
Genome analysis

MuCor: mutation aggregation and correlation

Karl W. Kroll1, Ann-Katherin Eisfeld2, Gerard Lozanski3,

Clara D. Bloomfield1,4, John C. Byrd1,4 and James S. Blachly1,4,*

1Division of Hematology, Department of Internal Medicine, 2Department of Human Cancer Genetics and Molecular

Virology, 3Department of Pathology, The Ohio State University, Columbus, OH 43210 and 4The Ohio State University

James Comprehensive Cancer Center, Columbus, OH 43210, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on 17 July 2015; revised on 30 December 2015; accepted on 18 January 2016

Abstract

Motivation: There are many tools for variant calling and effect prediction, but little to tie together large

sample groups. Aggregating, sorting and summarizing variants and effects across a cohort is often

done with ad hoc scripts that must be re-written for every new project. In response, we have written

MuCor, a tool to gather variants from a variety of input formats (including multiple files per sample),

perform database lookups and frequency calculations, and write many types of reports. In addition to

use in large studies with numerous samples, MuCor can also be employed to directly compare variant

calls from the same sample across two or more platforms, parameters or pipelines. A companion util-

ity, DepthGauge, measures coverage at regions of interest to increase confidence in calls.

Availability and implementation: Source code is freely available at https://github.com/blachlylab/

mucor and a Docker image is available at https://hub.docker.com/r/blachlylab/mucor/

Contact: james.blachly@osumc.edu

Supplementary data: Supplementary data are available at Bioinformatics online.

1 Introduction

Examination of genomic variants from multiple samples is a com-

mon procedure in bioinformatics. Whether to use existing tools or

custom scripts depends on many factors, including the number of

samples, source(s) of data and scope of the project. A typical work-

flow may involve variant annotation, extraction of variants from

VCF files, binning loci into features, calculating summary statistics,

filtering, limiting by region and writing to a tab-separated values

table. Finally, this table is imported into a statistical package for cal-

culations or to Microsoft Excel for use by end-users or inclusion as a

data supplement to a paper.

Existing tools provide only parts of this workflow. The Genome

Analysis Toolkit (McKenna et al., 2010; DePristo et al., 2011) func-

tion CombineVariants, JoinX (http://gmt.genome.wustl.edu/pack

ages/joinx/), and vcftools all can merge records from VCF files, but

produce only another VCF file in turn. The resultant VCF is neces-

sarily focused on individual genomic locations, and a study of fea-

tures (e.g. genes) requires additional work on the part of the

bioinformatician. Further, a multi-sample VCF file may be viewed

interactively in a genome browser but is not suitable as a locus-wise

frequency table for the biologist or statistician. Transformation of

such a VCF to a detailed report again requires additional processing.

Some commercial products purport to be end-to-end solutions, but

these are not available to all. Variant ToolChest (Ebbert et al.,

2014) is open-source, but is designed around subsetting and has

only preliminary support for non-VCF reporting.

Motivated by these factors, we developed MuCor, a flexible tool

for variant aggregation and summarization. MuCor collects variants

from an arbitrary number of sources, assigns them to user-defined

features (typically but not necessarily genes), looks them up in vari-

ant databases, calculates metrics and generates reports, all within a

configurable and extensible framework.

2 Implementation and usage

2.1 Implementation
MuCor is written in Python2 (�2.7.0) and uses the following libra-

ries not included with the Python standard library: numpy (Van Der

VC The Author 2016. Published by Oxford University Press. 1557

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(10), 2016, 1557–1558

doi: 10.1093/bioinformatics/btw028

Advance Access Publication Date: 23 January 2016

Applications Note

https://github.com/blachlylab/mucor
https://github.com/blachlylab/mucor
https://hub.docker.com/r/blachlylab/mucor/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://gmt.genome.wustl.edu/packages/joinx/
http://gmt.genome.wustl.edu/packages/joinx/
http://www.oxfordjournals.org/


Walt et al., 2011), pandas and HTSeq (Anders et al., 2015). It can

optionally make use of pytabix and xlsxwriter to enable add-

itional functionality. MuCor is used in two stages: setup and run.

Project setup can be as simple as running the configure script,

yielding a JSON settings file. In ‘autodetect’ mode, the script scans

the project directory recursively for all supported variant call files

belonging to a supplied list of sample IDs; a single sample may have

more than one associated VCF file (e.g. if SNV and indel detection

are performed separately). The setup script also establishes links to

variant databases against which the study samples will be checked.

The final configuration can be adjusted prior to run phase.

In the run phase, MuCor parses the JSON configuration file and

reads samples, databases, annotation and region files in to the ana-

lysis core. It then groups variants according to features specified in

the annotation, optionally limited to region(s) of interest, calculates

summary metrics and reports the information about each variant,

feature and sample in output reports. The key vehicle by which this

is accomplished is the pandas DataFrame (df). By leveraging the

grouping, aggregation and pivoting functions native to pandas, the

variant data can be swiftly manipulated in myriad ways. For ex-

ample, all variants can be condensed to the gene level using

df.groupby, while data could be reformatted into a sample �
gene matrix with df.pivot or df.stack.

The three steps of the run phase—input, aggregation and ana-

lysis, and reporting—are distinctly separated to make MuCor easy

to extend. New input and output formats are easily coded (see

Supplementary material), while any run can be limited to regions of

interest and cross-referenced against an arbitrary number of variant

databases with merely a configuration change. Figure 1 summarizes

MuCor’s modular approach.

MuCor is not a variant annotator: functional effect prediction is

better left to specialized tools. In support of this, MuCor accepts as

input data that have already been decorated with a functional effect

prediction, retains this information through processing and passes it

through to the output. Furthermore, some MuCor reports are in a

form suitable for further processing by variant effect prediction soft-

ware, a more efficient approach for large cohorts (i.e. hundreds to

thousands of samples) than per-sample effect prediction.

2.2 Usage
Detailed instructions and sample workflows are given in the

Supplementary material. Configuration begins by specifying an an-

notation in GTF/GFF3 format, a feature type for grouping, a list of

samples and one or more report types. The user may optionally spe-

cify reference databases (e.g. dbSNP, 1000 Genomes, COSMIC) and

limit analysis to regions of interest. Variant files are automatically

detected. The resultant JSON file may be hand-edited prior to exe-

cution, or retained for reproducibility.

A corresponding run requires only passing the configuration file;

output is written to a prespecified directory. Reports range in scope

from summary-level counts across broad regions of interest to vari-

ant-specific metrics on a per-sample basis. The Supplementary mater

ial contains a list of all report types and some example reports.

Finally, DepthGauge, a companion program, queries source

BAM files for total reads at each defined region in all samples to im-

prove confidence in the veracity of wild-type calls.

The generality of MuCor makes it useful for additional applica-

tions beyond comparing variants across samples. We have also used

it to compare sequencing platforms, variant calling tools and pipe-

lines within a single sample. In this case, the comparisons reveal con-

cordance and discordance between platforms or tools, rather than

between samples as in the canonical usage. See example workflow 3

in the Supplementary material.

3 Conclusions

We have created MuCor, a tool to aggregate and report genomic

variants in configurable, meaningful groups. A key goal is general-

ity, that it may replace the ad hoc scripting often performed in the

course of routine bioinformatic analyses of multiple samples. A flex-

ible runtime and modular architecture ensure broad applicability:

we have applied MuCor for its intended use by aggregating hun-

dreds to thousands of cases, but also for novel uses, such as compar-

ing different variant calling software pipelines or different

sequencing platforms. By separating input parsers, the annotation

and analysis core, and output reporting into distinct components,

MuCor is modular and expandable through new input plugins, new

annotations or auxiliary databases, and definition of new output re-

port formats.

Funding

This work was supported by the National Institutes of Health [P30

CA016058] and in part by an allocation of computing resources from The

Ohio Supercomputer Center.

Conflict of Interest: none declared.

References

Anders,S. et al. (2015) HTSeq—a Python framework to work with high-

throughput sequencing data. Bioinformatics, 31, 166–169.

DePristo,M.A. et al. (2011) A framework for variation discovery and genotyp-

ing using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Ebbert,M.T.W. et al. (2014) Variant Tool Chest: an improved tool to ana-

lyze and manipulate variant call format (VCF) files. BMC Bioinformatics,

15, S12.

McKenna,A. et al. (2010) The Genome Analysis Toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.,

20, 1297–1303.

Van Der Walt,S. et al. (2011) The NumPy array: a structure for efficient nu-

merical computation. Comput. Sci. Eng., 13, 22–30.

Fig. 1. Schematic of MuCor’s inputs, engine and outputs. Many more input

and output types are available. See Supplementary materials

1558 K.W.Kroll et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw028/-/DC1

