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Abstract: While exercise training (ET) is an efficient strategy to manage obesity, it is recommended
with a dietary plan to maximize the antiobesity functions owing to a compensational increase in
energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity
to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be
further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure
and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and
fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg)
was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were
analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated
beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in
skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001)
and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for
maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but
CI without ET may not be beneficial in managing obesity.

Keywords: exercise training; capsiate; capsaicin; obesity; metabolism; energy expenditure; abdominal
fat; adrenoceptor; skeletal muscle; adipose tissue

1. Introduction

Obesity causes an endocrine imbalance that can lead to various metabolic disorders
such as cardiovascular disease and type 2 diabetes [1]. This is because excess adipose
tissue abnormally generates a large amount of cytokines and bioactive mediators, namely
leptin and interleukin-6 [2]. Eventually, obesity increases the risk of mortality [3] and is a
persistent global health issue. Thus, considerable efforts are being made globally to reduce
the incidence of obesity and obesity-associated disorders.

Exercise is one of the primary and most efficient ways to manage obesity. Exercise
training (ET) is not only an energy-burning activity, but it also enhances the fat oxidation
capacity [4], fat-free mass [5], and energy metabolism levels at rest [6], eventually leading
to an negative energy balance and weight loss. Although ET is known to be an obvious
antiobesity activity, exercise-induced weight loss is often lower than that predicted by
the total expenditure of calories [7,8]. A recent study found that this discrepancy, known
as “weight compensation,” results primarily from a concomitant increase in appetite and
subsequent increased energy intake, especially in response to long-term exercise [9]. This
phenomenon has also been reported in rodents [10]. It indicates that a dietary strategy
may be necessary to maximize the antiobesity function of exercise especially in the long-
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term [9,11]. A typical dietary strategy used in the management of obesity is the intake of
bioactive compounds to increase the level of energy expenditure [12,13].

Capsiate, first isolated from the “CH-19 Sweet pepper,” is a capsaicin analog [14]
(Figure 1) and a notable bioactive compound [15]. While capsaicin has a strong, spicy taste
and ingestion of large amounts can lead to gastritis [16], capsiate is not pungent [17]. It can
also enhance energy expenditure to an extent equal to that of capsaicin [18,19]. Owing to
these reasons, capsiate was chosen and studied as a dietary compound over capsaicin.
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Capsiate enhances energy metabolism mainly via the activation of the sympathetic
nervous system (SNS) [20,21]. Subsequently, blood noradrenaline and adrenaline con-
centration levels are enhanced [21,22], and the resting oxygen uptake is increased [19,22]
upon the acute intake of capsiate. Moreover, capsiate intake (CI) for more than 2 weeks
significantly reduced body weight, body fat percentage [23], and abdominal fat [19,24] both
in humans and in a rodent model. Thus, capsiate has been considered a possible dietary
supplement to ameliorate obesity [15].

Collectively, the results of these previous studies highlight the benefits of ET and CI
in preventing obesity. However, only one study investigated the combinatorial effects
of exercise and capsiate, but it had its limitations as the total amount of CI and exercise
volume were not strictly controlled [25]. Meanwhile, the antiobesity effects of exercise in
combination with capsaicin are well documented [26,27], suggesting the probable benefits
of combination treatment with exercise and capsiate in ameliorating obesity. Therefore,
the aim of this study was to examine whether the antiobesity effects of ET can be further
enhanced by CI through a change in resting energy expenditure in diet-induced obese mice
as well as its effects on metabolism-associated molecules and key enzymes in the blood,
adipose tissue, and skeletal muscles. Despite the fact that skeletal muscles are the most
critical determinants of the resting energy metabolism rate [28], no study has examined the
effects of ET with CI on metabolism-related molecules in skeletal muscles.
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2. Results
2.1. Body Weight, Food Intake, and Feed Efficiency Ratio

At the beginning of the experiment, there was no significant difference in body weight
(BW) among the groups. After 8 weeks of mild-intensity exercise and CI together with a
high-fat diet, the post-BW of the exercise-trained with CI group (EXE+CAP) clearly tended
to be lower than that of the exercise-trained vehicle group (EXE), but there was no statistical
difference (Table 1). However, post-BW of EXE+CAP was significantly lower than that
of the sedentary with CI group (CAP), and there was no difference between the EXE and
sedentary vehicle groups (CON). Subsequently, the body weight gain (BWG) of EXE+CAP
tended to be lower than that of EXE and significantly lower than that of CAP, but there
was no difference in BWG between EXE and CON (Table 1).

Table 1. Results of body weight, body weight gain, food intake, feed efficiency ratio, and the
proportion of adipose tissue.

CON CAP EXE EXE+CAP

BW (g) Pre 34.91 ± 1.87 35.08 ± 2.49 35.28 ± 1.84 34.69 ± 1.48
Post 47.79 ± 1.54 49.40 ± 4.95 46.95 ± 4.70 44.03 ± 1.22 †

BWG (g/8 wk) 12.88 ± 2.36 14.32 ± 2.63 11.68 ± 4.51 9.34 ± 1.15 †

FI (g/8 wk/mouse) 177.7 ± 3.00 169.7 ± 12.4 188.5 ± 11.1 * 201.5 ± 3.96 †,§

FER (BWG/FI*100) 7.26 ± 1.42 8.49 ± 1.75 6.21 ± 2.36 4.64 ± 0.61 †

Adipose tissue (mg/BW g)
Epididymal 37.33 ± 4.74 46.93 ± 6.64 * 33.50 ± 9.11 28.53 ± 8.70 †

Perirenal 15.34 ± 3.99 20.14 ± 4.25 * 16.71 ± 6.53 11.11 ± 2.88 †

Mesenteric 27.40 ± 3.21 30.85 ± 3.85 25.09 ± 2.92 22.58 ± 3.65 †

Total 80.07 ± 7.15 97.92 ± 10.2 * 75.30 ± 18.1 62.21 ± 14.6 †

CON, sedentary control group; CAP, sedentary with capsiate intake group; EXE, exercise-trained control group;
EXE+CAP, exercise-trained with capsiate intake group; BW, body weight; BWG, body weight gain; FI, food intake;
FER, feed efficiency ratio. Values represent the mean ± standard deviation (n = 8). * p < 0.05 vs. CON; † p < 0.05
vs. CAP; § p < 0.05 vs. EXE.

Notably, the food intake (FI) of EXE+CAP was significantly higher than that of EXE
(Table 1). Furthermore, the FI of EXE+CAP or EXE was significantly higher than that of
CAP or CON, respectively. Overall, the feed efficiency ratio (FER) of EXE+CAP was clearly
the lowest compared to the other groups and was significantly lower than that of CAP.
However, there was no difference between the EXE and CON groups (Table 1).

Thus, the antiobesity effects of ET can be further enhanced by CI in diet-induced
obese mice.

2.2. The Proportion of Abdominal Fat

Similar to the above results, the proportions of epididymal, perirenal, mesenteric, and
total abdominal fat of EXE+CAP clearly tended to be lower than those of EXE and also
exhibited the lowest levels compared to the other groups (Table 1). Additionally, the fat pro-
portions of EXE+CAP were significantly lower than those of CAP, but there was no differ-
ence between EXE and CON. Thus, ET with CI has additive effects on preventing obesity.

Additionally, interestingly, there were unexpected results in the sedentary groups. The
proportion of abdominal fat of CAP was significantly higher than that of CON (Table 1).
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2.3. Metabolism-Related Molecules in Blood

The concentration of leptin of EXE+CAP was significantly lower than that of EXE.
Furthermore, leptin concentration of EXE+CAP was significantly lower than that of CAP,
but there was no difference between CAP and CON (Table 2). Additionally, interestingly,
the leptin concentration of CAP was significantly higher than that of CON. These results
were in line with our results of the proportion of adipose tissue (Table 1).

Table 2. Leptin, noradrenaline, glucose, and insulin concentrations in blood.

CON CAP EXE EXE+CAP

Leptin(ng/mL) 18.97 ± 4.42 26.83 ± 9.12 * 18.51 ± 8.95 9.84 ± 5.74 †,§

Noradrenaline
(pg/mL) 73.54 ± 9.32 86.87 ± 5.02 * 80.45 ± 2.89 78.17 ± 4.01 †

Glucose (mg/dl) 153.3 ± 46.8 172.3 ± 47.1 194.6 ± 66.1 186.0 ± 66.1
Insulin (ng/mL) 0.86 ± 0.24 0.83 ± 0.28 0.77 ± 0.32 0.79 ± 0.39

CON, sedentary control group; CAP, sedentary with capsiate intake group; EXE, exercise-trained control group;
EXE+CAP, exercise-trained with capsiate intake group. Values represent the mean ± standard deviation (n = 8).
* p < 0.05 vs. CON; † p < 0.05 vs. CAP; § p < 0.05 vs. EXE.

The concentration of noradrenaline of CAP was most upregulated compared to that
in the other groups. The noradrenaline level of CAP was significantly higher than that of
CON (Table 2). Additionally, the noradrenaline concentration of EXE+CAP was signifi-
cantly lower than that of CAP, but there was no difference between EXE and CON. The
concentrations of glucose and insulin were not significantly different among the groups
(Table 2).

Thus, ET combined with CI can further reduce the deposition of abdominal fat despite
increasing energy intake in diet-induced obese mice. On the contrary, we found that CI
without exercise could increase the abdominal fat rate. This finding is contrary to those
of most previous studies that demonstrated the antiobesity effects of capsiate. From the
perspective of energy balance, an analysis of the resting metabolic rate (RMR) might be
able to explain these results.

2.4. Resting Metabolic Rate

From the results of energy expenditure (EE) at rest, there was no difference between
EXE+CAP and EXE (Figure 2b). However, interestingly, CAP generally showed the lowest
level of EE throughout the 24 h of analysis compared to the other groups (Figure 2a);
additionally, the total EE of CAP tended to be lower than that of CON by 9% (CON:
333.3 ± 40.3, CAP 303.2± 26.2 kcal/kg/24 h) (Figure 2b). There was a significant difference
between EXE+CAP and CAP but not between EXE and CON.

Similarly, from the results of fat oxidation (FO), CAP generally showed the lowest
level of FO (Figure 2c); moreover, the total FO of CAP tended to be lower than that of CON,
though it was not significantly different (Figure 2d). From the results of carbohydrate
oxidation (CO), there was a significant difference only between the total CO of EXE+CAP
and CAP (Figure 2e,f).

Collectively, the results indicated that the additive antiobesity effects of ET with CI
did not result from RMR. However, it was considered that the increase of the abdominal
fat rate in CAP resulted from the decreased EE at rest.



Int. J. Mol. Sci. 2021, 22, 769 5 of 18Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 2. RMR data for EE, FO, and CO: (a,c,e) represent the changes in EE, FO, and CO over time 

for 24 h, respectively; (b,d,f) represent the total EE, FO, and CO for 24 h, respectively. Supple, sup-

plement effect; Tr, training effect; Inter, interaction effect; RMR, resting metabolic rate; EE, energy 

expenditure; FO, fat oxidation; CO, carbohydrate oxidation; CON, sedentary control group; CAP, 

sedentary with capsiate intake group; EXE, exercise-trained control group; EXE+CAP, exercise-

trained with capsiate intake group; SED, sedentary groups; ETR, exercise-trained groups. Values 

represent the mean ± standard deviation (n = 7). # p < 0.05. 

Figure 2. RMR data for EE, FO, and CO: (a,c,e) represent the changes in EE, FO, and CO over time for 24 h, respectively;
(b,d,f) represent the total EE, FO, and CO for 24 h, respectively. Supple, supplement effect; Tr, training effect; Inter,
interaction effect; RMR, resting metabolic rate; EE, energy expenditure; FO, fat oxidation; CO, carbohydrate oxidation;
CON, sedentary control group; CAP, sedentary with capsiate intake group; EXE, exercise-trained control group; EXE+CAP,
exercise-trained with capsiate intake group; SED, sedentary groups; ETR, exercise-trained groups. Values represent the
mean ± standard deviation (n = 7). # p < 0.05.
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2.5. Correlation between Resting EE and the Proportion of Total Abdominal Fat

To support this assertion, the correlation between EE and the proportion of total
abdominal fat was determined. When the analysis was conducted on all the groups, there
was a significant, negative, weak correlation (r = −0.392; p = 0.039) between EE and the
proportion of total abdominal fat (Figure 3a). However, there was a significant, negative,
moderate to strong correlation (r = −0.608; p = 0.021) when the analysis was limited to
the sedentary groups (Figure 3b). Furthermore, while the values of CAP tended to be
concentrated on the upper-left side (lower EE and higher proportion of total abdominal
fat), those of CON tended to be concentrated on the bottom-right side (higher EE and lower
proportion of total abdominal fat). However, there was no significant correlation (r = 0.067;
p = 0.820) when the analysis was conducted only on the trained groups (Figure 3c).
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2.6. Metabolism-Associated Protein Expression in Soleus Muscle

The soleus muscle is a typical oxidative skeletal muscle. Citrate synthase (CS) and
malate dehydrogenase 2 (MDH2), the key enzymes of oxidative energy metabolism, and
peroxisome proliferator-activated gamma coactivator 1-alpha (PGC1α), the transcriptional
factor of mitochondrial biogenesis, were analyzed by Western blotting. Additionally,
beta-2 adrenoceptor (β2AR), the receptor of adrenaline and noradrenaline predominantly
distributed in skeletal muscle, was analyzed as capsiate mainly acts by stimulating the SNS.
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While ET significantly elevated the protein expression of CS, MDH2, and PGC1α in
the soleus muscle, CI had no effect (Figure 4a–c,e). The protein expression level of β2AR
was not affected by ET as well as by CI (Figure 4d,e). Thus, ET with CI did not additively
affect metabolism-associated protein expression in soleus muscle.
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and β2AR, respectively; (e) representative Western blot images. Supple, supplement effect; Tr, training effect; Inter,
interaction effect; CS, citrate synthase; MDH2, malate dehydrogenase 2; PGC1α, peroxisome proliferator-activated gamma
coactivator 1-alpha; β2AR, beta-2 adrenoceptor; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; CON, sedentary
control group; SED, sedentary groups; ETR, exercise-trained groups. Values represent the mean ± standard deviation
(n = 6). # p < 0.05.

2.7. Metabolism-Associated Protein Expression in Plantaris Muscle

The plantaris muscle is a typical glycolytic skeletal muscle. Thus, hexokinase 2 (HXK2),
the rate-limiting enzyme of glycolysis, glucose transporter 4 (GLUT4), and β2AR were
analyzed by Western blot analysis.

In line with the results of the soleus muscle, while ET significantly elevated the protein
expression of HXK2 and GLUT4 in plantaris muscle, CI had no effect (Figure 5a,b,d). The
protein expression level of β2AR was not affected by ET as well as CI (Figure 5c,d). These
results revealed that ET with CI did not additively affect the metabolism-associated protein
expression in plantaris muscle as well.
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2.8. Protein Expression of Beta-3 Adrenoceptor in Epididymal Adipose Tissue

Unlike the results of the skeletal muscles, the protein expression level of beta-3 adreno-
ceptor (β3AR), the receptor of adrenaline and noradrenaline predominantly distributed
in the adipose tissues, was solely elevated by the combination of exercise and capsiate
(Figure 6a,b). It indicated that the ability of lipolysis was enhanced. Therefore, it was con-
sidered that the additive antiobesity effects of ET with CI resulted from the enhancement
of lipolysis ability according to β3AR upregulation in abdominal adipose tissue.
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3. Discussion

The purpose of this study was to examine whether the antiobesity effects of ET can
be further enhanced by CI through the modification of energy metabolism in the diet-
induced obese mice. Additionally, we examined its effects on the metabolism-associated
molecules and key enzymes in skeletal muscles, adipose tissues, and blood. After the
8-week experimental period, the combination of ET and CI exhibited additive effects in
preventing obesity. The proportion of abdominal fat and the level of blood leptin were
reduced the most by these chronic cotreatments. However, the resting EE was not enhanced.
Thus, we assumed that the additive antiobesity effects of ET and CI were due to another
cause, and not from RMR. Then, we deduced that these effects may result from a change of
metabolism during exercise.

One important feature of ET, related to obesity management, is that it can enhance
FO capacity during exercise [4,29]. It means that fat is preferentially oxidized over car-
bohydrate, as a fuel, even when an equal amount of exercise is performed, at an equal
absolute exercise intensity [30]. Similarly, CI before exercise could play a role like a “warm
up” to accelerate the FO during exercise. In previous studies, CI was found to activate
the SNS [21]. Subsequently, the adrenaline and noradrenaline levels in blood were en-
hanced by acute treatment with capsiate in humans [22] and rodents [21]; consequently,
the released catecholamines promoted fat utilization and thermogenesis [31,32]. Indeed, CI
before exercise decreased the respiratory exchange rate and increased fax oxidation during
exercise [33]; moreover, according to the results of the current study, the β3AR protein
expression of EXE+CAP was significantly upregulated in adipose tissue. This indicated
that the ability of lipolysis was enhanced. Additionally, it has been clearly shown that
certain bioactive supplements, especially caffeine and green tea extract, when consumed
before exercise, enhance FO during exercise [34]. Thus, the additive antiobesity effects of
ET and CI may have resulted from an increase in FO during ET.

Unfortunately, there was no additional upregulation of the protein expression of
energy metabolism-related key enzymes and factors in the skeletal muscles. Considering
previous studies, mild-intensity endurance ET was enough to enhance the energy-metabolic
proteins in the skeletal muscles [35]. However, there is no previous study to investigate the
effect of capsiate on metabolism-related factors in skeletal muscles. Thus, we deduced that
the reason the metabolic enzymes and factors in skeletal muscle were not affected, even by
long-term CI, might be associated with the way capsiate functions.

Capsiate-induced EE is mainly caused by the activation of SNS [21], adrenaline se-
cretion from the adrenal medulla [21], and stimulation of nonshivering thermogenesis
though uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) [20,36]. As a result,
UCP1 protein expression in BAT is subsequently increased by CI [36]. Similarly, the current
study showed that the level of blood noradrenaline was upregulated in CAP and UCP1
protein expression in BAT was increased by CI in both the sedentary and exercise-trained
groups (p = 0.054) (Appendix A, Figure A1a,b). However, the metabolism-related proteins
in skeletal muscles did not show any differences or even any trends between the untreated
and capsiate groups. Hence, it can be deduced that skeletal muscles cannot be the main
target of capsiate in increasing EE. Therefore, we suggest that further studies on the effect
of capsiate on skeletal muscles will be required to confirm whether another metabolism-
related molecular pathway, such as 5′ AMP-activated protein kinase (AMPK) signaling
pathway, is associated or not.

In the current study, there were certain unexpected results such as CI without ex-
ercise increased the proportion of total abdominal fat in diet-induced obese mice. This
result is contrary to that of most previous studies that reported the antiobesity effects of
capsiate [15,22,24]. However, some previous studies on capsiate concur with our results.
A critical review and meta-analysis of studies on capsiate [37] reported that four out of
seven studies that evaluated the effect of capsiate on weight loss in humans found it to be
effective, whereas the other three studies reported no effect. The impact of capsiate was
more likely to be negative when the subjects of the experiment were mainly overweight
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and/or obese. Thus, the author of this review suggested that further investigation was
required in overweight/obese individuals to confirm whether capsiate is an appropriate
compound for prevention or treatment of obesity. In this perspective, given that the subjects
of the current study were mice fed with high-fat diet, our finding that chronic intake of
capsiate could increase the proportion of total abdominal fat is worthy of attention. The
fact that the blood leptin concentration was elevated in CAP could support this result.
Leptins are released from adipocytes, hence, as obesity progresses more due to high-fat
diet, the blood leptin level is gradually elevated [38,39].

From the results of our study, we deduced that the increased abdominal fat rate by
chronic CI resulted from a decreased EE at rest, although there have been no previous
reports of capsiate reducing EE at rest. It is also partially supported by the negative correla-
tion between EE and the proportion of total abdominal fat. To explain these unexpected
results, we tentatively suggest that there are two possible pathways: (1) capsiate affects the
central nervous system, which may be related to the decreased EE at rest and (2) sympa-
thetic hyperactivity could decrease the ability to dissipate calories by the downregulation
of βAR.

In a previous study that used functional magnetic resonance imaging (fMRI), several
regions of the brain, including the hippocampus, amygdala, thalamic nuclei, and hypotha-
lamic areas, were affected by the intragastric infusion of capsiate via the capsaicin and cap-
siate receptors (transient receptor potential cation channel subfamily V member 1, TRPV1)
located in the central nervous system [40]. Among the affected regions, the hippocampus
is closely associated with depression-like behavior [41,42], and depression could cause
obesity by biologically, psychologically, and behaviorally attenuating metabolism [43,44].
Additionally, it has been well documented that depressive symptoms and the level of
physical activity are negatively correlated [44,45]. Interestingly, during the progression of
the current study, we observed that the sedentary groups, especially CAP, were relatively
inactive while the exercise-trained groups were not. Thus, after careful consideration,
we decided to conduct the tail suspension test (TST), a method of assessing the level of
depression in rodents [46], to estimate the level of physical activity, using the correlation
between immobility time (measured by TST) and EE at rest. Notably, the immobility time
of CAP was significantly longer than that of CON but there was no difference between EXE
and EXE+CAP (Appendix B, Figure A2a). Furthermore, there was a significant, negative,
weak to moderate correlation (r = −0.417, p = 0.047) between the immobility time and EE
(Figure A2b). Additionally, the values of CAP tended to be concentrated on the upper-left
side (lower EE and longer immobility time) in contrast to the other groups.

While there was no report of the effect of capsiate on the hippocampus, there was
evidence that capsaicin can attenuate hippocampal function. In vivo, proliferation of
neural progenitor cells in the hippocampus was significantly suppressed by intraperitoneal
administration of capsaicin for 2 weeks [47]. In vitro, the Notch and Hedgehog pathways,
which inhibit neural progenitor cell proliferation in the hippocampus, were activated by
capsaicin through TRPV1, which resulted in the attenuated proliferation of hippocampal
neural progenitor cells [48]. Considering these previous findings, we assumed that chronic
intake of capsiate might induce depression-like behavior by suppressing hippocampal
neurogenesis, with the result that mice became inactive and then liable to gain weight.
Additionally, given that exercise is a well-known treatment to improve hippocampal
neurogenesis [49,50], the fact that the characteristic features of CAP did not occur in
EXE+CAP could provide supporting evidence.

The other possible mechanism is related to sympathetic hyperactivity. A previous
study asserted that sympathetic hyperactivity might decrease the ability to dissipate
calories, via downregulation of βAR [51]. In another study using isoproterenol, an agonist
of the βAR, heart rate and EE responses were less sensitive to infusions of isoproterenol in
a sympathetic-hyperactivated group than in a control group. Furthermore, the heart rate
and EE responses were negatively correlated with the norepinephrine levels, indicating
that sympathetic hyperactivity caused a downregulation of βAR responses [52].
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Intake of capsiate activates the SNS [20] causing subsequent rise in the blood concen-
tration of noradrenaline [22]. Sympathetic nerves are also activated by leptin released from
adipocytes [53], and a person who has a higher body mass index or fat mass also has a
higher level of plasma leptin [54] owing to obesity-induced leptin resistance [39]. In these
contexts, it is very likely that the SNS was hyperactivated in the CI groups owing to the
intake of both capsiate and high-fat diet. Indeed, in the current study, the blood levels of
noradrenaline and leptin were most significantly increased in CAP.

Considering all these points, the reduction in resting EE in CAP might be caused
by sympathetic hyperactivation via downregulation of βAR. Additionally, given that the
enhancement of parasympathetic regulation is one of the responses to ET [55,56], the results
that the blood noradrenaline level was not increased in EXE+CAP and the resting EE was
not decreased in EXE+CAP could provide supporting evidence. However, βAR protein
expression levels of CAP were not affected in skeletal muscles and adipose tissue. Thus,
further studies on the current topic are recommended with a focus on metabolism and SNS.

The major limitation of this study is that the evidence at molecular level was insuffi-
cient to validate the two main findings of the study. However, we tried to show various
results to support our assertions. Additionally, we discussed our main findings in a broad
context so that they can provide sufficient insights for future studies. Second, a naïve
group was excluded from our study. Considering that feeding the high-fat diet is a verified
method of inducing obesity in rodent models [57] and our main interest was to examine
the antiobesity effects of ET and CI on the obese subjects, it was not necessary to include a
naïve group. Third, we cannot calculate sample size to determine the appropriate number
of animals because there were not enough suitable previous studies to estimate Cohen’s f.

4. Materials and Methods
4.1. Animal Care

Before the experimental period, 8-week-old male ICR mice (34.9 ± 1.92 g) were
adapted to the laboratory environment. The mice were purchased from Orient Bio Inc.,
Seongnam, Korea. All the mice (n = 32) were housed in standard plastic cages (four mice
per cage) under controlled humidity (50–55%), temperature (23 ± 1 ◦C), and lighting
(12:12-h light-dark cycle; lights on at 08:00). They were fed a high-fat diet, where 60%
of the energy intake was from fat (HFD; Research Diets, Inc., New Brunswick, NJ, USA)
(Supplementary materials, Tables S1 and S2), and water was available ad libitum. This
study was approved by Konkuk University Institutional Animal Care and Use Committee
(No. KU18005-3; 2018-11-08).

4.2. Study Design

Mice were randomly divided into four groups (n = 8 per group): CON, CAP, EXE, and
EXE+CAP. CAP and EXE+CAP were orally administrated 10 mg/kg of capsiate. CON and
EXE were also orally administrated the equal volume of solvent without capsiate. BW and
FI were measured daily.

ET intensity was set at “mild” (about 60% maximal oxygen uptake), to prevent any
concealment of the capsiate effect that might arise from harder training. The training by
treadmill was conducted on 09:00–10:00, five times per week for 8 weeks and the absolute
exercise intensity was gradually increased to avoid decreasing the relative exercise intensity
(Supplementary materials, Table S3). Capsiate was administered 30 min before training
(Figure 7).
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4.3. RMR Analysis

To investigate the additive effects of ET with CI on energy metabolism at rest, RMR
analysis was conducted on the last weekend of the experiment, for 24 h. Capsiate was ad-
ministered just before the measurement. HFD and water were served ad libitum. Mice were
isolated and randomly assigned to metabolic chambers to measure the energy metabolism
at rest. The metabolic chambers use an open-circuit method and the volume of each
chamber was 3 L. The average flow rate for each chamber was set to 3 L/min. An acrylic
tube was connected to each chamber for the manipulation of air volume. Respiratory gas
analysis (O2 uptake and CO2 production) was conducted by using a mass spectrometer
(ALCO-2000, ARCO System, Chiba, Japan) via a switching system (ARCO-2000-GS-8,
ARCO System, Chiba, Japan) that allowed the spectrometer to sample the gas from each
chamber, every 15 s in turn. EE, FO, and CO were calculated from the measurements of
respiratory gas.

4.4. Tissue Preparation

At the end of the experiment, all the mice were restricted from intake of food for 2 h
before dissection, to control variation induced by food mass intake. BAT, soleus muscles,
plantaris muscles, epididymal, perirenal, and mesenteric fat were surgically obtained from
the mice, under deep anesthesia from 10 µL/g of 1.25% avertin. Total abdominal fat was
calculated from the sum of epididymal, perirenal, and mesenteric fat. All the tissues were
weighed and stored at −80 ◦C immediately after dissection.

Note that the data of BW, FI, and abdominal fat, the result of Table 1, were coused
with the previously published paper [33].

4.5. Blood Parameters

The venous blood samples were immediately collected and allowed to clot for 30 min
at 24–25 ◦C before centrifuging at 2000× g for 15 min at 4 ◦C. Serum was transferred to a new
tube and stored at −80 ◦C. We used ELISA kits for the analysis of the serum concentrations
of leptin (KMC2281, Thermo Fisher Scientific, Waltham, MA, USA), noradrenaline (CSB-
E07870m, CUSABIO, Wuhan, China), and insulin (80-INSMS-E01, ALPCO, Salem, NH,
USA) and colorimetric kit for the detection of the serum concentration of glucose (K039-H1,
Arbor Assays, Ann Arbor, MI, USA).

4.6. Western Blot Analysis

The right lobe of BAT, right soleus muscle, right plantaris muscle, and epididymal fat
(150 mg) were homogenized using a homogenizer with 500, 180, 250, and 230 µL of protein
extraction buffer, respectively (EzRIPA Lysis kit, ATTO, Tokyo, Japan). For obtaining
adipose tissue samples, lysates were centrifuged at 20,000× g, 4 ◦C for 15 min. Then, the
layer of lipids (top layer) was removed, and clear supernatants were transferred to a new
tube. The supernatants were centrifuged again at 20,000× g, 4 ◦C for 15 min. Finally, the
supernatants were transferred to a new tube. For samples from other tissues, lysates were
centrifuged at 14,000× g, 4 ◦C for 15 min and the supernatants were transferred to a new
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tube. The protein concentration of the lysates was determined by BCA assay kit (Thermo
Fisher Scientific, Waltham, MA, USA). BAT and skeletal muscle samples were denatured by
heating at 100 ◦C for 5 min whereas the adipose tissues were not denatured. Total protein
(20 µg per lane) was separated by 10% SDS-PAGE at 45 V for 15 min, 65 V for 15 min, and
100 V for 120 min continuously, and transferred to polyvinylidene difluoride membranes
(Millipore, Billerica, MA, USA) at 100 V for 90 min. The membranes were blocked for
1 h at 24–25 ◦C with phosphate-buffered saline (PBS) containing 5% skim milk (DB Difco,
Franklin Lakes, NJ, USA) and then washed four times for 5 min each using PBS with
0.1% Tween 20 (PBS-T). After overnight incubation at 4 ◦C with primary antibodies with
PBS-T containing 3% skim milk, the membranes were washed with PBS-T and incubated
with a horseradish peroxidase-conjugated secondary antibody with PBS-T containing 3%
skim milk for 1 h at 24–25 ◦C (information of antibodies is provided in the supplementary
materials, Table S4). Immunodetection was carried out with ECL reagent (Amersham
Biosciences, Uppsala, Sweden). All images showing the results of quantitative analysis
were assessed using Image J software (NIH Image Engineering, Bethesda, MD, USA).

4.7. Statistical Analysis

All data were analyzed by the IBM SPSS Statistics 25 software. Significant differences
in the means were determined using a two-way analysis of variance (ANOVA), followed
by the LSD post hoc test, which was used to determine differences in the group means.
Significant differences in value over time were determined using a two-way repeated
ANOVA. Significant correlation between EE at rest and total abdominal fat were determined
using Pearson’s correlation analysis. Values of p < 0.05 were considered statistically
significant and all the results are presented as mean ± standard deviation.

5. Conclusions

In summary, the purpose of this study was to examine whether the antiobesity effects
of ET can be further enhanced by CI via change in resting energy metabolism and to
determine its effects on metabolic molecules in diet-induced obese mice. After the 8-week
experimental period, ET combined with CI additively reduced abdominal fat rate compared
to ET alone, but the resting EE was not affected by CI in the trained group. Thus, we
assumed that CI before exercise may enhance FO during exercise and consequently cause
loss of fat. However, the chronic intake of capsiate without exercise increased the abdominal
fat rate in obesity-induced mice, which may result from the reduced resting EE. Then, we
tentatively suggested that the reduced resting EE may be attributed to the following reasons:
(1) capsiate might affect activity levels via suppression of hippocampal function and
(2) the combination of capsiate and high-fat diet could downregulate βAR via sympathetic
hyperactivation. Therefore, we suggest that capsiate could be a candidate supplement
for maximizing the antiobesity effects of ET via upregulation of β3AR in adipose tissue.
However, capsiate treatment without exercise during high-fat diet may not be beneficial in
managing obesity (Figure 8).
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Abbreviations

AMPK AMP-activated protein kinase
BAT brown adipose tissue
BW body weight
BWG body weight gain
β2AR beta-2 adrenoceptor
β3AR beta-3 adrenoceptor
CAP sedentary with capsiate intake group
CI capsiate intake
CO carbohydrate oxidation
CON sedentary control group
CS citrate synthase
EE energy expenditure
ET exercise training
ETR exercise-trained groups
EXE exercise control group
EXE+CAP exercise with capsiate intake group
FER feed efficiency ratio
FI food intake
FO fat oxidation
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GLUT4 glucose transporter 4
HFD high-fat diet
HXK2 hexokinase 2
MDH2 malate dehydrogenase 2
PBS phosphate-buffered saline
PBS-T phosphate-buffered saline with 0.1% Tween 20
PGC1α peroxisome proliferator-activated gamma coactivator 1-alpha
RMR resting metabolic rate
SED sedentary groups
SNS sympathetic nervous system
TRPV1 transient receptor potential cation channel subfamily V member 1
TST tail suspension test
UCP1 uncoupling protein 1
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Figure A1. Protein expression in brown adipose tissue: (a) quantification of UCP1; (b) the representative Western blot
images. Supple, supplement effect; Tr, training effect; Inter, interaction effect; UCP1, uncoupling protein 1; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; SED, sedentary groups; ETR, exercise-trained groups. Values represent the
mean ± standard deviation (n = 6). # p < 0.05.
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Appendix B. Immobility Time and Its Correlation with Resting EE

Mice were suspended by the tail using adhesive surgical tape, approximately 10 cm
above the ground. During 6 min of measurement, mice tried to escape and reach the
ground. The time until the mice remained immobile was measured. The first min of the
total 6 min was excluded from the data as it was the time taken by the mice to acclimate
to an unfamiliar environment. Each mouse was tested individually, out of view of the
other mice.
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