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Abstract

Genome-wide searches for loci involved in human resistance to malaria are currently being conducted on a large scale in
Africa using case-control studies. Here, we explore the utility of an alternative approach—“environmental correlation
analysis, ECA,” which tests for clines in allele frequencies across a gradient of an environmental selection pressure—to
identify genes that have historically protected against death from malaria. We collected genotype data from 12,425
newborns on 57 candidate malaria resistance loci and 9,756 single nucleotide polymorphisms (SNPs) selected at random
from across the genome, and examined their allele frequencies for geographic correlations with long-term malaria
prevalence data based on 84,042 individuals living under different historical selection pressures from malaria in coastal
Kenya. None of the 57 candidate SNPs showed significant (P < 0.05) correlations in allele frequency with local malaria
transmission intensity after adjusting for population structure and multiple testing. In contrast, two of the random SNPs
that had highly significant correlations (P< 0.01) were in genes previously linked to malaria resistance, namely, CDH13,
encoding cadherin 13, and HS3ST3B1, encoding heparan sulfate 3-O-sulfotransferase 3B1. Both proteins play a role in
glycoprotein-mediated cell-cell adhesion which has been widely implicated in cerebral malaria, the most life-threatening
form of this disease. Other top genes, including CTNND2 which encodes d-catenin, a molecular partner to cadherin, were
significantly enriched in cadherin-mediated pathways affecting inflammation of the brain vascular endothelium. These
results demonstrate the utility of ECA in the discovery of novel genes and pathways affecting infectious disease.
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Introduction
Although many genes affecting susceptibility to malaria have
been reported in the literature (Kwiatkowski 2005), their
validation in large, multisite, genome-wide phenotype–
genotype association studies (GWAS) has been disappoint-
ing, producing only weak signals (Jallow et al. 2009;
Timmann et al. 2012; MalariaGEN 2014) or inconsistent re-
sults across different studies (Atkinson et al. 2007; Cserti and
Dzik 2007; Fry, Auburn, et al. 2008; Clark et al. 2009;
Mangano et al. 2009; Teo et al. 2010; MalariaGEN 2014).
For example, of the 57 single nucleotide polymorphism
(SNP) loci representing 39 “candidate” genes selected for
the first phase of the MalariaGEN Consortium large
multipopulation case-control studies (MalariaGEN 2008),
only five of these loci—the sickle cell-causing allele of the
beta-hemoglobin gene (HBB), the “O” allele in the ABO gene
that determines ABO blood group, both of which were well

established as malaria protective prior to the advent of
GWAS studies, G6PD, CD40LG, and ATP2B4—were con-
firmed (MalariaGEN 2014).

One explanation for the discrepancies between results
from large, multipopulation GWAS, and single-site studies
may lie in the profound degree of genetic diversity seen
over very small distances in African populations (Tishkoff
and Williams 2002) which, due to undetected population
structure, coupled with variation in disease transmission,
can generate both false positive and false negative results
(Marchini et al. 2004). Another explanation is the lack of
power of marker-based genome scans as a consequence of
low levels of linkage disequilibrium in African genomes
(Conrad et al. 2006; Jallow et al. 2009). Improved statistical
methods such as genotype imputation, meta-analyses that
allow for heterogeneous gene effects in different populations,
and adjustment for population structure using information
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on thousands of genetic markers can alleviate these problems,
though only partially (Band et al. 2013). Further improve-
ments in methodology are required in order to find the
many polymorphic genes affecting susceptibility to malaria
that, apparently, still await discovery (Kwiatkowski 2005;
Mackinnon et al. 2005).

An alternative approach to detecting disease-protective
alleles using phenotype–genotype association methods such
as case-control studies is to examine population patterns of
allele frequencies in relation to an environmental variable
using “environmental correlation analysis” (ECA).
Stimulated by the recent advent of genome-wide technolo-
gies, this “landscape genomics” approach has been success-
fully pioneered in searches for new genes conferring
environment-specific adaptation in humans, for example, to
temperature, altitude, and diet (Novembre and Di Rienzo
2009; Coop et al. 2010; Hancock et al. 2010; Pritchard et al.
2010), and in a diverse range of plant (Eckert et al. 2010; Manel
et al. 2010; Hancock et al. 2011) and animal species (Foll and
Gaggiotti 2008; Nielsen et al. 2009). The principle behind ECA
is that when there is differential positive selection pressure on
an allele in spatially separated populations brought about by
geographical variation in environmental conditions, and there
is also negative selection on the allele due to a fitness cost, the
allele will, through balancing selection, be maintained at in-
termediate population frequencies which correlate to the
strength of selection by the environmental variable. This
“fine tuning” form of adaptation through subtle frequency
changes in alleles with modest protective effects contrasts
with the “hard sweep” model of adaptation in which muta-
tions with large beneficial effect always approach fixation,
even if they carry a moderate fitness cost (Pritchard et al.
2010).

Given that human populations in Africa have been ex-
posed to malaria under a range of transmission intensities
for a very long time, and that many malaria-protective genes
are only found at detectable frequencies in populations
where malaria occurs and are therefore likely to carry a
malaria-unrelated fitness cost, we reasoned that adaptation
to malaria was more likely to follow the fine-tuning model of
adaptation than the hard sweep model. We therefore
wanted to test whether frequencies of malaria-protective
alleles track malaria transmission intensity in an African pop-
ulation at equilibrium in its natural disease setting. While
positive correlations between malaria transmission intensity
and frequency of malaria resistance alleles have been dem-
onstrated at a global scale for several hemoglobinopathy
causing genes (Weatherall and Clegg 2001; Piel et al. 2010),
an observation that led to Haldane’s famous “malaria-
hypothesis” (Haldane 1949), there has been much debate
on whether this principle holds at a local geographic scale
(Allison 1954; Foy et al. 1954; Moore et al. 1954; Raper 1954;
Brass et al. 1955; Siniscalco et al. 1966; Flint et al. 1986, 1993;
Enevold et al. 2007). Counter-arguments are that confound-
ing between the effects of migration, origin of the mutation,
genetic admixture, nonindependence of population sam-
ples, and ecological suitability for malaria have generated
spurious geographic relationships between malaria

transmission intensity and allele frequencies (Flint et al.
1998). This problem is general to all geographic-genetic as-
sociation studies and is not able to be overcome through
statistics alone (Novembre and Di Rienzo 2009). However,
ECA exploits these geographic-genetic correlations and thus,
when combined with a recent statistical advance (Coop
et al. 2010; Gunther and Coop 2013) that takes into account
the neutral processes that generate allele frequency differ-
ences among populations, is well suited to disentangling
adaptive from spurious clines in allele frequencies across
an environmental gradient.

Here, we sought evidence for geographic correlations be-
tween malaria exposure and allele frequencies of 57 SNPs
representing 39 candidate malaria-protective genes, and
nearly 10,000 random SNP loci representing 3,010 protein-
coding genes, in a geographically small but genetically and
environmentally heterogeneous population living on the
coast of Kenya. Our aim was to test whether, as for metabolic
traits in humans driven by environment-related selection
pressures (Novembre and Di Rienzo 2009; Coop et al. 2010;
Hancock et al. 2010; Pritchard et al. 2010), the ECA approach
can detect genes that confer resistance to infectious diseases.
We further wished to determine whether it could do so on a
small geographic scale in the genetically and environmentally
heterogeneous populations which are typical of infectious
disease study sites in Africa.

Results

Malaria Prevalence

Long-term malaria prevalence, based on an average of 3,988
records per subpopulation collected over a period of 50
years (table 1), differed substantially between subpopulations
(fig. 1). These differences were stable through time, with a
high average correlation between years (0.54), despite very
large changes in average malaria prevalence during this
period (fig. 1D and supplementary fig. S1, Supplementary
Material online). Subpopulation differences were also robust
to the method of data collection, that is, from hospital ad-
missions versus from community surveys (fig. 1E). Assuming
that these geographic differences in malaria prevalence were
also present in previous generations of our study population,
these results establish the first requirement for the existence
of malaria-related clines in frequencies of protective alleles,
namely, stable, long-term geographical heterogeneity in selec-
tion pressure by malaria.

Population Structure

The second requirement for the maintenance of clines—geo-
graphic heterogeneity in host genetics—was revealed by hi-
erarchical cluster analysis of between-subpopulation
correlations based on 9,756 random SNPs genotyped in con-
trol individuals from two case-control studies (N = 2,927)
(supplementary fig. S2, Supplementary Material online).
Three broad genetic clusters were found and these broadly
coincided with the three main ethnic groups in the study
population—Chonyi, Kauma, and Giriama—that reside pre-
dominantly in the south, middle, and north of the study area,
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respectively. Genetic distances between subpopulations, esti-
mated by multidimensional scaling based on genotype data
as above, broadly corresponded to the degree of geographic
separation between subpopulations along a north-east to

south-west transect (fig. 1C). Malaria generally increased
across this transect (fig. 1B) thus generating some confound-
ing between genetics, geography, and malaria transmission.
This was partly mitigated by the presence of the genetic

FIG. 1. Geographic, genetic, and malaria prevalence maps of the study population. (A) Geographic map of study area showing boundaries of the 15
subpopulations. (B) Mean and 95% CI (center and boundary of colored ellipses) of geographic coordinates of residents of all children in the genotyped
birth cohort. (C) Genetic map of the subpopulations based on multidimensional scaling analysis of data from 9,756 random SNP loci in the genotyped
controls from the case-control cohort, rescaled to that of the geographic map in (B). (D) Malaria prevalence by subpopulation among hospital
admissions from 2003 to 2010 (y axis) versus that in 1989 to 2002 (x axis). Symbols show year-adjusted means: black lines either side indicate 95% CI. (E)
Malaria prevalence by subpopulation from community surveys from 1960 to 2007 (y axis) against hospital malaria prevalence in 1989 to 2002 (x axis).
Regression analysis of these preadjusted means revealed consistent ranking in subpopulation malaria prevalence when assessed by community surveys
versus hospital data in 1989–2002 (P = 0.08) and in 2003–2010 (P = 0.006), and when measured in two different time periods, that is, hospital data from
1989 to 2002 versus 2003 to 2010 (P = 0.03). (See supplementary fig. S1, Supplementary Material online for further detail.) Throughout, colors of points
indicate mean malaria prevalence among hospital admissions in 2003–2010 according to the legend in (B). The fewer points in (D) and (E) than in (B)
and (C) are due to the fact that some subpopulations were split in 2003, as described in the legend to supplementary figure S2, Supplementary Material
online.

Table 1. Data Sets Used for ECA.

Genotype Data Malaria Prevalence Data

Status No. of Individuals Data Source No. of Subpopulations No. of Records

Random Loci Candidate Locia

All cases and controls 5,214 12,425 (3,868) All 11 82,042

Controls only 2,927 10,597 (2,896) Hospital admissions 1989–2002 11 42,429

Malaria cases only 1,063 1,832 (974) Hospital admissions 2003–2010 11 19,282

Bacteremia cases only 1,133 —b Hospital admissions 2003–2010 15 19,282

Hospital admissions 2003–2010 38 19,282

Community surveys 1960–2007 10 20,331

aNumber of overlapping individuals, that is, with genotype data for both random and candidate loci, are shown in parentheses.
bGenotype data on candidate genes were not available for bacteremia cases.
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outlier populations of Jaribuni and Kauma in the center of the
study area where malaria transmission intensities were high-
est (fig. 1), thus providing leverage for distinguishing between
the null versus alternative hypotheses under test here,
namely, that clines arose as a consequence of historical mi-
gration and incomplete admixture across the study area
versus clines were generated through differential selection
pressure by malaria.

Thus overall, the study population displayed genetic struc-
turing that partially aligned to geographic distance.
Subpopulations were not completely genetically isolated,
however, evident from the generally low correlations in
allele frequencies among subpopulations (median absolute
value of 0.23) and substantial blending of ethnic group com-
position across subpopulations (supplementary fig. S2,
Supplementary Material online). Thus the second condition
for maintenance of adaptive clines by selection against the
eroding effects of gene flow—incomplete panmixia—was also
met.

Malaria-Related Clines in Allele Frequencies of
Candidate Malaria Resistance Genes

Allele frequencies differed significantly between subpopula-
tions for 23 of the 57 candidate loci (P< 0.05 by chi-squared
test from logistic regression analyses fitting subpopulation as
a fixed effect). For 15 of these loci, this variation between
subpopulations was significantly related to malaria prevalence
(P < 0.05 from logistic regression analyses fitting malaria
prevalence as a linear covariate), that is, showed environmen-
tal correlations. Figure 2A–C shows examples of malaria-
related frequency clines for the two of the 57 candidate
genes that have consistently show genome-wide significance
in case control studies (Jallow et al. 2009; Band et al. 2013;
MalariaGEN 2014), namely, HBB and ABO, and for the SNP in
the IL22 gene that ranked highest for malaria-related clines
here.

However, the above logistic regression analyses above do
not allow for the fact that populations differ in allele frequen-
cies for reasons unrelated to selection and measurement error
such as genetic drift, migration, and other neutral population
genetics processes. When background variation between pop-
ulations was taken into account by fitting an appropriate
population genetics model using the Bayenv method (Coop
et al. 2010; Gunther and Coop 2013), none of the 57 candidate
loci reached the two-tailed P< 0.05 significance, and only one
(SNP rs2227478 in the IL22 gene) reached the P < 0.10 level
(supplementary table S2, Supplementary Material online).
This was true whether correlations were computed for all
available genotype data (N = 10,597, the “full data set”), in
which case asymptotic significance tests for Pearson correla-
tions, which are conservative since they assume zero error of
measurement in subpopulation frequencies, were applied, or
whether correlations were computed from the same number
of genotyped individuals as random SNP loci (N = 2,927, the
“reduced data set”), in which case empirical significance tests
based on the distribution of correlations among random SNPs
were used (fig. 3A). After SNP rs2227478 in the IL22 gene,

which had environmental correlations of r = 0.59 and r = 0.43
for the full and reduced genotype data sets, respectively, with
corresponding asymptotic and empirical P values of 0.08 and
0.06, the next highest ranking candidate gene SNPs were
rs8176746 that codes for the B allele in the ABO locus (r =
0.48, P = 0.14) and rs2535611 in the ADORA2B gene (r =
�0.35, P = 0.29) (values based on the full genotype data
set; supplementary table S2 and fig. S4A, Supplementary
Material online).

When a test for general population differentiation, that is,
irrespective of malaria, was applied using the XTX statistic
described by Gunther and Coop (2013), significant (P <
0.05) signals were found for SNPs rs1128127 in the DERL3
gene and rs84833095 in the TLR1 gene, and marginally signif-
icant signals (P< 0.10) were found for SNPs rs2706384 in the
IRF1 gene and rs1803632 in the GBP7 gene (supplementary
fig. S4B, Supplementary Material online).

Consistent with the few candidate loci showing individual
significance for r and XTX was the general lack of significance
of global tests of whether the 57 (or top six) candidate loci, as
a set, showed more extreme correlations than random sets of
57 (or top six) of the 9,756 random loci (supplementary fig. S4,
Supplementary Material online). For some analyses, however,
such as when the population was divided into 38 instead of 15
or 11 subpopulations, global tests indicated that candidate
SNPs had, as a set, values of r significantly lower in magnitude
and values of XTX higher in magnitude than random SNPs
(supplementary fig. S4, Supplementary Material online).

Environmental Correlations in Random SNP Loci

Among the top 1% (n = 98) random SNP loci for ECA signals
were two genes that have previously shown strong genetic
associations with malaria (supplementary table S2,
Supplementary Material online). The first was in HS3ST3B1
(SNP rs4791574, r = 0.58, P = 0.007, fig. 2E) which encodes
heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1, an
enzyme that modifies the sulfation patterns of the glycopro-
tein heparan sulfate. This SNP falls within an intron of
HS3ST3B1. In a previous study in West Africa, 20 SNPs
within the exons and 30- and 50-untranslated regions of this
gene and its paralogous neighboring gene HS3ST3A1 were
strongly associated with malaria parasitemia (Atkinson et al.
2012). Contrary to expectations from the direction of the
environmental correlation, there was a strong deficit in fre-
quency of the derived (malaria-favored) allele relative to the
global population (0.07 vs. 0.36).

A second gene among the top 1% random loci that has
been previously implicated as malaria protective (Band et al.
2013) was CDH13 (rs8048962, r = 0.64, P = 0.0013, fig. 2D)
which encodes cadherin 13, a member of a large family of
proteins that mediate cell-cell adhesion as well as extracellular
signaling, most known for their role in neural cells but which
also operate in the vasculature and other tissues. A further
SNP in this gene showed a strong environmental correlation
with malaria (rs4782731, r = 0.45, P = 0.055). This result con-
firms the finding from the MalariaGEN Consortium’s large
multipopulation genome-wide case-control study for severe

1191

Malaria Environmental Correlations . doi:10.1093/molbev/msw004 MBE

Deleted Text: e
Deleted Text: ) 
Deleted Text: . 
Deleted Text: . 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: i.e.
Deleted Text: migration 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
Deleted Text: `
Deleted Text: set'
Deleted Text: `
Deleted Text: set'
Deleted Text: -
Deleted Text: -
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
Deleted Text: i.e.
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw004/-/DC1
Deleted Text: sulphate 
Deleted Text: sulphation 
Deleted Text: sulphate
Deleted Text: '
Deleted Text: ' 
Deleted Text: u
Deleted Text: a
Deleted Text: u
Deleted Text: l
Deleted Text: -


malaria in Africa in which CDH13 was one of just 18 genes,
excluding the candidate genes, which survived tests of
genome-wide significance and replicability across populations
(Band et al. 2013). Significant population differentiation in
other SNPs in this gene has been reported in south-east
Asian populations (Liu, Yunus, et al. 2015).

If it is assumed that there are 20 among the approximately
20,000 genes in the genome (~0.1%) that strongly protect
against malaria, given that our random set of 9,756 SNPs
included 3,010 characterized protein-coding genes, it is ex-
pected that three of these malaria protective genes would be
included in our survey. The probability by chance that exactly

FIG. 2. Malaria-related clines in allele frequencies in three candidate and three random loci. Relationship between malaria prevalence and allele
frequency by subpopulation of (A) the sickle cell mutation (�S allele), (B) the ABO rs8176746 allele that codes for the B versus A phenotype in the ABO
blood group system, (C) the derived allele (T) in SNP rs2227478 in the IL22 gene locus, (D) the derived allele in SNP rs8048962 in the CDH13 gene, (E) the
derived allele (C) in SNP rs4791574 in the HS3ST3B1 gene, and (F) the derived allele (T) in SNP rs13358276 in the CTTND2 gene. The solid lines show the
fit of these relationships estimated by binomial logistic regression of individual allele data not accounting for population structure. Colors reflect malaria
prevalence as in figure 1B and size of points scale with the square root of the number of genotypes. Results are based on all available genotype data from
control individuals for the locus in question and hospital malaria prevalence data from 2003 to 2010 split into 15 subpopulations in order to correspond
with data in figure 1.
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one of these three would be among the 42 protein-coding
genes in the top 1% of SNPs (supplementary table S2,
Supplementary Material online) is P = 0.04 by hypergeometric
test: the probability that two or more were among these top
42 is P = 0.0006. Supporting these assumptions is the fact that
our survey of random loci included three (ZNF804A, CDH13,
SIRT3) of 18 novel malaria resistance genes recently uncov-
ered by GWAS (Timmann et al. 2012; Band et al. 2013;
MalariaGEN 2014; MalariaGEN et al. 2015) (ATP2B4, MYOT,
C10ord57, C11orf40, STIM1, MARVELD3 [Timmann et al.
2012], the linked genes ODF3-BET1-RIC8A-SIRT3 and the
linked genes SMARCA5-FREM3-GYPE-GYPB-GYPA, in addi-
tion to the three above).

Tests for functional enrichment among the top 10% of
SNPs, which represented 382 protein-coding genes, revealed
a significant excess of genes in the cadherin-catenin mediated
cell-cell adhesion pathway to which CDH13 belongs (P =
0.005, supplementary table S3, Supplementary Material
online), as well as in the related pathways of G-protein cou-
pled signaling that cadherins mediate in response to extra
cellular signals from cytokines, chemokines, pathogens, and
mechanical forces, including the rigidifying and inflammatory
response of the vascular endothelium to shear stress and
stretching (Birukov 2009); the metalloproteases that degrade
extracellular matrix proteins, implicated in inflammation-
related damage to the blood brain barrier (Bruschi and
Pinto 2013); and O-linked glycosylation of proteins in the
extracellular matrix that are involved in cell-cell adhesion.
These pathways are of particular relevance because of the
known role of inflammation and damage to permeability of
the brain vascular endothelium in cerebral malaria (supple-
mentary table S3, Supplementary Material online).

Individual genes of interest among the top 10% random
loci were: CDH5 (r = �0.44, P = 0.06) which encodes the
cadherin most abundantly expressed in the vascular endothe-
lium (hence also known as VE-cadherin) which plays a key
role in vascular permeability and leakage (Gavard 2014); four
SNPs within three protocadherin-encoding genes (FAT1,
PCDH9, PCDH15); two SNPs in genes coding for catenins,
the proteins that link cadherins to the cell cytoskeleton
(CTNND2, P = 0.003, fig. 2F) which codes for d-catenin that
has been shown to mediate inflammation-related pathology
of the vascular endothelium in the brain (DeBusk et al. 2010),
and CTTNNA2, P = 0.05); MAGI2 (P = .009) a homologue of
MAGI1 which encodes a linker molecule in the cadherin-
catenin complex in the vascular endothelium (Wallez and
Huber 2008) and which a variety of evidence suggests inter-
acts with CTNND2 (Schmitt et al. 2014); FN1 (P = 0.002)
which encodes the plasma protein fibronectin that, like cad-
herins, binds extracellular matrix proteins, including heparan
sulfate, and helps promote repair of the vascular endothelium
after damage; three genes that encode regulators of G-protein
signaling that is typically coupled to cadherin activity (RGS5,
RGS6 (P = 0.01), RGS7), one of which (RGS5) has been shown
to be involved in endothelial apoptosis (Jin et al. 2009); two
genes encoding protein kinases of type C (PRKCE, PRKCH)
that mediate signal transduction via G-coupled protein re-
ceptors, both associated with cerebral ischemia (Perez-Pinzon

FIG. 3. Environmental correlations for 57 malaria resistance candidate
SNPs and 9,756 random SNPs and their relationship with case-control
estimates of malaria-protective effects. (A) The green histogram shows
the density distribution of the environmental correlation values, r, for
9,756 random SNP loci. Red circles with black outlines indicate values of
r for the 57 candidate loci SNPs. Vertical solid and dashed black lines
indicate the 5% and 2.5% tails of the distribution for the random SNPs,
respectively. Values are based on all malaria prevalence data and geno-
type data from all case and control individuals using the same number
of observations for candidate and random loci to ensure comparability.
(B) Environmental correlations (y axis) were regressed on odds ratios of
severe malaria in cases versus controls (x axis) obtained by logistic re-
gression analysis of a subset of the data used for ECA. Odds ratios reflect
the relative probabilities of carrying the derived allele in cases versus
controls (x axis), and thus decrease as the allele’s protective effect
against malaria increases. Spearman correlations between variables on
the x and y axes were �0.23 (P = 0.09, 55 df) for candidate gene SNPs,
and�0.08 (P< 0.001, 9,406 df) for random SNPs. Best-fit linear regres-
sion lines are shown with and without two candidate locus outliers
(SNP rs334 at the HBB locus and SNP rs8176746 at the ABO locus, see
legend). Depth of gray shading reflects the local regional density of
observations for the random SNPs calculated using the
smoothScatter function in the R “graphics” package (R Core Team
2014). Closed green symbols indicate the 1% of random SNPs with
the most extreme values based on their having lowest regional densities.
Closed red symbols indicate values for candidate gene SNPs. Candidate
SNP outliers for protective efficacy are annotated with red text. Outliers
for environmental correlations in random SNPs which are discussed in
the main text are shown with open green symbols and annotated with
green text. Global test statistics on estimates of protective effects indi-
cate that the candidate loci had more extreme odds ratios than the
random loci (P< 0.001, P = 0.005 excluding rs334 in the HBB gene). The
distribution of environmental correlations for candidate loci was similar
to that for random SNP loci (supplementary fig. S4A, Supplementary
Material online).
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et al. 2005; Kubo et al. 2007) and one (PRKCE) of which is
implicated in protection against the Kenya-endemic Rift
Valley Fever virus (Filone et al. 2010); ADGRL2 (P = 0.009)
that encodes a G-protein coupled receptor involved in adhe-
sion and signal transduction in immune regulation (Li et al.
2015) and which is closely related to ADGRL1 which is highly
expressed in the brain and closely related to one of the ma-
laria resistance candidate genes studied here (EMR1); ANGPT4
which encodes a receptor for tyrosine-protein kinases that
regulate endothelial cells in the vasculature in response to
inflammation and structural damage; OPMCL (two SNPs,
P = 0.009 and P = 0.01), encoding a receptor found at high
levels in the brain and which regulates tyrosine kinases (Wu
and Sood 2012); NRP1 (P = 0.005), which codes for neuropilin
1, a protein that acts as a receptor for vascular endothelial
growth factor in association with a tyrosine kinase coreceptor
and plays a role in angiogenesis; NRXN3 (P = 0.008), a gene
encoding a receptor and signaling molecule that is highly
expressed in the brain; a gene encoding diacylglycerol lipase
(DAGLA) that hydrolyses diacylglycerol, an activator of pro-
tein kinase C; four genes for cytokines or their regulators
involved in the immune response to microbial infection
and inflammatory responses (IRF2, coding for a transcription
factor that regulates interferon-� ; IL12RA-AS1, an antisense
RNA that is expected to control levels of interleukin 12, a
cytokine that acts on T and natural killer cells and has been
genetically associated with malaria (Zhang et al. 2010); IL2RA,
which encodes a receptor on lymphocytes that responds to
the key cytokine in defense against microbes, IL2; and IL34
which encodes a cytokine that is abundant in the spleen, a site
of immune defence against malaria parasites); a gene encod-
ing a component of the red cell cytoskeleton, ankyrin 3
(ANK3) and casein kinase 2A1 (CSNK2A1), both which help
anchor the Plasmodium falciparum protein, PfEMP1, (Hora
et al. 2009; Weng et al. 2014) to red cell membrane where it
mediates cytoadhesion to uninfected red cells (Rowe et al.
1995) and other host cells (Magowan et al. 1988), including
the vascular endothelium (Ockenhouse et al. 1992), a process
which is thought to lead to cerebral malaria; two genes coding
for myosin (MYO16, MYO5C); and five genes encoding colla-
gens, one of which (COL4A2) has been associated with cere-
bral small vessel hemorrhage (Rannikmae et al. 2015).

Of relevance to the second confirmed malaria-associated
gene among the top 1% of random SNPs (HS3STSB1), is the
significant enrichment for the O-linked glycosylation pathway
among the top 10% of SNPs (supplementary table S3,
Supplementary Material online). One gene among the top
1% (POMGNT1, r = 0.62, P = 0.002) and four others in the top
10% (GALNT2, GALNT5, GALNT10, GALNT13) code for en-
zymes that mediate the same type of O-linked glycosylation
(addition of N-acetyl-galactose amine) that converts the H
antigen in the ABO blood group system to the A antigen
instead of the B antigen which is determined by the addition
of galactose. This glycosylation results in higher susceptibility
to malaria compared with the O blood group for which nei-
ther of these glycosylations occur, and differential susceptibil-
ity of the A versus, B blood group (supplementary table S2,
Supplementary Material online).

Other genes of interest in the top 1% that are not obvi-
ously related to the enriched pathways included those encod-
ing transcriptional regulators (SRPK2, P < 0.00001, and
RBFOX1 (two SNPs, P = 0.0003 and P = 0.002) that both
control alternative splicing, and SSBP3 (P = 0.009) which
binds DNA); BICD1 (P = 0.006), which regulates Golgi-ER
transport by recruiting dynein and dynactin; and DNAH14
(P = 0.003), which encodes an axonemal dynein.

Further details of genes among the top 10% found in en-
riched pathways and their potential relevance to severe ma-
laria are given in supplementary table S3, Supplementary
Material online.

Correspondence with Results from
a Case-Control Study

Environmental correlations showed a significant positive re-
lationship with malaria-protective effects directly estimated
from the malaria case-control study nested within this study
population (fig. 3B, P < 0.001 by Spearman rank correlation
tests). Thus in addition to detecting novel loci (see above),
ECA can be used to validate results from case-control studies.
A notable exception to this general correspondence was SNP
rs8176746 in the ABO gene which codes for the B blood group
allele which by ECA is predicted to be protective against
malaria but in the case-control study analyzed here, and in
other case-control studies, when in combination with the A
allele in AB heterozygotes, appears to confer susceptibility
(supplementary table S2, Supplementary Material online).

Although obtained from the same population, the corre-
spondence between estimates of r and the direct estimate of
malaria-protective effects from the case-control study cannot
be attributed to covariance introduced by the estimation
procedure. This is because r and the malaria-protective
effect were estimated independently using genotypes from
different sets of individuals (on control individuals only in the
case of r), as well as by independent statistical methods. The
correspondence is also unlikely to be attributable to the neg-
ative correlation between slope and intercept that occurs
when there is high sampling error due to small sample size,
or to extreme allele frequencies, since these were not features
of this study (supplementary text S1, Supplementary Material
online).

Replicability, Power, and Bias

Environmental correlation estimates for candidate loci were
generally consistent in ranking across different genotype data
sets (i.e., those based on control individuals only, malaria cases
only, or cases and controls combined), and robust to sources
of malaria prevalence data (hospital data vs. community sur-
veys in different time periods, supplementary fig. S4A,
Supplementary Material online). However, values of r were
very sensitive to the number of genotyped individuals. Data
simulation showed that both the magnitude and accuracy of
individual correlation estimates scaled approximately linearly
with the number of genotyped individuals (N) below N ap-
proximately 20,000 genotypes (i.e., double the size of the ex-
periment reported here) and asymptotically beyond that
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(supplementary text S2, Supplementary Material online). This
strong dependence of r on N has several important implica-
tions for the power and implementation of ECA. First, it re-
quires equal numbers of genotyped individuals for each locus
in order for correlations to be comparable across loci. This, in
turn, means that efficiency of information usage is maximized
when genotyping effort is evenly spread across loci. Second, it
suggests that increasing N beyond the approximately 1,000
individuals genotyped per subpopulation used in this study is
likely to yield considerable gains in power in situations where
between-subpopulation variation in allele frequencies is low,
as was the case here.

Including genotype data from case individuals from case-
control studies made no appreciable difference to correlation
estimates (supplementary fig. S4A, Supplementary Material
online). Thus the bias in r that is predicted from theory when
data derive from cases (supplementary text S3,
Supplementary Material online) was not evident in our
results.

Role of Early-Life Mortality in Allele Frequency Clines

Since malaria-induced mortality occurs mainly during the first
2 years of life, it is possible that the observed correlation
between malaria transmission intensity and the frequency
of the �S allele, and other clinal alleles, might have been gen-
erated by bias in the sample caused by early-life malaria
deaths rather than by historical differential selection by ma-
laria within the subpopulations. However, the statistical test
for an effect on the �S allele frequency of the age at which
children were sampled (mean 7 months, SD 2.5) was not
significant (P 4 0.2 from a logistic regression model on in-
dividual allele data). Age effects were also absent (P 4 0.2)
for the other 56 candidate loci. The incidence of malaria
during the period in which children were sampled for geno-
typing (2006–2010) was at its lowest for many years (supple-
mentary fig. S1A, Supplementary Material online) with only
two malaria deaths out of 6,814 (0.03%) hospital admissions
of children under 1 year of age during the birth cohort sam-
pling period versus 181 deaths out of 28,397 (0.64%) between
1989 and 2002. Combined, these results indicate that presam-
pling bias at this or other loci is unlikely to be the cause of
malaria-related clines in allele frequencies found here.

Discussion
In this study, we applied ECA in a human population living
under different malaria transmission intensities in a small
geographic area in coastal Kenya in order to search for
genes involved in resistance to malaria. We examined 57 can-
didate loci representing 39 genes that have been implicated in
malaria pathogenesis: while 15 of these showed significant
(P < 0.05) malaria-related clines in allele frequency, none of
these reached significance when compared to a large set of
randomly chosen loci and when population genetic structure
in the background genome was controlled for in the analysis.
This lack of strong signal by ECA among candidate loci ac-
cords well with the findings from large multisite case-control
studies for severe malaria in which only a few of the 57

candidate loci selected by MalariaGEN for the first phase of
rigorous testing have survived genome-wide tests for signifi-
cance and replicability across populations (Jallow et al. 2009;
Band et al. 2013; MalariaGEN 2014). Thus our results here,
derived using independent methodology, help to negatively
validate most members of this initial panel of malaria resis-
tance candidate genes and thereby reprioritization of the set
of genes taken forward into functional studies. Given that
these candidates were selected on the basis of their member-
ship of immune regulatory pathways associated with malaria
disease severity, which are many and complex, or the set of
receptors used by the parasite to invade red blood cells or
bind to host cells, which are also many, their failure to yield
strong associations with malaria in this and other large studies
is perhaps not unexpected.

In contrast, our tests of nearly 10,000 SNP loci selected at
random from across the genome revealed multiple loci with
highly significant (P < 0.01) environmental correlations with
malaria. Two of these (CDH13 and HS3ST3B1) have previously
been shown to be malaria-associated and both are involved in
glycoprotein-mediated cell-adhesion pathways that are
widely implicated in the pathogenesis of malaria. Given that
there are approximately 20 malaria-associated genes that
have been confirmed after stringent genome-wide testing
and large-scale replication (Timmann et al. 2012; Band et al.
2013; MalariaGEN 2014; MalariaGEN et al. 2015), of which
three were included in our survey of random loci (see
Results), it is highly improbable that we could have obtained
this result by chance alone. Moreover, seven of the 40 other
genes among the top 1% of loci, are involved in cadherin-
mediated adhesion and signaling at cell-cell junctions in the
brain and/or vascular endothelium (MAGI2, FN1, CTNND2,
NRP2, NRXN3, RGS6, ADGRL2). These results are further sup-
ported by the significant enrichment in closely related path-
ways among the top 10% of genes. Our results thus provide
proof-of-principle that ECA has utility in the detection of
novel malaria resistance genes through screens of large
random sets of loci, and suggest that the cadherin-catenin
complex operating in the brain or other vascular endothelium
may play a central role in the pathogenesis of severe malaria.

Cadherins form the bridge between cells and are thus key
molecules in development and tissue repair. While they are
mostly known for their activity in neural cells, they also op-
erate in the vasculature, a system that shares many genetic
pathways, differentiation mechanisms, signaling mechanisms,
and cross-talk with the nervous system (Carmeliet 2003). The
cadherins that are abundantly expressed in the vasculature,
principally CDH5 and CDH13, have been shown to mechan-
ically induce cell signaling in the vascular endothelium in re-
sponse to changes in blood flow (Birukov 2009). When blood
vessels become obstructed and flow is reduced, increases in
shear stress and vessel wall stretch, in conjunction with oxi-
dative stress, trigger a signaling cascade that entails activation
of sodium, chlorine, and potassium ion channels, calcium
influx, activation of protein C kinases and G-protein coupled
receptors, induction of NF-�B transcription factors, altered
expression of genes coding for cytoskeletal components, in-
flammatory responses, and cell adhesion, all pathways that
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were found to be enriched in the top 10% of loci here. The
consequences of this cascade are rigidification of blood ves-
sels, inflammation, and impairment of the endothelial barrier
function. CDH13, in particular, has been implicated in this
process (Liu, Li, et al. 2015). However CDH13, which is found
in high abundance in the heart, is unusual in that it lacks the
cytoplasmic tail that in other cadherins anchors it to internal
cytoskeletal components such as actin via linker molecules,
principally catenins. This suggests that CDH13 mediates al-
teration of the vascular endothelium through its extracellular
signaling, rather than binding, activity. A role for cadherin in
malaria disease severity fits well with our current understand-
ing of the pathogenesis of cerebral malaria in P. falciparum in
which it is believed that adhesion of parasite-infected cells
causes slowing of blood flow and perhaps blocking of micro-
capillaries, leading to higher shear forces, oxidative stress and
inflammatory responses that damage the vascular endothe-
lium, compromise the blood brain barrier, and ultimately
result in life-threatening disease (Storm and Craig 2014).

The other previously identified malaria-associated gene
found among the top 1% of genes here, HSTST3B1, encodes
an enzyme that modifies sulfation patterns of heparan sulfate
(glucosamine), a glycoprotein that is expressed on the surface
of various cell types in Plasmodium’s human and mosquito
hosts (Sinnis et al. 2007). Sulfate modifications of heparan
sulfate have been implicated in the migration of sporozoites
from skin to liver and invasion of liver cells (Frevert et al. 1993;
Pradel et al. 2002; Coppi et al. 2007), the invasion of merozo-
ites into red blood cells (Xiao et al. 1996; Kobayashi et al.
2010), and the adhesion of host cells to the PfEMP1 proteins
that are expressed by the parasite on the surface of the in-
fected red blood cell (Rowe et al. 1994; Barragan et al. 2000), a
process that is associated with the most severe form of the
disease, cerebral malaria (Carlson et al. 1990; Kaul et al. 1991;
Rowe et al. 1995). Thus our finding fits well with the known
association of heparan sulfate in moderating malaria patho-
genesis. A recent study in West Africa found strong associa-
tions between variants in the exons of this gene and malaria
parasitemia measured over a 2-year period (Atkinson et al.
2012). The exact link between sulfation patterns of heparan
sulfate, the strength of binding of parasite-infected cells to
host cells and downstream pathology is not yet well
understood.

Among the candidate malaria resistance loci tested here,
SNP rs2227478 in the IL22 gene showed the strongest ECA
signal. Although IL22 is generally known as an actor in the
proinflammatory innate immune response to infection, rela-
tively little is known about its role in relation to malaria.
Recent evidence from the mouse malaria model P. chabaudi
suggests that it may protect against liver damage (Mastelic
et al. 2012). Genetic association studies that have tested mul-
tiple SNPs in this gene have failed to find significant effects on
malaria disease severity (Dewasurendra et al. 2012; Apinjoh
et al. 2013; Maiga et al. 2013; MalariaGEN 2014).

A malaria-related cline in the �S allele from the HBB locus
has previously been reported in northern Tanzania in a set of
nine villages located at different altitudes in three adjacent
mountain ranges spanning 350 km in which there was

evidence of regular genetic mixing from genotype data on
15 neutral loci (Enevold et al. 2007). In our study, we found a
significant positive cline in �S across a malaria transmission
intensity gradient but only when not allowing for genetic
variation between populations in the background genome,
as was also the case in the study from Tanzania. Replication of
this malaria-related cline in �S across two independent stud-
ies conducted within small geographic regions with subtle
geographic differences in allele frequency suggests that “the
malaria hypothesis” may be operating on a fine geographic
scale.

The B-determining allele at the ABO locus showed a pos-
itive environmental correlation with malaria that was signif-
icant (P < 0.05) without adjusting for population structure.
This finding contrasts with the results from most case-control
studies which have shown that, when combined with the A
allele (i.e., in AB heterozygotes), this allele renders susceptibil-
ity to malaria (Fry, Griffiths, et al. 2008; Panda et al. 2011;
MalariaGEN 2014). The possible reasons for this discrepancy
are discussed below.

In addition to the genes in the cell-cell adhesion cadherin-
catenin, and related pathways, two regulators of alternative
splicing (RBFOX1 and SRPK2) in neurons and the vasculature
(Nowak et al. 2010) showed very strong environmental cor-
relations with malaria. We suggest that these two genes, in
addition to cadherins and catenins that are expressed in the
vasculature, represent new candidate malaria resistance
genes.

Correspondence between ECA
and Case-Control Studies

We found weak but significant correspondence between en-
vironmental correlations and the direct measures of protec-
tion against malaria from a case-control study (fig. 3B). This
indicates that ECA can be used to help validate findings from
case-control studies, and vice versa. Indeed, a hybrid ECA-
case-control approach, as outlined in supplementary text
S3, Supplementary Material online, could be applied to exist-
ing genotype data from case-control studies in order to cap-
italize on the already large investment in genome-wide
searches for malaria-protective genes (MalariaGEN 2008,
2014).

It is striking that two SNPs with the strongest protective
effects by case-control methods stood out as having negative
associations with malaria by ECA (fig. 3B). The most striking
example of this was the ABO SNP rs8176746 that determines
the B versus A allele which showed a positive malaria-related
cline with the B-producing allele in this study but in most
case-control studies (supplementary table S2, Supplementary
Material online), including that here, is reported to confer
slightly higher or equal susceptibility of B carriers relative to
A carriers, and considerably higher susceptibility of AB het-
erozygotes compared with A or B (Fry, Griffiths, et al. 2008;
Panda et al. 2011; MalariaGEN 2014). The second example was
the O-determining allele at the ABO locus coded for by SNP
rs8176719 which has been very consistently demonstrated to
protect against severe malaria relative to non-O alleles (A or
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B) in multiple case-control studies (Cserti and Dzik 2007; Fry,
Griffiths, et al. 2008; Rowe et al. 2009; MalariaGEN 2014) but
which showed a negative, albeit nonsignificant environmental
correlation with malaria here (r = �0.23, P = 0.35).

Indeed, despite the fact that the concordance between
results from ECA and case-control studies based on a large
number of loci was significant (P< 0.001) it was, nonetheless,
weak. The first potential explanation for this relates to the
design of case-control studies. Typically in malaria genetic
epidemiology studies, because of the method of recruitment
of cases, the genetic make-up of cases and controls differs
(Band et al. 2013). Not only can this readily lead to false
associations for loci that confer no protection (Price et al.
2010), but it is expected to cause systematic negative bias
for protective alleles if, as our study illustrates, there are pos-
itive geographic associations between the frequency of the
protective allele and the amount of disease transmission in
the local population. Using the B allele at the ABO locus to
illustrate, in case-control studies, sampling across the study
population without rigorous matching for location would
generate higher frequencies of the B allele malaria among
cases than controls because cases are more likely to derive
from high malaria transmission areas. This would lead to the
interpretation that the B allele confers disease susceptibility,
in contrast to the implied protective effect by ECA. We sug-
gest that some of the previous inconsistencies in results be-
tween different case-control studies might be resolved once
more attention is paid to the fine-scale population substruc-
ture and heterogeneity in disease transmission intensity that
appears to be typical of malaria case-control study sites in
Africa. We further suggest that the development of a hybrid
statistical “ECA-case-control” model that accounts for trans-
mission-related clines in allele frequencies while simulta-
neously estimating relative disease risk in cases versus
controls will improve both the power and reliability of detec-
tion of disease-modifying alleles through the joint use of mul-
tiple, independent and complementary types of information.

Another possibility for low concordance between results
from case-control and ECA methodology is that resistance-
conferring alleles are under balancing selection by malaria on
the one hand and negative selection by another force. Indeed,
balancing selection is the basis for the “fine-tuning” model on
which ECA is predicated. Balancing selection can arise within
a locus through negative pleiotropy whereby the allele pro-
tects against one disease but confers susceptibility to another.
It can also be mediated by a second locus through negative
epistasis where alleles at different loci interact to counteract
their individual protective effects. The case of the O allele at
the ABO locus may be an example of within-locus balancing
selection: whereas the O allele clearly protects against malaria,
non-O alleles may protect against other diseases caused by
viruses and bacteria (Anstee 2010) which show strong comor-
bidity with malaria (Scott et al. 2011; Church and Maitland
2014). If this is true, case-control studies for a single disease in
the presence of the other disease would lead to underdetec-
tion of a protective effect. In the case of two-locus balancing
selection (negative epistasis), for which there is a clear exam-
ple in the malaria-associated HBB and HBA loci (Williams et al.

2005; May et al. 2007), signals of protective effects from case-
control studies for individual loci are likewise expected to be
obscured. Indeed, the finding of a strongly discordant result
between case-control and ECA studies for a given locus may
flag the existence of competing selective forces, either from
different diseases or from interactions with alleles at the same
locus or from different loci acting on the same disease,
thereby potentially stimulating new hypotheses regarding
mechanisms of protection of these polymorphisms.

A third source of bias in case-control studies is that selec-
tion by malaria in early life will enrich the more highly exposed
case population with resistance alleles, thus reducing or even
reversing estimates of protective efficacy. In contrast, early life
protection will enhance signals of protection obtained by
ECA. This may well have been the case in the study from
northern Tanzania by Enevold et al. (1987) in which samples
for genotypes were collected from children less than 5 years,
the age-group in which most malaria mortality occurs. In our
study, we could rule out this explanation because of the un-
usually low incidence of malaria and malaria-related deaths
during the recruitment period and because most samples
were collected at a very early age. In most malaria case-control
studies, however, early-life malaria deaths are likely to be sub-
stantial prior to the age of collection of samples for genotyp-
ing. If ECA were to be retrospectively applied in these
populations, results from ECA and case-control studies are
expected to be less concordant than found here.

Discrepancies between studies may also arise because the
SNPs under analysis are not causative, but are instead markers
in linkage disequilibrium with the causative mutation and
thus potentially differ in phase between populations.
Advances in genotype imputation and other statistical meth-
ods that allow combining of information from multiple SNPs
per gene and across studies are helping to address this issue
(Marchini et al. 2007; Band et al. 2013) and could be adapted
for use in ECA.

In addition to the biases in ECA and case-control studies
discussed above, the fact that both designs yield correlative
rather than causative results cautions against their overinter-
pretation. For example, it could be argued that higher fre-
quencies of the protective alleles in high transmission areas
are the cause, rather than the consequence, of malaria deaths.
However, we feel this is unlikely in this case given that even
the most malaria-protective allele (�S) accounts for less than
2% of the variation in malaria incidence in the general pop-
ulation (Mackinnon et al. 2005), with ecological factors that
drive mosquito abundance, rather than genetics, being the
primary determinant of disease risk.

Implications

Our results demonstrate, using malaria as an example and a
subset of all genes in the genome, that ECA can be used to
detect adaptive genes in relatively stable indigenous human
populations, even with a small geographic area. They further
lend general support to the proposal that much of human
adaptation to diverse selective environments involves subtle
shifts in allele frequencies of genes under balancing selection
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rather than strong selective sweeps involving directional, dra-
matic allele frequency changes (Pritchard et al. 2010). If bal-
ancing selection is more prevalent than commonly assumed,
this would have wider implications for understanding the
maintenance of quantitative genetic variation (Hill et al.
2008). It would also have practical implications for genome-
wide search strategies for adaptive genes: if human evolution
proceeds mainly through balancing selection, then one of the
commonly used strategies—scanning the genome for con-
served haplotypes as signatures of recent hard selection—
may detect only a fraction of the targeted genes. Likewise,
for the reasons discussed above, the widely used case-control
methodology for genome-wide searches may, in the case of
infectious diseases, suffer from bias arising from geographic
confounding between allele frequencies and disease exposure.
ECA offers a number of distinct advantages over traditionally
used methods, especially in settings where linkage disequilib-
rium is low and genetic diversity and environmental hetero-
geneity are high, as in Africa. We propose, therefore, that ECA
be incorporated as an additional tool into genome-wide case-
control studies for disease resistance loci. It can be easily im-
plemented, at no extra cost, whenever the disease-capture
methodology, for example, hospital-based surveillance, col-
lects information on the patient’s location of residence.
Results from ECA and case control approaches are likely to
be complementary, cross-validating and more informative
with regard to the potential mechanisms by which individual
protective alleles and their interacting partners affect disease
outcomes.

The possibility that the environmental correlations we ob-
served were driven by historical admixture across a geograph-
ical malaria gradient cannot be totally dismissed.
Archeological and anthropological evidence indicate that
the collection of ethnic groups in our study area, known as
the Mijikenda, a grouping of nine culturally related though
distinct groups, have been living in close association with one
another since their joint migration 400 years ago from south-
ern Somalia to their present location where they have been
settled since (Spear 1974, 1977; Rosa 1987) with, perhaps a
migration of their forebears from northern Tanzania a millen-
nium before that (Rosa 1987; Spear 2000). There is also evi-
dence that this migration of the Mijikenda group along the
Somalia–Kenya–Tanzanian coastal hinterland has involved
several distinct migratory events and settlement of subpop-
ulations of the Mijikenda in different locations (Spear 1974;
Spear 2000). For example, while the Chonyi and Giriama sub-
groups of the Mijikenda are recorded as migrating to the area
400 years ago, this migration did not include the Kauma
(Spear 1974), thus explaining their distinct genetic makeup
as observed here (supplementary fig. S2, Supplementary
Material online). Today, the descendants of these sets of mi-
grants still maintain their ethnicity, both culturally and genet-
ically, as confirmed here by genotyping, and, furthermore,
tend to occupy areas of different malaria transmission inten-
sity across the north–south transect of our study area. This
has led to geographic patchiness in ethnic group overlaid by
patchiness in malaria transmission. Such patterns of ethnic
grouping by ecological type echo a general feature of

populations of Kenya and Tanzania as revealed by dermato-
glyphic studies (Rosa 1985, 1987), and are likely to be a feature
of many other populations in Africa. Thus genetic association
studies, whether by case-control or ECA, need to ensure that
fine-scale population structure is adequately captured in their
design and analysis.

We have proposed that the malaria-related frequency
clines observed here are caused by balancing selection on
genes that are directly selected by survival of malaria. It is
also possible, however, that the clines were generated by in-
direct selection on a genetically determined behavioral trait
such as propensity to migrate to less disease-ridden areas or
to alter the environment in a way that reduces exposure to
the disease. For example, the least malaria-resistant ethnic
group in this study—the Giriama—may have chosen, histor-
ically, to settle in areas of lower malaria transmission intensity,
or to change their farming practices, forestation levels, or
lifestyle in order to limit their malaria exposure. Humans
are consummate niche constructors, and much of their ad-
aptation to diverse habitats has been attributed to their ability
to alter their environment, and hence evolutionary trajectory,
through cultural as well as genetic inheritance (Laland et al.
2010). Selection through such indirect means will, as for direct
selection on survival, leave spatiogenetic signatures in popu-
lations experiencing different selective environments thus fur-
ther expanding the prospects of finding genes that confer
protection against disease using ECA.

Materials and Methods

Ethics Statement

The study was approved by the KEMRI/National Ethics
Review Committee. The parents of all study participants pro-
vided written informed consent for both blood sampling and
genotyping.

Study Design

The primary aim of this study was to test for “environmental
correlations” between the population frequencies of poly-
morphic alleles in 57 candidate malaria resistance loci and
historical levels of malaria transmission intensity in sets of
geographically divided subpopulations. To achieve this, envi-
ronmental correlations were computed between estimates of
subpopulation allele frequencies obtained from 12,425 chil-
dren under 1 year of age in a genetics birth cohort, and their
corresponding subpopulation malaria prevalence estimates
calculated from 82,042 records on malaria slide positivity
from children less than 15 years of age recruited at the hos-
pital or in the community over a 50-year period.
Environmental correlations for the 57 candidate loci were
compared with those from a control set of 9,756 putatively
neutral SNPs genotyped in a subset of individuals from the
birth cohort (table 1).

Genotypes were also obtained from case individuals from
two case-control studies, one for severe malaria (MalariaGEN
2014) and one for bacteremia (Rautanen A, unpublished
data). Environmental correlations were computed using
three different genotype data sets (control individuals,
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including bacteremia cases, malaria cases only, and all cases
and controls combined); three independent estimates of ma-
laria prevalence data (from hospital admissions in 1989–2002,
from hospital admissions in 2003–2010, and from community
surveys in 1960–2007); and three levels of population subdi-
vision (11, 15, and 38 subpopulations) (table 1). Unless stated
otherwise, results on environmental correlations presented in
the figures are based on malaria prevalence computed from
combined hospital and community data across all years, ge-
notype data from all control and case individuals, and 11
subpopulations.

Study Area

The study was conducted in an area of coastal Kenya span-
ning approximately 890 km2 which is served by the Kilifi
District Hospital and which is under surveillance by the
Kilifi Health and Demographic Surveillance System. This
area is divided for administrative purposes into “locations”
and “sublocations,” termed “subpopulations” here (fig. 1A). A
main road runs north-south through the area, a major wa-
terway (Kilifi Creek) runs east-west and the hospital is located
at the intersection of these geographic features near the cen-
ter of the area. The population comprises three main ethnic
groups—the Chonyi, Giriama, and Kauma—which constitute
a subset of nine loosely defined ethnic groups known as the
Mijikenda who have occupied the Kenyan coast for the past
400 years after migrating together from south Somalia (Spear
1974, 1977). The Kauma typically reside in the center and
west of the study area, the Giriama in the north and the
Chonyi in the south (fig. 1 and supplementary fig. S2,
Supplementary Material online).

Genotyping

The primary analysis was conducted on data from 10,597
children born within the study area between August 2006
and September 2010 who form a birth cohort under investi-
gation for genetic susceptibility to infectious diseases (the
“Kilifi birth cohort”) (Williams et al. 2009). DNA was extracted
from capillary blood samples collected on cohort members at
recruitment between 3 and 12 months of age. Children in the
birth cohort were genotyped for 57 SNPs representing 39
candidate malaria resistance loci (supplementary table S1,
Supplementary Material online) selected on the basis of
their showing malaria protection in previous studies or for
their known role in red blood cell physiology, receptors for
parasite binding, or the immune response (MalariaGEN 2014).
Genotypes were generated using the Sequenom iPLEX plat-
form for all loci except the HBA that codes for ��globin for
which the -�3.7 deletion, the most common cause of the
African form of �+-thalassemia, was genotyped by PCR
(Chong et al. 2000).

To form a putatively neutral comparison set, genotypes for
10,000 SNPs chosen at random from across the genome, ge-
notype data were generated on 5,214 children from two case-
control studies, one for severe malaria, and one for bac-
teremia. Control individuals for these studies were members
of the birth cohort described above and so were sampled for

DNA before 1 year of age whereas case individuals were sam-
pled at the time of disease. SNP genotypes for case-control
individuals were obtained from the Illumina Omni 2.5M and
the Affymetrix 6.0 platforms for the malaria and bacteremia
studies, respectively. The 10,000 SNPs chosen for analysis were
a random subset of those that were included on both chips
and which were no less than 0.1cM apart in the HapMap
combined recombination map. SNPs that fell within the 57
candidate malaria loci, and those that showed allele frequency
differences of greater than 0.1 between the two platforms on
the overlapping set of samples, were excluded, leaving 9,756
SNPs for the final analysis. These represented 3,010 protein-
coding genes and 1,022 noncoding RNA genes: the remainder
fell within intergenic regions. Ancestral alleles, global allele
frequencies and other information on each SNP were re-
trieved from the dbSNP database (dbSNP 2015) using the
rsnps package in R (Chamberlain and Ushey 2015).

Malaria Prevalence

Indices of long-term malaria transmission intensity were ob-
tained from malaria slide positivity data from hospital admis-
sions and from community surveys conducted by the Kenyan
Ministry of Health. Hospital data were based on all patients
less than 15 years of age who were admitted to Kilifi District
Hospital between 1989 and 2010. Because of minor changes
to the administrative boundaries of locations that took effect
in December 2002, these estimates were calculated separately
for the periods May 1989 to December 2002 (N = 43,037) and
January 2003 to September 2010 (N = 19,282), a period during
which transmission intensity was considerably lower (fig. 1D,
supplementary fig. S1, Supplementary Material online). For
the first period, the data were divided among 11 subpopula-
tions: in 2003, three of the administrative areas thus dividing
into 15 subpopulations for the second period. These 15 were
further divided based on administrative boundaries into 38
subpopulations.

To address the issue of potential bias in subpopulation-
specific malaria prevalence estimates from hospital admis-
sions data arising from differences in distance to the hospital
or other factors that affect health-seeking behavior, a third
index of malaria prevalence was obtained from 216 indepen-
dent community-based surveys on 20,331 children conducted
between 1960 and 2007 in the study area by the Kenyan
Ministry of Health and the KEMRI-Wellcome Trust
Research Program (Snow et al. 2015). Records were catego-
rized into the same 11 subpopulations as for the hospital
admissions data from 1989 to 2002, excluding subpopulation
Gede for which there were no records.

To obtain best estimates of malaria prevalence by subpop-
ulation, means were adjusted for uneven sampling across
years and subpopulations by fitting a binomial regression
model with fixed-level factors of subpopulation, year, and
source (hospital vs. community) as terms in the model.
Predicted means and standard errors for each subpopulation,
standardized to the median year in the data (2003 for when all
hospital and community data were combined), were ob-
tained from the fitted model and used in analyses for
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malaria-related clines in allele frequencies described below.
Estimates were obtained for each of the three malaria prev-
alence data sets separately, standardized to 1997 and 2006 for
data on hospital admissions from 1989 to 2002 and 2003 to
2010, respectively, and to 1995 for community survey data
from 1960 to 2007, thus providing three independent envi-
ronmental variables to test for robustness of the ECA results.

Malaria-Related Clines in Allele Frequencies

To test for a relationship between malaria transmission in-
tensity and the frequencies of malaria resistance alleles across
geographically separate subpopulations, we calculated sub-
population-specific allele frequencies for all 57 candidate
loci using genotype data from all children in the birth
cohort and then related these to subpopulation-specific ma-
laria prevalence in the wider population. This was done, first,
using binomial logistic regression analysis and, second, using a
Bayesian method to fit a population genetics model of allele
frequency variation between populations that takes into ac-
count both the genetic relatedness among populations and
error in frequency estimates that arises from small samples
(see below).

The logistic regression model was fitted to binary data on
individual alleles obtained from genotype data (i.e., two re-
cords per child) with subpopulation-specific malaria preva-
lence estimates fitted as a linear covariate. The reference allele
in the analysis was the ancestral allele (supplementary table
S1, Supplementary Material online): thus the results pre-
sented here describe the relationship between malaria prev-
alence and the derived allele. Regression coefficients from the
logit scale were back-transformed for the purposes of plotting
the predicted shape of the malaria-related cline on the orig-
inal scale. Estimates were tested for significance by two-tailed
t-test. A second model was fitted with a single fixed-level
effect for subpopulation in order to determine whether sub-
populations varied significantly in allele frequency irrespective
of malaria prevalence. A third model was fitted with subpop-
ulation as a random effect in order to obtain estimates of the
between and within subpopulation variances in allele fre-
quency. These models were fitted using the glmer package
in R (Bates et al. 2015). The amount of between-population to
within-population variance in allele frequencies was esti-
mated using the likelihood ratio based pseudo R-squared
statistic implemented in the r.squaredLR command in the
MuMIn package in R (Barto�n 2015).

However, the logistic regression model described above
does not take into account the genetic relationships be-
tween subpopulations that might arise in neutral alleles as
a result of shared population history and gene flow, and
the error measurement in allele frequencies, which might
bias the correlations between allele frequencies and ma-
laria prevalence (Coop et al. 2010). Therefore we used the
“Bayenv” method of Coop et al. (2010) in which a null
model of multivariate normal population allele frequen-
cies, with covariance between populations, is assumed.
This null model is used as the background against which
a test for a relationship between allele frequencies and an

environmental variable of interest is made. By fitting this
model in a Bayesian framework, the level of statistical
support for an environmentally related cline in allele fre-
quency against the distribution of clines under the null
model, while simultaneously accounting for genetic pop-
ulation structure, is obtained. In a later version of the
Bayenv method (Gunther and Coop 2013), statistical
tests are performed on “standardized” population allele
frequencies in order to reduce the effects of outliers. Here,
we used the latter method as implemented in the
“Bayenv2.0” package (Gunther and Coop 2013) to calcu-
late the Pearson correlation, r, for each of the 57 candidate
loci and the 9,756 random loci. Empirical P values for the
57 candidate loci were computed from the null distribu-
tion of r values for the random loci. Since there were
considerably fewer genotype data for control loci than
candidate loci (table 1), thus causing higher sampling var-
iance of allele frequencies and smaller correlations among
control loci than candidate loci, r for candidate loci was
computed from random subsamples of the full data set
with N equal to the number of genotypes available for the
random SNP loci. This was repeated 100 times, and the
median values of r and its empirical P value were taken to
be the best estimates. “Asymptotic P values” for r were
also computed using the Student’s t-test method for
Pearson correlations with degrees of freedom equal to
the number of subpopulations minus two. This method
assumes that the subpopulation allele frequencies are es-
timated without error and thus provides conservative P
values for r.

To allow for multiple testing in the candidate loci, “global”
test statistics were computed for the 57 candidate loci com-
bined and compared with the distribution of this statistic
from 1,000 random draws of 57 loci from the pool of 9,756
random SNP loci plus 57 candidate loci. The global statistics
used here were, first, the sum of the absolute values of r and,
second, the sum of the log10 empirical P values for r. As above,
due to the fewer genotypes among random loci than candi-
date loci, global test statistics for candidate loci were based on
100 replicate subsamples of the full genotype data set. Global
test statistics were also computed for the six loci showing the
strongest correlations out of the set of 57 in each draw.

Comparisons between candidate and random loci were
performed using data from all 9,756 random loci except
when some subpopulation frequencies were zero due to
small sample size, as occurred for loci with low allele fre-
quencies, and when the population was divided into 38
subpopulations, in which case the locus was not included
in the random SNP set. To check whether differences in
the distribution of allele frequencies between candidate
and random loci affected significance tests, for each can-
didate locus, a subset of 70–80 random SNP loci that had
allele frequencies within 0.02 of the candidate locus, were
selected to form a total subset of 4,082 loci which was
then used to form the empirical distribution for signifi-
cance testing. Results using this distribution were com-
pared to those when the full set of random SNPs were
used for the empirical distribution.
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Comparison with Case-Control Results

To determine whether signals of protection against malaria by
ECA corresponded with those directly measured by case-
control methods, for each SNP, allele count data from all
control individuals (i.e., the full birth cohort, N = 10,597)
and all malaria cases were analyzed for differences in frequen-
cies between cases and controls by logistic regression under a
model with a fixed effect for cases versus controls, a linear
covariate for malaria prevalence (using the output of stan-
dardized values from the Bayenv2 package), and an interac-
tion between these. A reduced model containing only the
case-control effect was also fitted. Estimates of the case versus
control effect and estimates of the differences in slope be-
tween cases and controls (the interaction effect), were re-
gressed on r values from ECA and tested for significance
based on the Spearman rank correlation. This nonparametric
test was used in order to avoid excessive influence of loci with
very strong protective effects, such as HBB.

Since frequencies of protective alleles are biased down-
wards among cases in case-control studies relative to overall
population frequencies, it may be expected that ECA based
on data from case-control studies would lead to biased esti-
mates of r. Conversely, environmental correlations might lead
to bias in estimates of protective effects in case-control stud-
ies if the environmental correlation is not taken into account
in the sampling design and analysis. A theoretical analysis was
therefore undertaken to determine the effect of case-control
status on estimates of r (supplementary text S3,
Supplementary Material online).

Genetic versus Geographic Population Structure

To compare genetic distances with geographic distances,
multidimensional scaling, performed using the cmdscale
command in the stats package in R (R Core Team 2014),
was applied to the subpopulation genetic variance-covariance
matrix (dimension 11 � 11) estimated from genotype data
on the 9,756 random loci data in the Bayenv package. This
yielded a 2D representation of genetic distances among sub-
populations. The genetic map was rotated and scaled to
obtain the best fit to the geographic map using the procrustes
function in the vegan package in R (Oksanen et al. 2015).
Genetic clustering of subpopulations was visualized by hier-
archical clustering using the hclust command within the R
stats package (R Core Team 2014) and the pheatmap package
(Kolde 2015).

Gene Set Enrichment Analyses

To determine whether the genes with strongest environmen-
tal correlations were concentrated in specific molecular path-
ways, the genes represented among the top 10% of SNPs by
ECA were subjected to overrepresentation tests using
PANTHER (Mi et al. 2013), and network-based pathway en-
richment tests using EnrichNet (Glaab et al. 2012). Reference
sets used for comparison were all characterized and anno-
tated genes among the 9,756 random SNPs (i.e., noncoding
RNA genes were excluded) and which were found in the
respective PANTHER and EnrichNet databases. Tests were

made for gene sets based on gene ontologies using GO-
Slim and KEGG terms, signaling pathway types using
“PANTHER Pathways,” and protein domain types using
InterPro.

Supplementary Material
Supplementary figures S1–S4, tables S1–S3, and texts S1–S3
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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