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Abstract

From Darwin’s study of the Galapagos and Wallace’s study of Indonesia, islands have played an important role in
evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view
of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such
as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show
that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor
island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique.
Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric
and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence
and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear
markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less
reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence.
The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this
may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong
primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated
with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports
the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the
paucity of anole species in the Lesser Antilles compared to the Greater Antilles.
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Introduction

Speciation generates biodiversity and is therefore a key process

in evolution and ecology, and the relative importance of factors

contributing to speciation in sexually reproducing animals, such as

genetic drift in spatial isolation, natural selection, sexual selection

and mutation-order, remains an active area of research [1–8].

Since neo-Darwinism [9] the most conventional view of speciation

in sexually reproducing animals has been by the accumulation of

differences by genetic drift and selection in allopatry. While there

has been growing paradigm shift towards models [10] and

processes such as ecological speciation [1,5,7,8] that are not

dependent on allopatry, there have been few critical tests of

allopatric speciation in systems which are regarded as exemplifying

the process, such as island archipelagos [9,11–17]. This is

primarily because, from a contemporary perspective, genetic

isolation cannot be assessed in spatially isolated populations.

However, a historical perspective allows us to test the genetic

isolation of anole species isolated for a very substantial time before

their islands coalesced.

Anolis (small insectivorous lizards) is the most speciose amniote

genus (circa 400 species) [18] and show little inter-specific

hybridization [19]. Just two colonizations of the Caribbean islands

have resulted in 150 species, so they may be thought of as

exemplifying allopatric speciation in island archipelagos [11–

14,18,20]. These anole radiations appear to have inhabited the

Lesser Antilles since the origin of the younger island arc, or just

before (i.e circa 8–9 mybp) with a southern and a northern series

[21]. On what is currently recognized as the island of Martinique

(southern series), the paraphyletic anole Anolis roquet has deep

phylogeographic divisions, with Anolis extremus from Barbados

nested within it [21]. Geology [22–23], molecular phylogeography

and molecular clock analysis [21] reveals that four precursor

islands of Martinique (Figure 1) are associated with four mtDNA

lineages of ‘A. roquet’. The island ages, molecular clock and

geographic distribution of the lineages link closely to suggest that

the precursor islands of Martinique (together with Barbados) had

separate anole allospecies for up to about 8mybp, before central

uplifting joined the Martinique precursors to form a single island

(with Barbados remaining independent) [21]. This gave three
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secondary contact zones in Martinique (Figure 2) between

previously allopatric forms (south-central, SW-central, NW-

central) that:- 1) are phylogenetically deeper than the species-level

split between A. extremus (consistently regarded as a valid species

[18]) and its sister clade within A. roquet [21]; 2) have diverged a

substantial time ago (6–8 mybp) and have a level/time of

phylogenetic divergence that is comparable to other Lesser

Antillean anole species [11–12]; 3) may show distinct mtDNA

lineages with almost no haplotype inter-digitation [21]; and 4) may

show a prima facie case for parapatric bimodality in multivariate

quantitative traits at some points of contact [24] (Figure S1).

Hence, this is an appropriate test of allopatric speciation.

Martinique anoles also provide a test for ecological speciation,

or isolation by adaptation [7]. The quantitative traits of Lesser

Antillean anoles adapt by natural selection to environmental

zonation, as shown by common garden and natural selection

experiments [25–26], parallels among island species, and

correlation studies that take phylogenetic history into account

[27]. In Martinique, the montane rainforest and coastal xeric

woodland are distinctly different habitats with pronounced

differences in the environmental conditions across the ecotone

between them. As with other Lesser Antillean anoles, the

Martinique anole adapts to these conditions and their populations

show marked habitat-related differences in quantitative traits

such as morphology (shape, color, pattern and scalation) and

dewlap hue [21,24], resulting in distinct ecotypes. The ecotone

between these coastal xeric and montane rainforest habitats

provides a test for ecological speciation for comparison with

secondary contact zones.

Hence, with the Martinique anole there is the potential for

speciation to occur in accordance with both an allopatric model

(where the different lineages on precursor islands speciate), and an

ecological model (where the different ecotypes speciate). Prelim-

inary analysis of a single transect suggested that under specific

circumstances there may be greater restriction of genetic exchange

between habitat types than previously allopatric forms in

secondary contact [21]. However, this analysis examined just

one of the three pairs of coalescing islands (northwest vs. central),

under only one set of selection regimes (strong convergent

selection for montane rainforest on both lineages where they

met along that transect). Furthermore, this study was not

replicated and no control was used, limiting the capacity to

generalize, and raising several questions. Specifically, do the other

pairs of coalescing precursor islands populations (southwest-central

and south-central) show evidence of genetic isolation or not; is the

pattern of inter-digitation of the mtDNA lineages and introgres-

sion of the neutral nDNA consistent along the length of each of the

three secondary contact zones, or does it vary dependant on other

factors; how do the selection regimes along the transect influence

the extent of genetic isolation among previously allopatric forms;

under what ecological conditions (extent and abruptness of habitat

change) is there restricted genetic exchange among habitat types

and how long does it take to develop?

To answer these questions we investigated the xeric/rainforest

ecotone and all three cases of island coalescence, each with two to

four replicate transects, together with a control transect (Figure 2,

Table 1, Table 2). By measuring nuclear genetic structure,

mtDNA lineage, quantitative traits and climate variation along

these replicated transects, across both geological and habitat

contact zones, we are able to critically test the role of these two

factors, and their interaction, in the differentiation of island anoles.

We show that, although there is always a signature of past

allopatry in the nuclear genetic structure, and this can be quite

strong dependent on the comparative selection regimes across the

secondary contact zone, there is no complete allopatric speciation

for any of the three allopatric pairs. Instead, if there is sufficient

magnitude and abruptness of habitat change, then there is even

greater differentiation across the ecotone, and this can develop

over a brief period of time. Although the ecological speciation is

not complete, it has reached what has been characterized as a

‘‘later stage’’ in the speciation continuum [7]. This supports a

relatively important role for ecological speciation under the

appropriate circumstances [1,5,7,8].

Results/Discussion

Geological island precursors and mtDNA lineages
Recent island-wide phylogenetic studies identified four main

mtDNA lineages within A. roquet whose geographical limits

correspond very closely to the geological junctions between

precursor islands [21,28], with the timing of divergence between

these lineages compatible with the age of the different precursor

islands. This supports the scenario illustrated in Figure 1B, which

suggests that the individual lineages evolved in allopatry for about

6mybp (central-south) to 8 mybp (central southwest and central

northwest) until the precursor islands merged to form present day

Martinique. Here, we use a large sample per site, with sites along

transects focussed on the contact zones. Estimating the frequency

of mtDNA lineages at localities along these transects enables us to

test for any inter-digitation of the lineages and the fit between the

distribution of the lineages and the precursor islands at this fine

scale.

With the exception of transect VIII (Q= 0.61), we observed a

very close association between the precursor islands and the

mtDNA lineages (0.71,Q,0.95) and little, or almost no (transects

I,IV), inter-digitation, even at this fine spatial scale (Table 1,

Figure 3, Figure 4, Figure 5). This absence of substantial inter-

digitation, despite a relatively long period of contact (the precursor

islands merged about 1 Mya [21]), implies the absence of extensive

female-driven gene flow [29] between these previously allopatric

lineages.

Author Summary

Over the last 150 years, since Darwin’s study of islands and
his ‘‘Origin of Species,’’ island archipelagos have played a
central role in the understanding of evolution and how
species multiply (speciation). Islands epitomise the con-
ventional view of geographic (allopatric) speciation, where
genomes diverge in isolation until accumulated differenc-
es result in reproductive isolation and the capacity to
coexist without interbreeding. Current-day Martinique in
the Lesser Antilles is composed of several ancient islands
that have only recently coalesced into a single entity. The
molecular phylogeny and geology show that these ancient
islands have had their own tree lizard (anole) species for a
very long time, about six to eight million years. Now they
have met, we can genetically test for reproductive
isolation. However, when we use selectively neutral
markers from the nuclear genome, on this naturally
replicated system, we can see that these anoles are freely
exchanging genes and not behaving as species. Indeed,
there is more genetic isolation between adjacent popula-
tions of the same species from different habitats than
between separate putative allospecies from the ancient
islands. This rejects allopatric speciation in a case study
from a system thought to exemplify it, and suggests the
potential importance of ecological speciation.

Ecological and Allopatric Speciation in Anoles

PLoS Genetics | www.plosgenetics.org 2 April 2010 | Volume 6 | Issue 4 | e1000929



Ecological and Allopatric Speciation in Anoles

PLoS Genetics | www.plosgenetics.org 3 April 2010 | Volume 6 | Issue 4 | e1000929



Habitat and quantitative trait variation
Climate is a strong determinant of habitat and can be objectively

measured and quantified. The results (Table 2) show strong climatic

variation along the transects (III, IV) that run from the xeric coast to

the montane rainforest with a sharp transition (ecotone) between

these habitats (Figure 3). Other transects generally run within

habitat types and show more subtle climatic variation, i.e., are

without abrupt changes in habitat of a high magnitude.

Figure 1. Phylogeny and geohistory. (A) Summmarized cladogram based on Cytochrome b Bayesian gene tree [21]. The five main lineages are
Barbados and the four precursor island lineages, south, central, northwest and southwest (underlined upper case), the suggested locality and time of
origin (to the nearest million years before present) are in bold italics with the times based on geological calibration [21], which gives values close to
those based on a general lizard clock. Terminal nodes (light font) are representative minor lineages of Anolis roquet from Martinique, and A. extremus
from Barbados. Nodes with a posterior probability of 1.00 are marked with an asterisk. (B) Summarized historical scenario (dates as above) for the
Martinique and Barbados regions and their Anolis roquet/extremus lineages. The first phylogenetic division at circa 8 mybp (at, or just before the
origin of the recent island arc) saw the establishment of Ducos (southwest) and the St Anne peninsular (south) as separate populations (B i), then the
central region was colonized from St Anne at circa 6 mybp and the northwest precursor island from the recent arc was colonized from Ducos
(southwest) at circa 5 mybp (B ii). Barbados (Anolis extremus) was colonized from the central region soon after (circa 4 mybp) (B ii). Finally, with the
uplift of the central region (B iii, iv) the northwest, southwest and southern precursor islands were joined into the single island of Martinique at circa
1 mybp (B iv).
doi:10.1371/journal.pgen.1000929.g001

Figure 2. Precursor island regions, lineages, transects, and ecotone on Martinique. Geological boundaries between precursor islands are
indicated by red lines. They are occupied by lineages labelled in red (NW = northwest, C = central, SW = southwest, S = south). The ecotone between
xeric coastal and montane rainforest is indicated by a green, broken line, and the section of Transect III devastated by the 1902 pyroclastic surges that
destroyed St Pierre [31] is indicated by grey shading. Transects and their sites are in blue and numbered with blue Roman numerals I to IX. The
control transect (IX) within the central mesic zone, is without an ecotone or secondary contact. The photographs are of adult male anoles (locality on
Martinique indicated by boxed numbers), 1 northeastern coastal, 2 littoral coastal form, 3 montane rainforest form, 4 widespread mesic/transitional
form, and 5 xeric form occurring in the western rainshadow, St Anne Peninsular in the south and the eastern tip of the Caravelle peninsular in east
where annual rainfall is circa 1500mm a year or less [50].
doi:10.1371/journal.pgen.1000929.g002

Ecological and Allopatric Speciation in Anoles
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A wide-ranging multivariate profile of the quantitative traits

(QTs) of individuals was taken (these include both spectrometric

dewlap hues [21] and morphological traits such as colour pattern,

body dimensions and scalation) to estimate the change in QTs

along a transect in relation to habitat type, ecotone and lineage.

Lesser Antillean anole quantitative traits (QTs) are generally

tightly linked to the habitat and have generally been shown to

adapt to environmental conditions and reflect selection regime

rather than phylogeographic lineage [24–28]. Hence, as predicted,

the large magnitude of habitat variation in transects III and IV is

matched by a high magnitude of QT variation (16–17 within

group standard deviations, Table 2) with highly divergent

rainforest and xeric ecotypes (Figure 2 and Figure 3), and a close

correlation between QTs and climate variation along the transect

(r = 0.96 to 0.97, Table 2). The large magnitude and close

association of the climate and QT variation indicates the potential

importance of the ecotone in determining population structure.

Elsewhere, where the magnitude of climatic variation along a

transect is less (because they largely run within habitat types), such

a very high correlation between climate and QTs is not predicted

or observed. Even so, the correlation is only insignificant in one

non-control transect (Table 2), once again suggesting the general

importance of habitat type in determining quantitative traits.

The correlation between quantitative traits and lineage

frequency is significant along four transects (Table 1), and is

particularly high in transect I, where, on this spatial scale, there is

no overlap between multivariate morphology of morphs either side

on the lineage contact zone (Figure S1).

Predictions and tests of allopatric speciation
The allopatric model of speciation predicts that the four lineages

that spent a substantial time in isolation on separate islands

(divergence at circa 6–8my) should all be reproductively isolated

entities. That is, there should be four species with very little (if any)

Table 1. Transect attributes: geology, lineage, and traits.

Transect Precursor island lineages
Number of
sites Geology lineage fita

Correlation QTs v
lineageb

Allopatric
speciation predicted

Q P n r P

I Northwest/Central 8 0.95 ,0 .001 384 0.97 0.001 Y

II Northwest/Central 8 0.80 ,0 .001 381 0.89 0.003 Y

III Northwest/Central 7 0.72 ,0 .001 236 0.47 0.282 Y

IV Northwest/Central 7 0.90 ,0 .001 313 0.39 0.388 Y

V Southwest/Central 9 0.77 ,0 .001 420 0.73 0.026 Y

VI Southwest/Central 9 0.84 ,0 .001 420 0.29 0.450 Y

VII South/Central 8 0.75 ,0 .001 326 0.93 0.001 Y

VIII South/Central 7 0.61 ,0 .001 307 0.61 0.145 Y

IX Central. Control 5 - - - - - N

aGoodness of fit (Q) between geological precursor island and mtDNA lineage frequency across all individuals from each site (n).
bCorrelations between site mean CV scores for QTs and lineage frequency (n = number of sites).
doi:10.1371/journal.pgen.1000929.t001

Table 2. Transect attributes: climate, habitat, and traits.

Transect
Precursor island
lineages

Habitat along
transect

Variation in
climatea

Variation
in QTsb Correlation QTs v climatec

Ecological speciation
predicted

r P

I NW/Central coastal 0.15 10.6 0.94 ,0.001 N

II NW/Central transitional 0.08 8.5 0.79 0.021 N

III NW/Central coast to montane 2.25 15.8 0.97 ,0.001 Y

IV NW/Central coast to montane 2.69 16.9 0.96 ,0.001 Y3

V SW/Central mesic1 1.12 4.5 0.69 0.040 N

VI SW/Central mesic 1.48 5.3 0.36 0.341 N

VII South/Central xeric2 0.67 6.4 0.81 0.014 N

VIII South/Central xeric 0.30 4.4 0.88 0.009 N

IX Central. Control mesic 1.05 6.9 0.43 0.470 N

aMagnitude of variation (site maximum-site minimum) along transect for climate in principal component scores.
bMagnitude of variation along transect for quantitative traits (QTs) in canonical variate scores normalized to unit within-group standard deviation.
cCorrelations between site mean CV scores for QTs and climate scores (n = number of sites).
1There is an altitudinal gradient along transect V.
2There is a transition to a more mesic habitat in the north of this transect.
3See the text for a caveat to this prediction.
doi:10.1371/journal.pgen.1000929.t002

Ecological and Allopatric Speciation in Anoles
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Figure 3. Northwest-central precursor islands: lineages, quantitative traits, and genetic structure along transects. Transects (I–IV)
across the secondary contact between the putative allospecies from the northwest and central precursor island and ecotones (III, IV), together with
control transect (IX). Sites 1-n are along the horizontal axes. (A) Lineage and geology. Mitochondrial DNA lineage frequencies are indicated as mauve
triangles, n<48 per site), with the red arrow indicating the geological boundary between precursor islands. (B) Climate and Quantitative Traits. Mean
canonical variate scores for quantitative traits are indicated by blue upright triangles (left axes in units of within-group standard deviations) for sites
based on combined morphology (e.g., scalation, proportions, pattern) and dewlap hue characters. Principal component score of climate data (green
triangles) scaled from zero (right axis, max and min values). The green arrow indicates the position of an ecotone. In transect III dewlap hue CV scores
are represented by blue triangles and heteroscedastic morphological traits by black horizontal bars. (C) Genetic structure. Frequency of individuals

Ecological and Allopatric Speciation in Anoles
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gene exchange among them where they meet along all three

contact zones (northwestern/central, southwestern/central and

southern/central) on what is currently Martinique. The very close

association (with only one exception) between the precursor islands

and the mtDNA lineages along the transects does not contradict

this (Table 1).

This prediction was tested by estimating the population

structure along transects I–VIII using neutral, hypervariable,

nuclear microsatellite markers, primarily analysed by Bayesian

assignment, with support from AMOVA and standardised FST9

values. Principal component analysis (PCA) provides an indepen-

dent perspective on the population affinities. The analysis of these

markers along the replicated transects across these three zones

clearly rejects the presence of reproductively isolated (or even

partially isolated) species. This is the case for all three precursor

island contacts: the central/northwest contact (Figure 3), the

central/southwest contact (Figure 4), and the central/south

contact (Figure 5) along the length of the contact for all replicates

and various types of selection regimes (but see transect I below).

The Bayesian assignment method detects two clusters in most

transects (Table 3, Table S1), but the transition between the two

clusters generally is not closely associated with the lineages and/or

forms a smooth cline (Figure 3, Figure 4, Figure 5). The PCA

(Figure S2) supports the Bayesian clusters in transects I–VIII as the

pattern of relative frequency of the Bayesian clusters (where K = 2)

is almost identical to the pattern of PC1 scores for each transect

(r = 1.0 with one exception).

The association between nuclear genetic clusters and allopatric

speciation model (lineage categories) is, with one exception, modest

(0.32,Q,0.51) even if significant (Table 3) and Q does not

approach unity (complete isolation). This pattern is supported by the

AMOVA and standardized FST9 values. The AMOVA show

sporadic significant structure associated with lineages (transects I, II,

V, VII), but all the WCT values are substantially less than unity and

too low for reproductive isolation (Table 4). Similarly, mean

standardized genetic differentiation between pairs of populations on

each side of lineage boundaries is low to moderate

(0.072,FST9,0.166, Table 4). This suggests high levels of nuclear

gene exchange between lineages (the equivalent unstandardized FST

values are 0.014,FST,0.043). Of particular interest are transects III

and IV where the nuclear genetic structure associated with the

northwest and central lineages can be compared directly with that

associated with habitats (Table 3 and Table 4). Here the Bayesian

clusters show substantially poorer fit to the allopatric speciation

model (0.32,Q,0.37) than the habitat categories (0.62,Q,0.71).

The AMOVA shows low (20.00064,WCT,0.00158) and

insignificant WCT for the lineage categories, but higher

(0.03481,WCT,0.01665) and significant WCT for the habitat

categories. The mean standardized genetic differentiation is also

much lower between lineage categories (0.072,FST9,0.075) than

habitat categories (0.137,FST9,0.213).

In general, while there may be a nuclear genetic signature of

past allopatry for all four mtDNA lineages associated with

precursor islands, there is no allopatric speciation. The partial

exception to this general trend is transect I, where the central and

northwest lineages meet on the northeast coast. Here, there is

almost no inter-digitation of mtDNA lineage markers (Q= 0.95),

and a sharp stepped cline in quantitative traits at the junction of

assigned by Bayesian cluster analysis based on variation in nine hypervariable, neutral nuclear microsatellites where the number of clusters is set to
two for comparative purposes (see Table 3).
doi:10.1371/journal.pgen.1000929.g003

Figure 4. Southwest-central precursor islands: lineages, quantitative traits, and genetic structure along transects. Transects (V,VI)
across the secondary contact between the putative allospecies from the southwest and central precursor island. See Figure 3 for control transect (IX)
and legend.
doi:10.1371/journal.pgen.1000929.g004

Ecological and Allopatric Speciation in Anoles
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the precursor islands (Figure 3B). There is some genetic isolation

between the lineages as shown by the Bayesian assignment

(Q= 0.68, Figure 3C), although neither AMOVA nor standardized

FST9 values are exceptionally high (Table 4). If these lineages were

equally isolated along their entire secondary contact zone there

might have been a rather weak case for partial allopatric speciation

and recognition of their status as separate species. However, they

are not. Even along the adjacent transect (II) in the transitional

forest, which is only 5km inland, the lineages show little genetic

isolation (no Bayesian clusters, Table 3, Table S1, Figure 3C) and

do not have distinct quantitative traits (Figure 3B). Further along

this secondary contact zone in the montane rainforest (transects

III, IV) the quantitative traits are identical either side of the

secondary contact zone with little nuclear genetic isolation

estimated from Bayesian assignment, AMOVA or standardized

FST9. Direct experimental measures of selection in Lesser Antillean

[25,26], and other [18,30] anoles, as well as other studies of

adaptation [21,24,27], have shown strong selection intensity on

anole quantitative traits, and the pattern of climate variation and

QT variation along transects differs among transects I–IV. Hence,

Table 3. Nuclear genetic structure.

Transect Clustersa Fit to allopatric Speciationb Fit to ecological Speciationc

K Q P n Q P n

I 2 0.68 ,0 .001 383

II 1 0.40 ,0 .001 380

III 2 0.33 ,0 .001 327 0.621 ,0 .001 327

IV 2 0.37 ,0 .001 325 0.71 ,0 .001 325

V 2 0.45 ,0 .001 414

VI 2 0.51 ,0 .001 421

VII 2 0.39 ,0 .001 376

VIII 2 0.32 ,0 .001 332

IX 1 - -

Bayesian Assignment.
aRecognised number of Bayesian clusters (K) in neutral hypervariable nuclear markers (microsatellites), see methods.
bGoodness of fit (Q) between Bayesian assignment (K = 2, or assumed to be 2 for comparison) based on microsatellites and categories predicted by allopatric speciation

across n individuals along transect.
cGoodness of fit (Q) between Bayesian assignment (K = 2, or assumed to be 2 for comparison) based on microsatellites and categories predicted by ecological speciation
across n individuals along transect.

1See the text for a caveat to this prediction.
doi:10.1371/journal.pgen.1000929.t003

Figure 5. South-central precursor islands: lineages, quantitative traits, and genetic structure along transects. Transects (VII,VIII) across
the secondary contact between the putative allospecies from the south and central precursor island. See Figure 3 for control transect (IX) and legend.
doi:10.1371/journal.pgen.1000929.g005

Ecological and Allopatric Speciation in Anoles
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although the populations from transects I–IV may broadly share

the same history (particularly adjacent transects I and II), they

differ in the pattern and intensity of selection along the transect.

The similarity of the environment either side of this secondary

contact zone in the rainforest (transects III, IV, Figure 3B), and the

remarkably parallel appearance of these northwestern and central

lineages forms in the rainforest [28] (Figure 2, image 3) suggests

strong convergent selection working on these populations. Along

the coastal transect (I) there may be no such strong convergent

selection, and indeed the environmental variables show a smooth

cline along the transect so there may be some divergent selection.

This suggests that the persistence of a strong genetic signal of past

allopatry may be contingent on the pattern of selection regimes.

In conclusion, even though there has been a substantial period

of allopatric divergence between northwest/central (8 mybp),

southwest/central (8 mybp) and south/central (6 mybp) lineages,

and only restricted inter-digitation of the mtDNA, there is no

evidence of complete allopatric speciation even though there may

be a significant signal of past allopatry. This is consistent across all

three pairs of putative allospecies and between the replicates along

the length of all three contact zones, irrespective of the pattern of

selection regimes. Nevertheless, if the pattern of selection allows, a

stronger signal of past allopatry may be retained. Overall, the

results are compatible with divergence in allopatry followed by

substantial introgression on secondary contact due to a lack of

reproductive isolation.

Predictions and tests of ecological speciation
The distinctly different habitats of the xeric coast and the

montane rainforest, associated with strongly divergent quantitative

traits, provide an opportunity to test for ecological speciation along

transects III and IV (Table 2). Bayesian assignment indicates that

both transects have restricted genetic exchanges across the xeric-

montane ecotone, although this is stronger in transect IV

(Q= 0.71) than III (Q= 0.62). The populations of Anolis in the

area of transect III (Figure 2) were most likely severely impacted by

the 1902 pyroclastic surge that destroyed St Pierre [31]. Although

the reinstatement of the reduced gene exchange associated with

the ecotone may have been facilitated by ecotypes colonizing the

vacant area from adjacent populations of the same altitude, anoles

can readily colonize adjacent areas of different attitudes.

Consequently, perhaps to some extent, the signal of restricted

genetic exchange may have to have developed in circa 100 years,

which is likely to be much shorter than elsewhere along this

ecotone, and may be too short even for ecological differentiation in

these terrestrial amniotes [32].

The results of the AMOVA also support a reduction of gene

exchange between habitats for the two transects. This test shows a

significant structure when the sites are grouped according to their

habitat, but not when they are grouped according to their lineage

(Table 4, Table S1). Similarly, the mean standardized genetic

divergence (FST9) is much higher between habitats than lineages

(see above). Even if this is not full reproductive isolation, the

restriction of gene exchange between the habitats is very

substantial, and along transect IV it is greater than any in this

study. Moreover, (with the above caveat regarding altitudinal

restrictions on re-colonization) it may be capable of developing

rapidly as transect III shows greater isolation than associated with

allopatric divergence with the AMOVA and (with one exception)

the goodness of fit (Q) statistics.

Nosil et al [7] recognise several stages in the continuum of

ecological speciation: 1) population differentiation, 2) ecotype

formation, 3) speciation and 4) post-speciation divergence. They

suggest that increased genotypic clustering (as evidenced here)

indicates a later stage of the speciation process, and the degree of

genetic isolation here is as great, or greater, than that associated

with their [7] example of the most reproductively isolated

Pundamilia cichlid pairs. Moreover, the adjacent, and environmen-

tally very comparable, island of Dominica also has distinct anole

ecotypes. A study of microsatellite variation among anole

populations on Dominica did not indicate genetic clustering of

the ecotypes [27], so Martinique anoles appear to be at a later

stage than the stage 2 of the Dominican ecotypes. Hence, although

it is clear that this there is no full ecological speciation here, it

appears that the Martinique anoles are between the ecotype (2)

and speciation (3) stages in the ecological speciation continuum. It

Table 4. Nuclear genetic structure.

Transect AMOVAa FST9b

Structure by Lineage Structure by Habitat Lineage Habitat

WCT P WCT P FST9 FST9

I 0.00774 0.03128 0.146

II 0.00874 0.01955 0.106

III 0.00158 0.28250 0.01665 0.02737 0.0751 0.1372

IV 20.00064 0.59433 0.03481 0.02835 0.0721 0.2132

V 0.00633 0.01955 0.098

VI 0.01282 0.05572 0.137

VII 0.01209 0.02737 0.120

VIII 0.01096 0.09286 0.166

IX 0.0873

AMOVA and FST9.
aAMOVA was used to test groups of localities along each transect divided by lineage, and where appropriate (transects III, IV) also by habitat.
bMean of pairwise standardized FST9 values across the lineage contact zone (I–VIII) or ecotone (III,IV).
1Values computed between lineages, within habitat (rainforest).
2Values computed between habitats, within lineage (northwest lineage).
3Values computed between each pair of localities in this control transect for comparison.
doi:10.1371/journal.pgen.1000929.t004
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may be that the situation is in equilibrium, or is a stage in a

progression towards greater isolation. Moreover, even if progres-

sion to greater isolation was possible, it could be prevented by

persistent volcanic disturbance of the ecotone and/or its spatial

discontinuity.

Both natural and sexual selection may play a role in this

ecological pattern of gene exchange as predation pressure for

crypsis [33] may interact with the need for conspecific commu-

nication. Substantial work on Lesser Antillean anole ecotypes,

including natural selection experiments, indicates that a wide

range of character systems, rather than just single characters,

adapt these ecotypes to the specific biotope [24–27]. Hence,

natural selection will be impacting many independent traits [7].

Moreover, sensory drive may be important [34] as these habitats

have different light conditions which may impact on visual

conspecific communication via secondary sexual traits, including

dewlap hue. If assortative mating occurs, where a female

preferentially chooses a male with the appropriate pattern and

hue for that habitat, then this could result in reduced gene

exchange among populations in different habitats.

Implications
This replicated population genetic study robustly and consis-

tently suggests that, across a range of opportunities and conditions,

there is pronounced introgression after allopatry and that even a

very substantial amount of time in spatial isolation does not, on its

own, necessarily allow for the development of reproductive

isolation and speciation. This is all the more notable as fertile,

natural inter-specific hybrids are extremely rare in this large, well-

studied, genus [18,19], and this is a radiation that is generally

regarded as exemplifying allopatric speciation [11–14,18,20].

Even though the habitat forms are partially, rather than

completely, reproductively isolated, they can show greater

isolation than the putative allospecies, and it may be that this

can develop rapidly. In addition, the extent of the genetic

signature of past allopatry may be dependent on the pattern of

selection regimes across the secondary contact. These observations

have implications for animal speciation in general and speciation

in anoles in particular. While one could choose to emphasize the

lack of complete ecological speciation in this case, we believe these

observations reveal the potential importance of ecological

divergence as a contributory factor in speciation, including in

situations where ecological divergence initiates speciation, but does

not complete it [7], and where allopatry is important, but

adaptation to environmental differences are also required, as

recently suggested for speciation in birds [35]. Consequently, a

role for ecology in speciation, including ecological speciation, or

isolation by adaptation [1,5,7–8,32,36–38], may be of widespread

relevance, and non-allopatric models [10] should not be excluded

from consideration. These implications are particularly relevant to

the most speciose amniote genus, Anolis, including the large

Greater Antillean communities, where sympatric and parapatric

speciation have been regarded as not being an important

phenomena in anole evolutionary diversification [14,18,20].

Finally, it contributes to an explanation of why there are so few

species of Anolis in the Lesser Antilles compared to the Greater

Antilles [14]. At the stage of the allopatric model where species

number on an island is increased by colonization from other

islands [14], the colonizers interbreed with the species already on

the island, because no reproductive isolation has developed while

they are in allopatry. The genetic signal of this interbreeding is

then lost because the number of overseas colonizers per unit time

will be vanishingly small compare to the turnover in the large

endemic population.

Methods

Samples
Replicate transects were taken across each precursor island

junction (Figure 2); northwest lineage to central lineage transects I,

II, III and IV, southwest lineage to central lineage transects V and

VI, south to central lineage transects VII and VIII, with a control

transect (IX) within the central lineage. The number of sites per

transect was 8, 8, 7, 7, 9, 9, 8, 7 and 5 respectively for transects I to

IX. At each site 48 naturally autotomized tail-tip biopsies were

sampled for molecular analysis, while quantitative traits and

dewlap hue were recorded from ten adult males. Where transects

crossed the same lineages and were in broadly comparable

habitats (eg, III+IV, V+VI, VII+VIII) samples were collected, and

data was recorded and analysed in these transect pairs.

Lineages
The lineages were first investigated using complete cytochrome

b sequence from the mtDNA. PCR-RFLP analyses were then

designed to efficiently assign numerous individuals to a specific

lineage (northwest, southwest, south or central). The cyt b

fragment used in the phylogeographic analysis was digested after

amplification using the restriction enzyme SspI (New England

Biolabs) for 3 hours at 37u. The digested products were run on a

2% agarose gel containing ethidium bromide. This enzyme

distinguishes between the central lineage (uncut by this enzyme),

the southern lineage (cut at position 598) and the clade comprising

the southwestern and the northwestern lineages (cut at position

166). To further distinguish between southwest and northwest

lineages, we digested the same fragment using the restriction

enzyme DraI (New England Biolabs) that cuts the PCR products

from the northwest lineage at position 227, while those from SW

lineage were uncut by this enzyme.

Climate
The habitat type at each site was estimated from a multivariate

climatic profile using nineteen climatic variables from Worldclim

(http://www.worldclim.org/). These variables were annual mean

temperature, mean diurnal range, isothermality, temperature

seasonality, maximum temperature warmest month, minimum

temperature coldest month, temperature annual range, mean

temperature wettest quarter, mean temperature driest quarter,

mean temperature warmest quarter, mean temperature coldest

quarter, annual precipitation, precipitation wettest month, pre-

cipitation driest month, precipitation seasonality, precipitation

wettest quarter, precipitation driest quarter, precipitation warmest

quarter, and precipitation coldest quarter. Logarithm (natural)

transformed data was subjected to principal component analysis.

The component defining the climatic trend along the transect was

plotted and the magnitude of climatic change in this trend can be

taken as the range between maximum and minimum component

scores. If there was an ecotone the cut-point between habitat types

was defined as the midpoint between these maximum/minimum

component scores.

Quantitative traits
A multivariate suite of 21 morphological characters (colour

pattern, trunk hue, scalation, body dimensions) were recorded

[21,39]. The hue of the anterior and posterior dewlap was

recorded using reflectance spectrometry [21] and the spectrum of

each was divided into 6 independent hues following a multiple-

group eigenvector procedure [21,40]. The morphological and

spectrometric characters were then subjected to canonical analysis

with the CVs scaled so that the pooled within-group standard
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deviation was unity. Heteroscedasticity was a problem with

transect III so, as an alternative, a principal component analysis

was also run on normalized site means for this transect.

Genetic structure (neutral nDNA)
The samples were genotyped at nine nuclear microsatellite loci

(AAE-P2F9, ABO-P4A9, AEX-P1H11, ALU-MS06, ARO-035,

ARO-062, ARO-065, ARO-120, ARO-HJ2) [41–43] in a single

multiplex using a Qiagen Multiplex PCR kit with the annealing

temperature at 55u. PCR products were then analysed on an ABI

3130xl genetic analyser and the genotypes scored using Gene-

mapper v4.0 (Applied Biosystems). Hardy-Weinberg equilibrium

and linkage disequilibrium were tested for using Genepop v3.4

[44]. After Bonferoni correction, there were no consistent

departures from Hardy-Weinberg equilibrium, or linkage disequi-

librium. Only one locus in one population showed a significant

departure from Hardy-Weinberg equilibrium (transect I, site 8 for

locus ARO-HJ2), and there was only one significant association

between loci ALU-MS06 and ARO-035 in one population

(transect IV site 3).

The primary genetic structure along each transect was studied

using Bayesian clustering performed by the program STRUC-

TURE v2.1 [45]. We defined the number of populations (K) from

1 to 9 and 10 independent runs were performed for each value of

K using the admixture model, a burn-in of 100,000 steps followed

by 400,000 post burn-in iterations. We determined the optimal

number of populations using the maximum value of the posterior

probability of the data [45]. We also used AMOVA, performed by

Arlequin v3.11 [46], to test for genetic differentiation predicted by

alternative speciation models. Within each transect populations

were grouped by modal lineage, or, where appropriate, by habitat.

For two transects (III, IV), where both types of speciation could

have occurred, this allowed direct comparison of competing

speciation hypotheses. Finally, the mean genetic differentiation

among populations either side of a lineage, or habitat, boundary

along a transect was estimated by calculating the mean

standardized pairwise FST9 using RecodeData v0.1 [47] and

FSTAT v2.9.3 [48]. To give an independent perspective on the

population affinities revealed by the Bayesian clustering we

performed principal component analysis (PCA) of transect site

gene frequencies using PCAGEN [49]. For each transect the PC1

site scores were compared to Bayesian site frequencies (where

K = 2) by correlation.

Goodness of fit and correlation tests
The relationship between lineage, genetic isolation, past

allopatry, ecotone, climate, and adaptive quantitative traits was

investigated at sites along a series of replicated transects (Figure 2)

across the secondary contact zones (transects I to VII) and ecotone

(transects III and IV). Transect IX did not cross any lineage

boundary or ecotone and was used as a control transect.
Geology, lineage, and quantitative traits. For each

transect, we estimated the goodness of fit, phi (Q), between the

geological precursor islands and the mtDNA lineage frequency,

where Q was calculated as ! (x2/n), and x2 was based on a 262

contingency table. For each transect, we also calculated

correlation between the site mean CV scores for QTs and the

mtDNA lineage frequency at each site.

Climate, habitat, and quantitative traits. For each

transect, we calculated the correlation between the site mean

CV scores for QTs and the site PC scores for climatic variables, as

well as estimating the magnitude of variation in QTs (highest site

mean CV minus lowest site mean) and climate (highest site PC

score minus lowest site score).

Genetic clusters and tests of speciation. Individuals were

assigned to a genetic cluster based on Bayesian assignment with

K = 2, and to a category predicted by allopatric speciation based

on the modal mtDNA lineage of the site. As a test of allopatric

speciation, goodness of fit (Q) was then calculated between genetic

clusters and predicted allopatric species via a x2 based on a 262

contingency table (for complete speciation Q approaches unity).

Similarly, individuals were assigned to a category predicted by

ecological speciation based on the habitat type of the site. As a test

of ecological speciation, goodness of fit (Q) was then calculated

between genetic clusters and predicted ecological species via a x2

based on a 262 contingency table.

Supporting Information

Figure S1 Bimodality in quantitative traits. Frequency histo-

gram of individuals along coastal transect I showing bimodality in

quantitative traits at this spatial scale. The variable is canonical

variate 1 (units in within-group standard deviations). Northwestern

precursor individuals are the right mode, central precursor

individuals are the left mode, without any overlap.

Found at: doi:10.1371/journal.pgen.1000929.s001 (0.02 MB PDF)

Figure S2 Principal component analyses. Principal component 1

score (vertical axis) for each site (horizontal axis) for transect

I = VIII. The legend is as for Figure 3, except r is the correlation

between the PC1 score and the frequency of Bayesian clusters

when K = 2.

Found at: doi:10.1371/journal.pgen.1000929.s002 (0.03 MB PDF)

Table S1 Mean posterior probabilities (over 10 replicates) for

STRUCTURE for K clusters. Maximum values are in bold.

Found at: doi:10.1371/journal.pgen.1000929.s003 (0.01 MB PDF)
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