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ABSTRACT: In this study, we established a simple and rapid in
vitro method for screening multidrug resistance (MDR) reversal
agents in traditional Chinese medicines (TCMs), which could better
correspond to the MDR reversing effect in vivo. Here, D-luciferin, a
substrate for the enzyme firefly luciferase and also a substrate for
ATP-binding cassette transporters (ABC transporters), was used as
the probe to detect its efflux kinetics caused by ABC transporters.
First, we established a stable doxorubicin (DOX)-resistant cell line
(MCF-7/DOXFluc) that overexpressed luciferase. Then, some kinds
of TCMs were chosen for the MDR reversal agents to measure its
effect on inhibiting the D-luciferin outflow from MCF-7/DOXFluc,
and the ideal reversal agent with the least D-luciferin efflux from
MCF-7/DOXFluc was selected to further investigate its effect
combined with DOX on MCF-7/DOXFluc tumor-bearing mice. The results indicated that quercetin (Qu) could remarkably
increase the retention of D-luciferin in MCF-7/DOXFluc in vitro and in vivo. Also, the combination of Qu and DOX could
exceedingly inhibit the tumor growth, which proved the feasibility of this in vitro screening method. The study proposed a feasible
method for mass screening of MDR agents from TCMs in vitro.

■ INTRODUCTION
Breast cancer is the main cause of mortality for female cancer
patients worldwide, and drug resistance is still the key factor.1,2

Chemotherapy is still the main therapeutic modality for cancer
treatment.3 However, multidrug resistance (MDR) is the major
cause of chemotherapy failure in breast cancer.4 Therefore, it is
important to find an effective and safe MDR reversal agent.

At present, MDR reversal agents mainly include chemical
agents represented by verapamil (Vera).5 Besides chemical
agents, many traditional Chinese medicines (TCMs) can be
used as MDR reversal agents, and some of them even have
certain anti-tumor effects.6,7 Moreover, TCMs have multi-
component and multi-target characteristics, which can effec-
tively reverse the MDR resulting from multiple mechanisms.8,9

However, with the complexity and diversity of TCM
components, it is important to establish a method for in vitro
rapid batch screening of MDR reversal agents that should be safe
and effective in vivo.

As numerous studies demonstrated, the function of the family
of ATP-binding cassette transporters (ABC transporters) is one
of the causes of MDR.10,11 The emergence of MDR mediated by
ABC transporters, containing multidrug resistance protein 1
(MRP1), breast cancer resistance protein (BCRP), and P-
glycoprotein (P-gp), often hinders cancer treatment.12,13 It is

now believed that the effect of MDR reversal agents is mostly
related to the efflux function of ABC transporters.14 The ABC
transporters actively transport chemotherapeutic drugs out of
cells, thereby reducing their cytotoxic effects.15,16 Thus,
inhibiting the chemotherapeutic drugs efflux from cancer cells
will be an important strategy to overcome MDR.

There have been many in vitro probes to screen the MDR
reversal agents. For example, rhodamine worked as a probe to
detect the efflux function of ABC transporters.17,18 However,
these methods cannot enable the real-time imaging of efflux
kinetics of MDR protein substrates directly in vivo. In addition,
the tumor microenvironment is different in vitro and in vivo
remarkably,19 and thus, it is difficult to quickly determine the
consistency of efflux kinetics in vitro and in vivo after treating
with MDR reversal agents. Here, we established a method to
monitor in real time the efflux kinetics of the MDR protein
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substrates affected by MDR reversal agents in vitro, which could
keep the high consistency in evaluating the in vivo effect of MDR
reversal agents.

Since many chemotherapeutic drugs are the substrates of
ABC transporters,20 we chose D-luciferin, which is also a
substrate of ABC transporters,21,22 to evaluate the efflux function
of MDR proteins before and after the TCM treatment. Here, we
established a stable doxorubicin (DOX)-resistant cell line
(MCF-7/DOXFluc) with overexpressed luciferase. Since only
the D-luciferin entering tumor cells can emit light, this method
can measure the efflux function of MDR proteins in MCF-7/
DOXFluc cells in vitro and in vivo (Figure 1). The efflux kinetics of

D-luciferin after the treatment with MDR reversal agents in
TCMs were recorded by bioluminescence imaging (BLI), and
the in vitro−in vivo correlation coefficient was calculated by
Pearson correlation analysis. Next, the in vivo anti-tumor efficacy
of the ideal reversal agent combined with DOX in MCF-7/
DOXFluc bearing mice was investigated, and the content of DOX
in the tumor was measured by high-performance liquid
chromatography (HPLC). These two methods both could
further testify the effect of this MDR reversal agent.

■ RESULTS
Screening MDR Reversal Agents in TCMs by Efflux

Kinetics of D-Luciferin from MCF-7/DOXFluc. It could be
found that the photons of the bioluminescence signal were
linearly related to the content of D-luciferin, below the
fluorescein substrate saturation threshold, and also linearly
related to the tumor cell number (Figure S1). Next, the IC50
value of MCF-7/DOXFluc after the treatment by a series of TCM
components were measured using a 3-(4, 5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Figure 2A).
After that, the bioluminescence signal was used to draw the
efflux curve of D-luciferin for each group (Figures 2B and S2),
and the non-compartment model was used to calculate the efflux
kinetics parameters. The results showed that compared to 0.1%
dimethyl sulfoxide (DMSO), curcumin (Cur), quercetin (Qu),
coixenolide (Coix), icariin (Ica), rhein (Rh), celastrol (Cel), and
isoliquiritigenin (Iso) increased the area under the curve (AUC)
of D-luciferin significantly at 90% IC50 and 45% IC50 values,
which indicated that these TCM components could slow down
the outflow of D-luciferin from MCF-7/DOXFluc (Tables 1 and
S1). Among these agents, the MDR reversing effect of Qu, which
increased the AUC most obviously, was comparable to that of
the positive control Vera (10 μg/mL)23 (Figure 2C,D). These

results suggested that Qu could be selected as an ideal MDR
reversal agent.

Qu Significantly Suppressed the Efflux of D-Luciferin
In Vivo, Consistent with the In Vitro Results. The MCF-7/
DOXFluc tumor-bearing mice in the group receiving Qu (10 mg/
kg)24 and phosphate-buffered saline (PBS) treatment were
injected with D-luciferin potassium salt (50 mg/kg, i.p.) at the
time points of 7 and 14 days (Figure 3A) and then characterized
by BLI (Figure 3B). BLIrel of D-luciferin affected by Qu
progressively increased and then decreased over time (Figure
3C,D). The parameters were calculated based on the non-
compartmental model, and the mean residence time (MRT) of
Qu (32.34 ± 0.72 min) was shorter than that of PBS (41.32 ±
0.63 min), while the AUC of Qu (167.73 ± 0.56) increased
significantly compared to that of PBS (98.67 ± 0.52) on the 14th
day (Figure 3E).

Pearson correlation analysis was applied to analyze the
consistency via the AUC of the efflux curve of D-luciferin
between in vitro and in vivo cases after Qu treatment. The results
indicated that the AUC values in vitro and in vivo were positively
correlated, with Pearson correlation coefficients of >0.7
(Pearson coefficient = 0.983) and associated P values of
<0.05. Since the AUC of D-luciferin had a formidable
correlation in vitro and in vivo, it could be a good indicator for
screening MDR reversal agents in TCMs in vitro.

Qu Enhanced the Anti-Tumor Effect of DOX in MCF-7/
DOXFluc Tumor-Bearing Mice. The above experiments
demonstrated that Qu was chosen as an ideal reversal agent by
this screening method with great consistent in vitro and in vivo.
Then, we further validated the anti-tumor effect of the ideal
reversal agent in combination with chemotherapeutic DOX.
First of all, to determine the combination ratio of Qu to DOX,
the combination index (CI) was calculated using an in vitro
cellular assay. As a result, Qu increased the ability of DOX to
suppress the growth of MCF-7/DOXFluc cells (Figure 4A). The
findings demonstrated that Qu could synergistically strengthen
inhibitory effect of DOX on cell proliferation. The ideal ratio of
Qu to DOX was 2:1 (Figure 4B).

It was found that the Qu or DOX treatment slightly slowed
the tumor growth in mice bearing MCF-7/DOXFluc compared to
PBS, but DOX combined with Qu dramatically slowed tumor
development (Figure 5A), including both the tumor volume
(Figure 5B) and tumor mass (Figure 5C). Quantification of
tumor fluorescence by BLI similarly showed that the combined
group substantially inhibited tumor growth (Figure 5D−E).
Moreover, the tumor tissues were nearly completely necrotic
after the combined treatment of Qu and DOX, as demonstrated
in the tumor sections by hematoxylin and eosin (H&E) staining
(Figure 4F).

Qu Increased DOX Retention in the Tumor and Thus
Maintained Its Effectiveness with Unobvious Toxicities
by Low-Dosage Treatment. To detect whether Qu also
delays the outflow of DOX in the tumor, the distribution of
DOX within the tumor was assessed by HPLC at 0.5, 2, and 4 h
following intravenous injection, and it was discovered that Qu
helped free DOX accumulate more in the tumor site at all time
points (Figures 6A and S3).

DOX has been well-known to cause serious side effects in
vivo.25 DOX alone (5 mg/kg) caused a significant decrease in
body weight of MCF-7/DOXFluc tumor-bearing mice, and it
seemed that Qu could not decrease the toxicities caused by DOX
significantly (Figure 6B). Since Qu could increase DOX
retention in the tumor, we tried to lower the dosage of DOX

Figure 1. Outline of the experimental design and flow of the D-luciferin
and MCF-7/DOXFluc assay system.
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to 2 mg/kg and determined whether DOX could keep its
effectiveness and reduce its toxicity, caused by the high dose. It
was found that DOX alone (2 mg/kg) caused just a little
decrease of tumor cell proliferation compared with that of the
PBS group, but DOX combined with Qu could dramatically
delay tumor growth (Figure 6C). Also, when the DOX dosage

was lowered to 2 mg/kg, it would not cause a significant body
weight loss in both the DOX group and the combined group
(Figure 6D). The histopathologic analysis also revealed no
obvious toxicity by the H&E staining (Figure S4A). Addition-
ally, biochemical indicators such as blood urea nitrogen,
creatinine, and alanine amino transaminase showed no

Figure 2. Qu was screened as a MDR reversal agent by fluorescence kinetics in vitro. (A) IC50 values of MCF-7/DOXFluc cells after the treatment with
different TCMs for 48 h (n = 6). (B) BLI signal photon−time curve (90% IC50) after 48 h of treatment with different TCMs. (C-D) Photon−time
curve (C) of the BLI signal and AUC of the BLIrel signal (D) after Qu (32 and 16 μg/mL) or Vera (10 μg/mL) treatment for 48 h ***P < 0.001.

Table 1. Effect of 90% IC50 of Different TCMs on Efflux Kinetics Parameters of D-Luciferin (x̅ ± s, n = 6)a

90% IC50 (μg/mL) t1/2 (min) mean residence time (MRT) (min) Cmax (×106) (photon/s) AUC0−120min (×108) photon/s × min

Pue 203 238.17 ± 50.42 353.83 ± 77.91 4.00 ± 0.33 4.12 ± 0.31
Mtr 167 164.63 ± 33.27 247.98 ± 46.52 4.04 ± 0.25 4.00 ± 0.16
Cur 11.4 227.07 ± 46.15 345.17 ± 84.34 7.71 ± 0.16*** 7.72 ± 0.11***
Qu 32 232.73 ± 63.41 246.10 ± 62.38 8.61 ± 0.23*** 8.60 ± 0.14***
Coix 207 169.54 ± 42.36 260.30 ± 58.64 7.47 ± 0.38** 7.62 ± 0.21**
BJOE 46 122.76 ± 47.35 187.23 ± 39.48 1.97 ± 0.15 1.87 ± 0.13
Ica 197 160.62 ± 30.27 243.65 ± 66.45 6.26 ± 0.18* 6.27 ± 0.26**
Cel 6.2 146.53 ± 37.22 225.58 ± 78.41 5.09 ± 0.27* 5.00 ± 0.43*
Rh 28 102.32 ± 53.04 158.31 ± 69.06 7.04 ± 0.34** 6.26 ± 0.39*
Iso 27 189.56 ± 67.82 282.55 ± 86.37 5.82 ± 0.16** 5.91 ± 0.17*
Vera 480.24 ± 81.58 211.43 ± 90.25 8.03 ± 0.29*** 8.33 ± 0.37***
0.1% DMSO 191.94 ± 49.83 289.41 ± 70.53 3.88 ± 0.30 3.97 ± 0.18
aNote: compared with 0.1% DMSO, *P < 0.05,**P < 0.01, and ***P < 0.001.
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significant difference between all groups (Figure S4B). Above
all, Qu could not decrease the toxicities of DOX directly, but it
could increase DOX retention in the tumor, thus maintaining its
effectiveness with unobvious toxicities by the low-dosage
treatment.

■ CONCLUSIONS AND DISCUSSION
Drug resistance in cancer is a huge problem for patients all over
the world.26 Ample studies prove that cancer cells over-
expressing ABC transporters are significantly associated with
MDR, leading to treatment failure of chemotherapy.27,28 Both

Figure 3. Qu enhanced D-luciferin retention in tumor. (A) Schematic illustration of the experimental design and treatment regimen in MCF-7/
DOXFluc tumor-bearing mice. (B) Nude mice bearing MCF-7/DOXFluc tumor received BLI at diverse time points in 130 min after intraperitoneal
injection of 50 mg/kg D-luciferin potassium salt. (C−D) Photon−time curve of the BLIrel signal in mice bearing MCF-7/DOXFluc tumor undergoing
the Qu (10 mg/kg) treatment at day 7 (C) and day 14 (D). (E) AUC of the BLIrel signal after the Qu treatment. **P < 0.01.

Figure 4. (A) MCF-7/DOXFluc cells treated with DOX and Qu at different ratios for 48 h (n = 6). (B) Corresponding CIs of MCF-7/DOXFluc cells
undergoing DOX and Qu treatments for 48 h at different ratios. *P < 0.05 and **P < 0.01.
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clinical practice and pharmacological studies have found when
combined with other first-line chemotherapy drugs, many active
TCM ingredients are shown to be efficacious in reversing MDR
and enhancing the efficacy of chemotherapeutic drugs.29,30 Due
to the wide variety of TCMs, it is of great importance to establish
a method to screen MDR reversal agents from TCMs
conveniently and simply.

The drugs screened out by many presently available in vitro
screening methods may not necessarily be effective in vivo
because the complexity of the in vivo tumor microenvironment.
The method we established in this manuscript could maintain
the in vitro and in vivo consistency of the MDR reversing effect
since it could monitor the efflux function of ABC transporters
located in tumor cells. Here, in order to investigate the MDR
reversal effect of a series of TCM monomers or formulations in
vitro,31−40 D-luciferin was used as the probe of ABC trans-
porter’s efflux function by BLI. BLI is an imaging technique that
is always sensitive, convenient, and reliable and can be used to
monitor the feature of the cells tagged reporter gene just like
luciferase.41

As a result, Qu was selected to be an ideal MDR reversal agent,
which could effectively decrease the outflow of D-luciferin in
MCF-7/DOXFluc cells. The correlation of efflux kinetics

parameters indicated that Qu had a strong consistency in
reversing MDR in vitro and in vivo, which was further confirmed
by the anti-tumor efficacy of Qu combined with DOX on mice.
Besides, we also measured the distribution of DOX in tumors
when combined with Qu, and the result could certify the
feasibility of the in vitro screeningmethod. Interestingly, although
Qu was unable to reduce the toxicity of DOX directly, it enabled
its effectiveness at a lower dose and thus reduce its toxicities. In
conclusion, this study provided a novel, efficient, and
inexpensive method to screen MDR reversal agents in TCMs.
An important potential advantage of our method is that it could
be applied to screen not only monomers but also compounds of
TCMs.

■ MATERIALS AND METHODS
Materials. DOX was obtained from Aladdin (Shanghai,

China). Coix was obtained from Kanglaite (Zhejiang, China).
Brucea javanica oil emulsion (BJOE) was obtained from Dalei
Yunshang Pharmaceutical Co., Ltd (Shenyang, China). Puerarin
(Pue), matrine (Mtr), Cur, Qu, Iso, Cel, Rh, and Ica were
bought from Macklin (Shanghai, China). The purity of these
ingredients was more than 98%. D-luciferin was procured from
Science Kight Biology Science & Technology (Shanghai,

Figure 5. Qu increased the anti-tumor efficacy of DOX in the treatment of MCF-7/DOXFluc tumor. (A) Tumor volumes in MCF-7/DOXFluc tumor-
bearing mice were treated with DOX (5 mg/kg, i.v.) and Qu (10 mg/kg, i.p). (B−C) Photographs (B) and tumor mass (C) of tumors excised from each
treatment group. (D−E) In all the treatment groups, the BLI signal was recorded after the intravenous injection of 50 mg/kg D-luciferin potassium salt.
(F) H&E staining was performed on the tumors of MCF-7/DOXFluc tumor-bearing nude mice after different treatments (Scale bars: 200 μm). *P <
0.05 and **P < 0.01.
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China). DMSO and MTT were procured from Sigma-Aldrich
(St. Louis, MO, USA). RIPA and BCA kits were procured from
Beyotime Biotechnology (Shanghai, China). Verapamil (Vera)
was procured from Apexbio (Houston, USA). All chemicals for
the experiment were of analytical reagent grade.

Cell Lines and Animals. The MCF-7/DOX cells were
supplied by the West China Pharmacy School of Pharmacy,
Sichuan University. The resistance index of MCF-7/DOX was
131.7.42 In our previous study, an MCF-7/DOXFluc cell line
stably expressing the firefly luciferase reporter gene was prepared
by lentiviral infection.43 BALB/c nude mice (4 weeks, female)
were supplied from Slake Laboratory Animal Company
(Shanghai, China) and housed in the Laboratory Animal Center
at Zhejiang Chinese Medical University (Hangzhou, China). In
order to perform the xenograft models, 6 × 107 of MCF-7/
DOXFluc cells were inoculated subcutaneously into the right side
of mice. Subcutaneous tumors developed to 80∼100 mm3 after
inoculation for 8−10 days. The procedures concerning animals
were carried out in agreement with the protocol allowed by the
Zhejiang Chinese Medical University Laboratory Animal
Research Center with the approval number 10248.

IC50 of MDR Reversal Agents on MCF-7/DOXFluc Cells.
MCF-7/DOXFluc cells were incubated with 8 × 104 cells/well in
100 μL of RMPI 1640 medium in 96-well plates. MTT was
formulated to 5 mg/mL. Different concentrations of Pue, Mtr,
Cur, Qu, Coix, BJOE, Rh, Cel, Ica, and Iso were incubated with
the MCF-7/DOXFluc cells for 48 h, and then, 100 μL of the MTT
solution was added and incubated for 4 h. Thereafter, the
medium was carefully discarded, and 100 μL of DMSO was
added. Before testing the absorbance at 490 nm on the
microplate reader, the plate was gently shaken for 10 min. The
cell proliferation and IC50 values were then calculated by using
GraphPad Prism V6.01 software.

Efflux Kinetics of D-Luciferin from MCF-7/DOXFluc Cells
In Vitro. MCF-7/DOXFluc cells were seeded on a 96-well flat-
bottom black plates at 8×103 cells/well. In order to study the
effect of different TCMs on the efflux function mediated by ABC
transporters in vitro, BLI was used to quantitatively monitor the
outflow of D-luciferin in real time from MCF-7/DOXFluc cells,
which were treated by different TCM ingredients at the 90% or
45% IC50 value. Eight TCM monomer components (Pue, Mtr,
Cur, Qu, Iso, Cel, Rh, and Ica) and two kinds of TCM
formulations (Coix and BJOE) were chosen as MDR reversal
agents, and MTT was used to measure the IC50 value of these
agents on MCF-7/DOXFluc. The changes of all of the efflux
curves with time were drawn.

Then, MCF-7/DOXFluc cells were treated with the ideal
reversal agent for 48 h. Vera (a P-gp inhibitor, 10 μg/mL)44 was
applied alone as a positive control. Thereafter, D-luciferin (10
μg/mL) was added, and an in vivo imaging system (IVIS)
(Xenon, USA) was used for kinetic imaging immediately. The
excreted extracellular signals were caught every 5 min for 0−130
min to obtain the efflux kinetics of D-luciferin. The photon
signal was standardized to the relative bioluminescence imaging
(BLIrel) by the total protein concentration to remove the
disturbing effect. Kinetic parameters of intracellular D-luciferin
were counted on the basis of the non-atrial model method.45

Efflux Kinetics of D-Luciferin in Mice Bearing MCF-7/
DOXFluc. Qu (10 mg/kg) was administered every 2 days, and D-
luciferin was injected on the 7th and 14th day, respectively. The
mice were intraperitoneally injected with 50 mg/kg D-luciferin,
and then, the BLI signal was quantitatively recorded in 130 min.
The photon signal was standardized depending on the tumor
volume and considered as BLIrel. The non-compartmental
model was used to calculate the AUC and MRT of D-luciferin.

Correlation Analysis In Vivo and In Vitro. The AUC of
the outflowed D-luciferin by ABC transporters was adopted as
the indicator of the efflux kinetics of D-luciferin after the
treatment with the ideal reversal agent. Relationship of the efflux
kinetics of D-luciferin in vitro and in vivo was analyzed by
Pearson correlation analysis.

CI Studies cetween the Ideal Agent and DOX. The
MTT assay was applied to evaluate the cytotoxicity and the
MDR reversal effect of the ideal agent. Cells were seeded into
96-well plates at 8 × 103 cells/well for 24 h before drug
treatment. Soon after, tumor cells were incubated and then were
exposed to DOX and Qu at an appropriate ratio to measure the
cell viability. The cell viability was calculated by using
CompuSyn software to analyze the CI by the Chou and Talalay
method.

Combined Anti-Tumor Efficacy of the Ideal Agent and
DOX In Vivo. Nude mice bearing MCF-7/DOXFluc tumor were
applied to assess the antitumor effect. Mice were randomly
divided into four groups (n = 6) and, respectively, treated by
PBS, DOX (5 mg/kg, i.v), Qu (10 mg/kg, i.p), and DOX (5 mg/
kg, i.v.) combined with Qu (10 mg/kg, i.p.) every 2 days. Also,
the body weight and the tumor volumes were recorded. The
tumor volume (V) was calculated from the length (L) and width
(W), in view of the following equation: V = (1/2 × L × W2).
Every other day after the treatment, 100 μL of D-fluorescein
potassium salt (50 mg/kg) was injected intraperitoneally, and
the mice bearing MCF-7/DOXFluc tumor were imaged
immediately via IVIS to document the fluorescence peak. BLI
signals of MCF-7/DOXFluc were tested at Ex = 328 nm and Em =
533 nm. Then, hearts, livers, spleens, lungs, kidneys, and tumors
were gathered to estimate the systemic toxicity by H&E staining.

Figure 6. Qu enhanced the efficacy and mitigates the toxicity of DOX
by increasing its retention in tumor. (A) Distribution of DOX in the
tumor by DOX (5 mg/kg, i.v.) alone or combined with Qu (10 mg/kg,
i.p.) treatment for 0.5, 2, and 4 h. (B) Body weight increment of mice
after being treated with PBS, DOX (5 mg/kg), Qu (10 mg/kg), and
DOX (5 mg/kg) and Qu (10 mg/kg). (C) Tumor volume and (D)
body weight increment of mice due to DOX (2 mg/kg, i.v.) alone or
combined with the Qu treatment (4 mg/kg, i.p). *P < 0.05 and **P <
0.01.
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Distribution of DOX in the Tumor. Mice were randomly
grouped into two groups of treatments: DOX alone or combined
with Qu. The mice were fasted 12 h before the experiment and
freely drank water. The mice were executed at 0.5, 2, and 4 h
after the treatment, respectively. The tumors were excised,
rinsed, and dried. Tumor weights were recorded. Then, 0.5 mL
(0.25 g/mL) of each tumor tissue homogenate was transferred
to a glass centrifuge tube, and 2 mL of methanol−chloroform
(1:4, v/v) was added to extract the sample. Then, the
homogenate was shaken for 5 min and then centrifuged at
15,000 rpm for 5 min to collect the supernatant, which was then
dried under nitrogen. The dried residue was reconstituted with
100 μL of methanol, and then, the concentration of DOX was
analyzed by HPLC (Waters, USA). The Aglient ZORBAX
Eclipse Plus C18 column (4.6 mm × 250 mm, 5 μm) was used to
detect at 25 °C with a mobile phase of 0.1% H3PO4: acetonitrile:
methanol = 25:25:3 (v/v/v) at a flow rate of 1 mL/min. The
wavelength of 254 μm was used for the detection. DOX content
in the tumor was detected by HPLC, and calibration curves were
established by analyzing different concentrations of tumor
samples. The calibration curves could be described by the
following regression equation: Y = 676.96C + 1023.8. The
calibration curves of DOX concentration exhibited good
linearity (R2 = 0.98) over a concentration range of 0.05−80
μg/mL.

Statistical Analysis. Data were expressed as the mean ± SD
for a minimum of three experiments. The comparison between
two groups was conducted by the unpaired t-test, and one-way
ANOVA was used for multiple groups. A difference was deemed
statistically significance if P < 0.05.
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