is given by35

Here ωn = (2n+ 1)πkBT denotes the fermionic Matsubara frequency35 in which T is equilibrium temperature. 
The electronic density of states of Lieb structure in the presence of intrinsic spin-orbit and external magnetic 
field can be obtained by electronic band structure as

Summation over wave vectors have been performed into first Brillouin zone of Lieb lattice. The density of states 
includes prominent asymmetric peaks due to the band edge of parabolic subbands. The peaks positions arises 
from the band edge state energies and the density of states heights are proportional to inverse square root of the 
sub band curvature and band degeneracy. For determining the chemical potential, µ , we use the relation between 
concentration of electrons ( ne ) and chemical potential. This relation is given by

Based on the values of electronic concentration ne , the chemical potential, µ , can be obtained by means Eq. (17).

Theoretical calculation of electrical conductivity, thermal conductivity 
and thermoelectric properties
Using linear response theory, the thermal conductivity under the assumption of a low temperature gradient (as 
a perturbing field) is obtained. The charge and thermal current are related to the gradients ∇V  , which is equal 
to external electric current E and ∇T of the electric potential and the temperature35 ,respectively, by

J1(2) = Je(JQ) implies electrical (heat) current. Also Lab(a, b = 1, 2) are transport coefficients which are deter-
mined by calculating correlation function between the electrical and thermal current operators. The thermal 
conductivity is obtained as the response of the heat current ( JQ ) to a temperature gradient. Imposing the conti-
nuity equation for the energy density, ∂

∂t H +∇ · JQ = 0 , the explicit form of the heat current can be calculated. 
Using the continuity equations for charge and heat, the thermal and electrical current operators, i.e. JQ and Je 
for itinerant electrons in the context of Kane–Mele model are reduced to35

so that vη(k) = ∇kE
σ
η (k) denotes the group velocity of bosonic particles in electronic band structure index η . 

The linear response theory is implemented to obtain the thermal conductivity under the assumption of a low 
temperature gradient (as a perturbing field). The Kubo formula gives the transport coefficients Lxx22(ω) in terms 
of a correlation function of energy current operators35

(12)χx ≡ 2tcos(kxa/2) , χy ≡ 2tcos(kya/2) , χ ≡ 4�sin(kxa/2)sin(kya/2).
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where it is assumed that energy current flows along zigzag direction( i.e. x). The energy current density is related 
to the temperature gradient via JQ = −K∇T where K is the thermal conductivity35,36. We calculate the correla-
tion function in Eq. (20) within an approximation by implementing Wick’s theorem. The correlation functions 
between current operators can be written as

Applying the Wick’s theorem leads to the following expression for energy current correlation function as

By substituting Eq. (22) into Eq. (20) and using Fourier transformation of bosonic Green’s function, i.e. 
Gσ
η (k, τ) = kBT

∑

m e−iωmτGσ
η (k, iωm) , transport coefficient Lxx22(ω) can be expressed in terms of fermionic 

Green’s function as

According to the Lehmann representation35, the imaginary part of retarded Green’s function and Matsubara 
form of Green’s function are related to each other as

Using Lehmann representation, the expression for transport coefficient Lxx22(ω) in Eq. (23) is given by

After summation over Matsubara’s bosonic frequency ωm the result form for Lxx22(ω) is given by

Using Eqs. (20 and  26), we can derive the following relation for static transport coefficient Lxx22 of localized 
electrons on Lieb lattice as

where nF(x) = 1

ex/kBT+1
 is the Fermi-Dirac distribution function and T denotes the equilibrium temperature. In 

Appendix B, we have presented the explicit relations for the other transport coefficients Lxx11, L
xx
12.

Substituting electronic Green’s function into Eqs. (27 and 33) and performing the numerical integration over 
wave vector through first Brillouin zone, the results of transport coefficients have been obtained. The electrical 
conductivity σ is usually defined when is no temperature gradient ∇T = 0 . Thus we have

In the presence of a temperature gradient ( ∇T ) and in open circuit situation, i.e.Je = 0 , heat current is related 
to temperature gradient via JQ = K∇T where κ is the thermal conductivity and is obtained using transport 
coefficients as35
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Applying a temperature gradient to Lieb lattice and under no particle current situation Je = 0 , a voltage 
difference �V  can be measured which is proportional to �T . The ratio of the measured voltage to the tempera-
ture gradient applied across the sample is known as the Seebeck coefficient (or the thermopower) and is given 
by S = ∇V/∇T , where ∇V  is the potential difference between two points of the sample36. In linear response 
approximation the Seebeck coefficient is related to transport coefficients as

The study of behaviors of thermal conductivity κ , Seebeck coefficient S and electrical conductivity σ in two 
dimensional Lieb lattice in the presence of magnetic field and spin-orbit coupling is the main aim in this work.

Numerical results and discussion
Here we present our numerical results for the transport and thermoelectric properties of single layer Lieb lattice 
in the presence of magnetic field and spin-orbit coupling effects. We focus on the electrical conductivity, Seebeck 
coefficient and thermal conductivity of doped Lieb lattice in the presence of both magnetic field and spin-orbit 
coupling. We have studied the transport properties of the structure along x direction according to Fig. 1. Using 
band structure of electron in Eq. (31), we can obtain the electronic Green’s function in Eq. (15). Afterwards x 
components of transport coefficients L11, L12, L22 are found by substitution of Green’s function into Eqs. (27 
and 33), respectively. The numerical results of electrical conductivity σ , thermal conductivity κ and Seebeck 
coefficient S can be found using Eqs. (33, 29 and 30). The optimized atomic structure of the Lieb lattice with 
primitive unit cell vector length a = 1 is shown in Fig. 1. The primitive unit cell include three different atoms 
with various on-site energies.

We begin the investigations of thermal properties of Lieb lattice layer with a discussion of the thermal con-
ductivity in the presence of magnetic field and spin-orbit coupling effects. In left panel of Fig. 2 results for the 
thermal conductivity ( κ(T) ) of doped Lieb lattice are presented versus normalized temperature ( kBT/t , where 
kB is the Boltzmann constant) for different gap parameter values in the absence of magnetic field. The normal-
ized chemical potential and spin-orbit coupling strength are assumed to be µ/t = 1.0 and �/t = 0.2 respectively. 
Here we have pointed some arguments regarding the normalized values for µ/t = 1.0 and �/t = 0.2 . We have 
studied the effects of spin-orbit coupling values on the transport properties of Lieb lattice. Also chemical poten-
tial µ which is related to electronic concentration. In fact there is no special physical reason for these values 
for chemical potential and spin-orbit coupling effects. µ and � are parameters and we can change their values 
for investigation of transport properties of the structure. Since we have assumed t = 1 , we have introduced the 
normalized values for µ and � for instance 1.0 and 0.2, respectively. However we have considered the other 
values for these parameters in the next results. Several features are remarkable. Each curve shows an increasing 
behavior at low temperatures which manifests the presence of a finite-energy gap in the energy spectrum. There 
is also a finite temperature maximum in the thermal conductivity so that its temperature position is around 
normalized value kBT/t = 0.4 for gap parameter values �/t = 0.3, 0.4, 0.5, 0.6, 0.7 . In addition, at fixed value of 
temperature on the whole range of temperature, thermal conductivity of Lieb lattice increases with normalized 
gap parameter. Below the characteristic temperature of the maximum, the enhancement of temperature leads 
to increase the rate of transition of electrons to the excited state. Therefore we see an increasing behavior for the 
thermal conductivity at low temperatures, see left panel of Fig. 2. With increasing temperature above peak posi-
tion, the electrons suffer from scattering effects on each other which reduces the thermal conductivity. Hence 
the temperature dependence of each curve is due to competition between the two phenomena, the enhancement 
of the transition rate of electrons from ground state to excited one within the physical limits and the scattering 
of the electrons at higher temperatures.

The temperature behavior of thermal conductivity of doped Lieb lattice for different spin-orbit coupling 
strength has been plotted in right panel of Fig. 2. We have assumed chemical potential as µ/t = 1.0 in the absence 
of magnetic field at fixed gap parameter �/t = 0.3 . Thermal conductivity curve for each spin-orbit coupling value 
includes a peak so that the peak appears at normalized value kBT/t = 0.7 which is independent of � . Thermal 
conductivity for each value of spin-orbit coupling increases with temperature up to temperature position of peak 
due to enhancement of transition rate of electrons between quantum levels. With increasing temperature above 
peak position, thermal conductivity decreases with temperature which understood based on enhancement of 
scattering rate between electrons and consequently the conductivity reduces with temperature above temperature 
position of peak. In addition, at fixed temperature, we find thermal conductivity reduces with enhancement of 
� as shown in right panel of Fig. 2. The numerical results of density of states show the band gap width in density 
of states rises with � which leads to reduce thermal conductivity. The energy dependence of density of states and 
the increase of band gap in density of states due to spin-orbit coupling strength has been shown in Fig. 3. Based 
on Fig. 3, the band gap around normalized chemical potential E/t = µ/t = 1 enhances with �/t.

In left panel of Fig. 5 thermal conductivity results of doped Lieb lattice are presented versus normalized tem-
perature kBT/t for different gap parameter values at fixed magnetic field gµBB/t = 0.45 . Such magnetic field 
value introduces the critical value where the transition from metallic phase to semiconductor one takes place. 
The normalized chemical potential and spin-orbit coupling strength are assumed to be µ/t = 1.0 and �/t = 0.2 
respectively. Such critical value gµBB/t = 0.45 can be found based on the behavior of density of states of Lieb 
lattice for different magneic fields in Fig. 4. Based on this figure we have found that a band gap appears in 
density of states at critical magnetic field gµBB/t = 0.45.

(29)κ =
1

T2
(L22 −

L212
L11

).

(30)S = −
1

T

L12

L11
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Figure 3.   Density of states (DOS(E)) of electrons on Lieb lattice as a function of energy for different values of 
normalized spin-orbit coupling strength �/t in the absence of magnetic field at fixed gap parameter �/t = 0.3.

Figure 4.   Density of states (DOS(E)) of electrons on Lieb lattice as a function of energy for different values of 
normalized magnetic field strength ,namely gµBB/t = 0.0, 0.20, 0.45, 0.60 for �/t = 0.2 at fixed gap parameter 
�/t = 0.3.
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As it is clearly observed in left panel of Fig. 5, each curve shows an increasing behavior at low temperatures 
which manifests the presence of a finite-energy gap in the energy spectrum. There is also a finite temperature 
maximum in the thermal conductivity so that its temperature position is around normalized value kBT/t = 0.4 
for gap parameter values �/t = 0.3, 0.4, 0.5, 0.6, 0.7 . In addition, at fixed value of temperature on the whole range 
of temperature, thermal conductivity of Lieb lattice enhances with normalized gap parameter. The enhance-
ment of temperature below peak position leads to increase the rate of transition of electrons to the excited state 
and consequently enhancement of the thermal conductivity in temperature region below peak position. With 
more increasing the temperature, the electrons suffer from scattering effects on each other which reduces the 
thermal conductivity.

The temperature behavior of thermal conductivity of doped Lieb lattice for different spin-orbit coupling 
strength for µ/t = 1.0 at fixed gap parameter �/t = 0.3 has been plotted in right panel of Fig. 5. The applied 
magnetic field strength has been considered to be critical value gµBB/t = 0.45 . Such critical magnetic field 
value describes the phase transition form metal to semiconductor in Lieb lattice. Thermal conductivity curve 
for each spin-orbit coupling value has a peak so that the peak appears at normalized value kBT/t = 0.7 which is 
independent of � . In addition, at fixed temperature, we find the decreasing behavior for thermal conductivity in 
terms of � as shown in right panel of Fig. 5. Such fact is understood from this point that density of states of Lieb 
lattice show the band gap width in density of states increases with � which leads to reduce thermal conductivity. 
The appearance of peak in temperature dependence of each curve is due to competition between two phenomena, 
the enhancement of the transition rate of electrons from ground state to excited one within the physical limits 
and the scattering of the electrons at higher temperatures.

We have also studied the effect of the magnetic field values, i.e. gµBB/t , on the temperature dependence of 
the thermal conductivity of the doped Lieb lattice. In Fig. 6 we plot κ versus normalized temperature for several 
values of the longitudinal magnetic field, namely gµBB/t = 0.3, 0.5, 0.7, 0.9 . The spin-orbit coupling and gap 
parameter have been fixed at �/t = 0.2 at �/t = 0.3 , respectively. The normalized chemical potential value has 
been considered at µ/t = 1.0 . Chemical potential values above zero mean the average of number of electrons 
per atomic site is higher than unit. In other words the electronic concentration is above one. This plot shows that 
thermal conductivities enhances with reduction of the magnetic field at fixed temperature value in temperature 
region kBT/t < 1.0 . However thermal conductivity rises with magnetic field at fixed temperature in the regions 
kBT/t > 1.0 . The height of peak in thermal conductivity reduces with magnetic field although the temperature 
position of peak moves to higher amounts as shown in Fig. 6.

We have studied the static electrical conductivity of doped Lieb lattice layer due to magnetic field and spin-
orbit coupling strength. The resulting of the electrical conductivity σ of doped Lieb lattice layer as a func-
tion of normalized temperature kBT/t for different values of spin-orbit coupling constant at gµBB/t = 0.45 
has been plotted in left panel of Fig. 7. The applied magnetic field strength has been considered to be critical 
value gµBB/t = 0.45 . The normalized gap parameter and chemical potential are assumed to be �/t = 0.3 and 
µ/t = 1.0 respectively. This figure indicates the increasing behavior for temperature dependence of electrical 
conductivity is clearly observed in temperature region kBT/t < 1.0 for all amounts of �/t . With increase of 
temperature above normalized value 1.0, the electrical conductivity gets a constant value. In addition, at 
fixed value of normalized temperature, lower spin-orbit coupling causes less band gap in density of states and 
consequently higher values in electrical conductivity as shown in left panel of Fig. 7.

The resulting of the electrical conductivity σ of doped Lieb lattice layer as a function of normalized tempera-
ture kBT/t for different normalized values of gap parameter at gµBB/t = 0.45 has been plotted in right panel of 

Figure 5.   Left Panel: Thermal conductivity of Lieb lattice as a function of normalized temperature kBT/t for 
different values of normalized gap parameter �/t in the presence of magnetic field gµBB/t = 0.45 . Normalized 
chemical potential and normalized spin-orbit coupling have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively. 
Right Panel: Thermal conductivity of Lieb lattice as a function of normalized temperature kBT/t for different 
values of normalized spin-orbit coupling �/t in the presence of magnetic field gµBB/t = 0.45 . Normalized 
chemical potential and normalized gap parameter have been fixed at µ/t = 1.0 and �/t = 0.3 , respectively.
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Fig. 7. The chemical potential normalized value has been considered to be µ/t = 1.0 . This figure indicates the 
increasing behavior for temperature dependence of electrical conductivity is clearly observed in temperature 
region kBT/t < 1.0 for all amounts of gap parameters. The enhancement of temperature above normalized value 
1.0, the electrical conductivity gets a constant value. The increase of gap parameter in the presence of spin-orbit 
coupling leads to reduce band gap in density of states. Thus higher gap parameter causes less band gap in density 
of states and consequently higher values in electrical conductivity at fixed value of normalized temperature.

In Fig. 8 we present the electrical conductivity of doped Lieb lattice versus normalized temperature, kBT/t 
for different values of magnetic field, namely gµBB/t = 0.4, 0.6, 0.8, 1.0.The chemical potential and spin-orbit 
coupling strength have been assumed to be µ/t = 1.0 and �/t = 0.2 , respectively. Also the normalized gap 
parameter is considered to be �/t = 0.3 . According to Fig. 8, the electrical conductivity shows an increasing 
behavior with temperature in the region kBT/t < 2.0 . With increasing temperature above normalized value 0.9, 
the conductivity is less temperature dependent for each value of magnetic field. Moreover at fixed temperature 
below normalized value 0.6, electrical conductivity rises with magnetic field. However the conductivity reduces 
with magnetic field at fixed temperature above normalized value 0.6 as shown in Fig. 8.

Considering magneto thermal effects using Eq. (18), the Seebeck coefficient S under the condition of zero 
electrical current Je = 0 and for ballistic transport is given by Eq. (30). In left panel of Fig. 9 we depict the Seebeck 
coefficient S of doped monolayer Lieb lattice as a function of normalized temperature kBT/t for several values 

Figure 6.   Thermal conductivity of Lieb lattice as a function of normalized temperature kBT/t for different 
values of normalized magnetic field gµBB/t at fixed gap parameter �/t = 0.3 . Normalized chemical potential 
and normalized spin-orbit coupling strength have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively.

Figure 7.   Left Panel: Electrical conductivity of Lieb lattice as a function of normalized temperature kBT/t 
for different values of normalized spin-orbit coupling �/t in the presence of magnetic field gµBB/t = 0.45 . 
Normalized chemical potential and normalized gap parameter have been fixed at µ/t = 1.0 and �/t = 0.3 , 
respectively. Right Panel:Electrical conductivity of Lieb lattice as a function of normalized temperature kBT/t for 
different values of normalized gap parameter �/t in the presence of magnetic field gµBB/t = 0.45 . Normalized 
chemical potential and normalized spin-orbit coupling have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively.
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of normalized spin-orbit coupling �/t at zero magnetic field with µ/t = 1.0 . The normalized gap parameter is 
assumed to be 0.3. We note that the variation of spin orbit coupling strength has no considerable effect on tem-
perature dependence of Seebeck coefficient of Lieb lattice layer. A monotonic decreasing behavior for Seebeck 
coefficient is clearly observed for each value of spin-orbit coupling strength according to left panel of Fig. 9. In 
Ref.(37), it was suggested that the sign of S is a criterion to clarify the types of carriers; a positive (negative) S 
implies that the charge and heat are dominantly carried by electrons (holes). Also Seebeck coefficient curves in 
left panel of Fig. 9 gets the positive sign for Seebeck coefficient on the whole range of temperature for all values 
of spin-orbit coupling and consequently the majority of charge carriers are holes. The inset in left panel of Fig. 9 
focuses on the behavior of S for kBT/t < 1.0 . Left panel of Fig. 9 indicates the Seebeck coefficient tends to zero 
for all �/t at temperatures above normalized value 2.0.

The behavior of Seebeck coefficient S of doped Lieb lattice layer as a function of normalized temperature 
kBT/t for different normalized gap parameter �/t at fixed spin-orbit coupling �/t = 0.2 in the absence of 
applied magnetic field has been plotted in right panel of Fig. 9. The chemical potential is considered to be 
µ/t = 1.0 . A monotonic decreasing for temperature dependence of Seebeck coefficient is observed for each 
value of gap parameter. However Seebeck coefficient rises with gap parameter at fixed temperature in the region 
0.2 < kBT/t < 1.0 as shown in the inset in right panel of Fig. 9. Moreover the sign of Seebeck coefficient for all 
values of temperature and gap parameter amounts is positive.

Figure 8.   Electrical conductivity of Lieb lattice as a function of normalized temperature kBT/t for different 
values of normalized magnetic field gµBB/t at fixed gap parameter �/t = 0.3 . Normalized chemical potential 
and normalized spin-orbit coupling strength have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively.

Figure 9.   Left panel: Seebeck coefficient of Lieb lattice as a function of normalized temperature kBT/t for 
different values of normalized spin-orbit coupling �/t in the absence of magnetic field. Normalized chemical 
potential and normalized gap parameter have been fixed at µ/t = 1.0 and �/t = 0.3 , respectively. Right 
Panel: Seebeck coefficient of Lieb lattice as a function of normalized temperature kBT/t for different values of 
normalized gap parameter �/t in the absence of magnetic field. Normalized chemical potential and normalized 
spin-orbit coupling have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively.
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The dependence of Seebeck coefficient of doped Lieb lattice layer on the temperature for different magnetic 
fields, namely gµBB/t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 at normalized spin-orbit coupling �/t = 0.2 has been plotted in 
Fig. 10. The chemical potential and gap parameter have been fixed at normalized values µ/t = 1.0 and �/t = 0.3 
respectively. The sign of Seebeck coefficient is positive for all values of magnetic fields on the whole range of 
temperature. It is clearly observed that there is a monotonic decreasing temperature dependence for all magnetic 
fields. In addition, at fixed normalized temperature in the region 0.1 < kBT/t < 0.4 , Seebeck coefficient grows 
with magnetic field. However the curves of Seebeck coefficient for different values of magnetic fields fall on each 
other at temperatures above normalized value 0.6 according to Fig. 10. Thermoelectric properties of semimetallic 
low dimensional structures and Lieb lattice have been reported in the other studies38,39. Also the effects of strains 
on electronic structure and thermoelectric properties of half-Heusler semiconductor40.

Conclusions
In summary, we have studied the thermal transport properties of Lieb lattice in the presence of magnetic field 
and intrinsic spin-orbit coupling strength. Also the difference between on-site energies of atoms on three differ-
ent sublattices, as a gap parameter, has been considered. The Lieb lattice is an interesting lattice model related 
to magnetism. Also the Lieb lattice exhibits the interesting transport properties, superconducting transitions, 
magnetic phase transition and quantum spin Hall effect. Such properties make the motivation for studying the 
electronic properties of this structure. This lattice has been applied to describe the CuO2 planes of cuprate super-
conductors. When the intrinsic spin-orbit coupling is introduced to the Lieb lattice, a topological insulator can 
be developed so that the structure shows an insulating behavior in the bulk and metallic property in the surfaces 
and edges. Such coupling gives rise to the quantum spin Hall effect. Our main purpose for this present study is 
the investigation of transport properties and thermoelectric features for Lieb lattice in the presence of spin-orbit 
coupling. In the absence of magnetic field, Lieb lattice shows a metallic behavior due to the competition between 
gap parameter and spin-orbit coupling strength parameters. With enhancement of magnetic field above critical 
one, a phase transition from metallic phase to insulating behavior at critical value gµBB/t = 0.45 for all values 
of spin-orbit coupling strength takes place. The temperature dependence of thermal conductivity for different 
gap parameters in the absence of magnetic field shows that there is a peak in thermal conductivity curves so 
that the height of peak increases with gap parameter. Thermal conductivity results of Lieb lattice in the presence 
of critical magnetic field gµBB/t = 0.45 for different gap parameters indicate the similar behaviors with zero 
magnetic field case. Also we have studied the effects of spin-orbit coupling strength on temperature dependence 
of thermal conductivity in the presence of critical magnetic field gµBB/t = 0.45 . Our results show the height 
of peak in thermal conductivity decreases with spin-orbit coupling strength. The effects of spin-orbit coupling 
on density of states leads to increase band gap so that thermal conductivity values reduces. The appearance of 
peak in temperature dependence of thermal conductivity as a competition between two physical phenomena is 
clearly observed in our results. Also the numerical results for thermopower which its signature determines the 
type of majority change carriers have been obtained. Moreover the decreasing behavior of Seebeck coefficient 
in terms of temperature is the other novel results in our study. Our numerical results for Seebeck coefficient of 
Lieb lattice show that the variation of spin-orbit coupling strength and gap parameter have no effect on the sign 
of Seebeck coefficient. In other words the Seebeck coefficient gets positive sign under the variations of spin-orbit 
coupling, gap parameter and temperature. This fact implies the holes play the role of the majority carriers for 
transport in Lieb lattice.

Figure 10.   Seebeck coefficient of Lieb lattice as a function of normalized temperature kBT/t for different values 
of normalized magnetic field gµBB/t at fixed gap parameter �/t = 0.3 . Normalized chemical potential and 
normalized spin-orbit coupling strength have been fixed at µ/t = 1.0 and �/t = 0.2 , respectively.
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Appendix A: The eigenvalues of total Hamiltonian in Eq. (11)
In this Appendix, we have presented the explicit relations for eigenvalues of total Hamiltonian in Eq. (11), 
After diagonalizing of the Hamiltonians in Eq. (11), the band structures of Lieb lattice are given by following 
eigenvalues

Appendix B: The explicit relations for transport coefficients L12, L11
Also the other transport coefficients are defined by

After some calculations similar to static transport coefficient Lxx22 , we can express transport coefficients Lxx11 and 
Lxx12 in terms of electronic Green’s function as following relations
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