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Abstract 

	 The effects of morphine on serum reproductive hormone levels and markers involved 
in fertility-related pathways were evaluated. A total of 30 male Wistar rats were divided into 
three groups (n = 10) and intraperitoneally administered the following substances for 20 days: 
two single daily doses of morphine (10 mg/kg; morphine group), saline (healthy saline), and 
intact group. After confirming the morphine dependence of the experimental groups, all the 
animals were sacrificed and their total testis tissue was extracted and stored at −80 °C until use. 
Male reproductive parameters (blood serum of testosterone, luteinizing hormone, and follicle-
stimulating hormone) and using Q-PCR and western blot, we evaluated mRNA and protein 
expression of CREM, TBP, CREB1, HDAC1, and FOS involved in fertility-related pathways 
were analyzed and compared in the testis samples. The luteinizing hormone and testosterone 
levels were significantly lower in the morphine-administered group than in the saline and intact 
groups (P < 0.05). Moreover, the expressions of all five target genes were downregulated in the 
morphine group (P < 0.05). The protein expression of all five target proteins was downregulated 
in the morphine group (P < 0.05). We concluded that morphine could decrease the reproductive 
parameters in male rats.
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Introduction

Addiction to mind-altering and recreational 
drugs is increasingly becoming a major 
medical and social problem worldwide, being 
prevalent in rich and developing countries 
similarly (1). A considerable number of cases 
of “male factor” infertility are categorized as 
“idiopathic” owing to their unknown etiology 
(2). Infertility and problems of impaired 
fecundity have been a concern for ages and 

are also a significant clinical problem today, 
affecting 8–12% of couples worldwide. 
Approximately 40–50% of all infertility cases 
are due to “male factor” infertility (3). 

Endogenous opioid peptides are present 
in different tissues of the male reproductive 
tract, suggesting that they may be involved in 
reproductive function (4). The effect of opioids 
on producing testosterone by inhibiting the 
Gonadotropin-releasing hormone (GnRH) 
secretion, injections of β-endorphin in the 
ventromedial, anterior and preoptic-septal 
hypothalamic areas reduce the luteinizing 
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hormone (LH) secretion from the pituitary. 
To establish down-regulation of GnRH 
mRNA levels through morphine, an in situ 
hybridization was used by Li and Pelletier (5). 
Thus, the administration of chronic morphine 
inhibits the secretion of GnRH (6). On the 
other hand, levels of follicle-stimulating 
hormone (FSH) are not influenced by opioid 
analogs or antagonists (6). Moreover, as 
animal models have shown, modulation of the 
negative feedback of sex steroids on secreting 
LH can be by opioids (6). In male rats, the 
hypothalamus sensitivity to negative feedback 
is enhanced by testosterone morphine (7, 8). 

According to previous studies, morphine 
alone does a great deal of damage to testicular 
tissue (9). Salahshoor et al. demonstrated that 
addiction in the male rat adversely affected 
fertility (10). Fronczak et al. reviewed the 
literature on the prevalence and effects of 
drug abuse on male fertility (11). Studies have 
shown that morphine induces oxidative stress 
in animals by producing free radicals and ROS, 
thereby affecting glycolysis, the mitochondrial 
respiratory chain, ATP production, amino acid 
metabolism, the antioxidant defense system, 
cellular detoxification, and gene toxicity (12). 

There is a possible association between 
the increased side effect of addiction and 
gene expression changes; therefore, ways of 
reversing or modifying the drug action may be 
provided by finding genes whose expression 
possibly will underlie these phenomena. Also, 
there are many reports about other changes 
in gene expression induced by morphine 
(13, 14); but, changes in gene expression in 
the testis upon addiction to drugs abused are 
rarely known. In this study, to select a gene, 
we selected the entire genes associated with 
male infertility through the NCBI Entrez-
Gene database using the keywords “male 
infertility”, “spermatogenesis”. The results 
showed that CREM, TBP, CREB1, HDAC1, 
and FOS had the most relationship with male 
infertility. In this study, we studied the effect 
of morphine toxicity on these genes. Chronic 
morphine treatment was found to change the 
expression of FBJ osteosarcoma oncogene 
(FOS) and cAMP-responsive element-binding 
protein 1 (CREB1), cAMP-responsive element 

modulator (CREM) (13) in the striatum and 
nucleus accumbens (13) it also increases the 
degeneration tissue, cytokines, stress signals 
such as free oxygen radicals (14), mitogenic 
stimulation (15), infections, and oncogenic 
compounds (16) and oxidative stress (17); 
also, it decreases growth factor in the various 
organs of rats (18). Another study revealed 
opioids’ effect on the expression of histone 
deacetylase 1 (HDAC1) and inducing tumor 
necrosis in the rat (19); also, HDAC1 -located 
in the nucleus of Sertoli cells of the testis- is 
involved in the spermatogenesis pathway (20). 
A series of experiments showed that the lack 
of expression of TATA-box-binding protein 
(TBP) suppressed the transcription of RNA 
polymerase III during mitosis (21). Given 
the potential adverse effects of morphine on 
male rat fertility, we aimed to determine the 
expression of these target genes involved in 
fertility-related pathways in opiate-addicted 
male rats, as well as the serum reproductive 
hormone levels.

Experimental

Animals
For this study, 30 male Wistar rats 

(200–250 g) were purchased from Tehran 
Pasteur Institute and kept in standard cages 
at the animal house of the Iran University of 
Medical Sciences. Before the experiments, 
the animals were fed a normal diet and water 
to acclimatize them to the environment 
and establish physiological adaptation. 
Throughout the study, the rats were kept under 
similar conditions, at a temperature of 22 ± 
2 °C with 12 h light and 12 h darkness and 
free access to water and food. All experiments 
were conducted according to the guide for the 
care and use of laboratory animals, and were 
approved by the research and ethics committee 
of the Abadan University of Medical Sciences 
(IR-ABDANUMS.1395.121).

Chemicals
Morphine (C16H19NO3) was obtained from 

TEMAD Chemical Company (Tehran, Iran) 
and naloxone hydrochloride from Darou Pakhsh 
(Tehran, Iran). Both drugs were dissolved in 
saline (0.9%) for administration (22).
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Experimental protocol
Rats were divided into three groups (n 

= 10): morphine group, saline and control 
groups. 

Morphine administration
Morphine was freshly dissolved in 0.9% 

saline solution before each administration. 
Rats received repeated injections of the 
same dose (10 mg/kg [sc], twice/day, for 20 
consecutive days). The saline group received 
a subcutaneous (S.C) injection of saline (1 
mL/kg) at the same volume twice daily for 20 
consecutive days. in the last control groups, the 
animals didn’t receive any drugs. Injections 
were performed at 09:00 and 15:00.

To determine the best protocol for the 
induction of addiction to morphine, a single 
dose of morphine (10 mg/kg) was used 
to determine its magnitude. In this set of 
experiments, rats received a dose of morphine 
(10 mg/kg [sc]) twice/day for 20 days. After 
that, On the twentieth day, naloxone (1 mL/
kg) was injected 30 min after last morphine 
injection and morphine withdrawal signs were 
monitored (23, 24). The withdrawal symptoms 
included tremors and movement of the limbs 
off the baseline floor.

Hormone assay
Blood serum was separated from the 

collected blood by centrifugation (4000 ×g for 
10 min). The serum samples were stored in a 
deep freezer at −20 °C. The blood testosterone, 
LH, and FSH concentrations were measured 
by enzyme-linked immunosorbent assays 
(Abcam 108666, Cambridge, MA, USA) (4).

RNA extraction and real-time quantitative 
reverse-transcription PCR

Total RNAs from the testis tissue 
ere extracted and purified with TRIzol 
reagent (Sigma, Pool, UK), following 
themanufacturer’s instructions. The RNA 
concentration was measured with a NanoDrop 
ND-100 spectrophotometer. The reverse 
transcription-polymerase chain reaction (RT-
PCR) was performed to monitor the gene 
expression levels of HDAC1, CREM, TBP, 
FOS, and CREB1. A 500-ng sample of RNA 
was reverse transcribed with the Transcriptor 

High Fidelity cDNA Synthesis Kit (Invitrogen, 
Paisley, UK), using oligo(dT) primers (Roche, 
Basel, Switzerland). One microliter of the 
cDNA was amplified using the Opticon II 
system (Invitrogen, Paisley, UK) and the 
SYBR Green PCR Master Mix (Invitrogen, 
Paisley, UK), following the manufacturer’s 
instructions. Forty PCR cycles were performed, 
using an annealing temperature of 60 °C for 
all the genes tested. Primers were specifically 
designed between two adjacent exons (Gene 
Runner program); the sequences used in this 
study are presented in Table 1. The mRNA 
levels of these genes (Ct) were normalized 
to that of the reference gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) by 
subtracting the Ct value of GAPDH from the 
Ct value of the sample (ΔCt = CT Sample – CT 

Reference). The relative expression of the target 
gene to the calibrator was quantified using 
2-ΔΔCt. 

Western Blot (WB)
Based on materials,criteria WB was 

performed as described previously (25). In 
brief, after testis removal, complete testis 
was bilaterally micro dissected on ice, snap 
frozen and stored at −80 °C. Samples were 
homogenized with complete protease inhibitor 
cocktail (Roche, Mannheim, Germany), 
centrifuged and protein levels were measured 
according to Bicinchoninic Acid (BCA) protein 
assay method (Sigma-Aldrich). An equal 
amount of total protein (30 mg) was resolved 
on SDS-PAGE gels (8–10%) and transferred 
to polyvinylidene fluoride (PVDF) membranes 
via electrophoretic transfer system (Bio-
Rad, Munchen, Germany). The membranes 
were blocked and incubated with specific 
primary antibodies at 4 °C overnight. Primary 
antibodies were rat monoclonal antibodies to 
HDAC1 (1:500, Santa Cruz Biotechnology), 
CREM (1:500, Santa Cruz Biotechnology), 
TBP (1:500, Santa Cruz Biotechnology), 
FOS (1:500, Santa Cruz Biotechnology), 
CREB1(1:500, Santa Cruz Biotechnology) 
as well as mouse monoclonal antibodies to 
GAPDH (1:500, Santa Cruz Biotechnology) 
to monitor loading. The membranes were 
washed with PBS, 0.05% Tween-20 (PBS-T), 
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and incubated with respective HRP conjugated 
secondary antibodies (1:1000) at 4 °C for 4 
h. The blots were exposed to HRP substrate 
solution (3, 3′-Diaminobenzidine and H2O2) 
for detection of target antigens. After staining, 
bands intensity was quantified using ImageJ 
(http://rsb.info.nih.gov/ij/) software after 
background subtraction and band density 
normalization.

Statistical analysis
The normal distribution of the data was 

evaluated using the Kolmogorov-Smirnov test. 
All data are presented as the mean ± SEM. The 
statistical significance of differences between 
the groups was determined using one-way 
analysis of variance, followed by Tukey’s 
post-hoc test. Statistical Package for the 
Social Sciences software (version 16.0, SPSS 
Inc., Chicago, IL, USA) was used for all the 
analyses. A value of P < 0.05 was considered 
statistically significant.

Results

Effects of morphine on serum reproductive 
hormone levels

As shown in Figure 1, the mean serum 
levels of LH and testosterone were significantly 
lower in the opiate-addicted subjects than in 
animals of the control and saline groups (P < 
0.05). The FSH levels were also lower in the 
morphine group, although the difference was 
not statistically significant (P > 0.05).

Effects of morphine on genes of the male 
fertility-related pathways 

The mRNA levels of HDAC1 were 
significantly lower in the morphine group than 
in the saline and control groups (P < 0.001) 
(Figure 2). 

The mRNA levels of CREM and TBP were 
significantly lower in the morphine group than 
in the saline and control groups (P < 0.001) 
(Figure 3). 

The mRNA levels of CREB1 and FOS were 

1 
 

Table 1. Sequence of primers used in the current investigation. 

 

 

 

Gene  Sequence (5'->3') Length Tm GC 
(%) 

Self-
complementarity 

Self-3' 
complementarity 

HDAC1 

Forward 
primer GACGGGGATGATGGAAACTAC 21 58.16 52.38 3.00 0.00 

Reverse 
primer GTTGGATTTGTGAGGACGATAG 22 56.87 45.45 2.00 2.00 

CREM 

Forward 
primer GAAACAACATAGGGTAGAAAGGG 23 56.85 43.48 2.00 0.00 

Reverse 
primer GAAAATGAGCACAACACTGGATG 23 58.77 43.48 4.00 1.00 

TBP 

Forward 
primer 

ATCTTCATCCTTGTCCTCCAGCTTC 25 62.38 48.00 4.00 0.00 

Reverse 
primer GCTCCCTCCAAAGCAATCTTCCTTA 25 62.85 48.00 6.00 4.00 

FOS 

Forward 
primer GGTCCTGTCTGGTTCCTTCTATG 23 60.12 52.17 3.00 0.00 

Reverse 
primer 

CTGCCTTGTCTGACTGCTCAC 21 61.21 57.14 5.00 1.00 

CREB1 

Forward 
primer 

CAG TTG TTA TGG CGTCCT 18 54.61 50.00 2.00 2.00 

Reverse 
primer CTT GCT GCT TCC CTG TTC 18 55.99 55.56 3.00 0.00 

GAPDH 

Forward 
primer CAT ACT CAG CAC CAG CAT CAC C 22 61.32 54.55 3.00 0.00 

Reverse 
primer 

AAG TTC AAC GGC ACA GTC AAG G 22 61.58 50.00 5.00 0.00 

Table 1. Sequence of primers used in the current investigation.
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significantly lower in the morphine group than 
in the saline and control groups (P < 0.001) 
(Figure 4). 

Confirmation of PCR-real time results by 
western blot analysis

Our PCR-real time results were confirmed 

by western blot analysis of all proteins, 
including HDAC1, CREM, TBP, CREB1, FOS 
(Figure 5). The expression of these proteins 
was significantly down-regulated (P < 0.05) in 
male rats with addict compared with control 
and saline. 

 

 

Figure 1. Effects of morphine on serum reproductive hormone levels in Wistar rats. Data are expressed as the mean ± SEM; *Significant decrease 

of the hormone level in the morphine group compared with the saline and control groups (P < 0.05). 

 

Figure 1. Effects of morphine on serum reproductive hormone levels in Wistar rats. Data are expressed as the mean ± SEM; *Significant 
decrease of the hormone level in the morphine group compared with the saline and control groups (P < 0.05).
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Figure 2. HDAC1 mRNA expression in testis tissue from male rats addicted to morphine. The mRNA amounts were evaluated by a quantitative 

real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each group). Glyceraldehyde-3-phosphate 

dehydrogenase was used as an internal control. ***P < 0.001, morphine group vs. saline and control groups. 

  

Figure 2. HDAC1 mRNA expression in testis tissue from male rats addicted to morphine. The mRNA amounts were evaluated 
by a quantitative real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each group). 
Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control. ***P < 0.001, morphine group vs. saline and control 
groups.

 

 

Figure 3.  (A) CREM and (B) TBP mRNA expression in testis tissues from male rats addicted to morphine. The mRNA amounts were evaluated 

by a quantitative real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each group). Glyceraldehyde-3-

phosphate dehydrogenase was used as an internal control. *P < 0.05 and ***P < 0.001, morphine group vs. saline and control groups. 

  

Figure 3.  (A) CREM and (B) TBP mRNA expression in testis tissues from male rats addicted to morphine. The mRNA amounts 
were evaluated by a quantitative real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each 
group). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control. *P < 0.05 and ***P < 0.001, morphine group vs. 
saline and control groups.
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Figure 4.  (A) CREB1 and (B) FOS mRNA expression in testis tissues from male rats addicted to morphine. The mRNA amounts were evaluated 

by a quantitative real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each group). Glyceraldehyde-3-

phosphate dehydrogenase was used as an internal control. *P < 0.05 and ***P < 0.001, morphine group vs. saline and control groups. 

  

Figure 4.  (A) CREB1 and (B) FOS mRNA expression in testis tissues from male rats addicted to morphine. The mRNA amounts 
were evaluated by a quantitative real-time reverse-transcription polymerase chain reaction. Data are the mean ± SEM (n = 10 for each 
group). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control. *P < 0.05 and ***P < 0.001, morphine group vs. 
saline and control groups.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. CREM, TBP, CREB1, HDAC1, and FOS protein levels were evaluated by Western blot. Data are the mean ± SEM (n = 10 for each 

group). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control. *P < 0.05 and **P < 0.01, morphine group vs. saline and 

control groups. 

 

Figure 5. CREM, TBP, CREB1, HDAC1, and FOS protein levels were evaluated by Western blot. Data are the mean ± SEM (n = 10 
for each group). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control. *P < 0.05 and **P < 0.01, morphine group 
vs. saline and control groups.
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Discussion

Our study detected significant associations 
of opiate addiction with the impairment of 
male fertility-related parameters and decreased 
markers in fertility-related pathways. Besides, 
the serum LH and testosterone levels were 
significantly lower in the addicted rats than 
in the saline and control rats. Despite the 
presence of hypotestosteronemia, low LH, 
and impaired spermatogenesis, the serum 
level of FSH did not increase in the addicted 
rats. These results are consistent with previous 
studies demonstrating that opiate consumption 
can result in a state of hypogonadotropic 
hypogonadism (26). In another similar 
study, it was shown that the administration 
of morphine to male rats led to a decrease 
in serum levels of LH and testosterone and 
decreases in the testis weight and sperm 
production (27). A subsequent study by Lee et 
al. in 1978 on addicts confirmed the lowering 
of the blood testosterone levels, but changes in 
the FSH and LH levels were not determined at 
that time (28). In animal studies conducted on 
rats and pigs, there was no change in the FSH 
levels despite a significant decrease in the LH 
and testosterone levels (29). Drug use appears 
to change the sexual function and the level of 
associated hormones (29). A decline in male 
fertility has occurred in recent years, with one 
of the main reasons for increased exposure to 
toxicants in the environment. These agents 
may be chemical materials, stress, and ionizing 
radiation, as well as substance abuse (30, 
31). In line with our data, this study showed 
that administration of morphine also reduced 
serum reproductive hormones and confirmed 
that the damage induced by morphine caused 
to spermatogenesis.

Since previous studies have investigated 
the effect of opioids on male infertility, they 
examined various molecular pathways in 
testicular tissues. They showed that drug 
use was effective on pathways involved in 
infertility. In our present study, the morphine 
group had a significantly lower expression of 
male fertility genes. In addition, this finding 
implies that the impaired male fertility found 
in some cases could be due to drug influences 
in the hypothalamus and pituitary gland 
anda direct effect on the DNA integrity in 

testis tissue. The genes and proteins related 
to spermatogenesis and metabolism can be 
effective in normal sperm function. One of 
these genes is HDAC1, which is present in 
the nucleus of the Sertoli cells responsible for 
producing sperm. On the other hand, opiates 
have receptors in different parts of the testicles, 
including Sertoli cells and seminiferous 
tubules, which confirms their direct impact 
on spermatogenesis. They affect the HDAC1 
gene in the nucleus of Sertoli cells and 
disrupt the spermatogenesis cycle; this gene 
has a critical role in regulating the changes 
in the major histones and in the control of 
chromatin changes that affect the transcription 
of tumor suppressor genes, causing tumorous 
and pathological changes in the tissue (20). 
HDAC1 is linked to different pathways, 
including the mTOR, MAPK, Notch, Hippo 
and Wnt signaling pathways associated with 
cell growth, proliferation and differentiation 
(32).

Different studies have shown that disruption 
in each of these pathways is associated with 
infertility in both men and women (33, 34). 
A study conducted by Jee Hyun Kim in 2014 
showed that the level of HDAC1 expression 
in men with azoospermia was lower than 
that of normal people and attributed it to the 
reduction of HDAC1 gene expression with 
sperm DFI (35). 

The assessment of CREB, FOS in our 
study showed that its protein expression was 
diminished in the addict animal which is in 
agreement with a previous research Elena H. 
Chartoff et al. suggested that decrease CREB1, 
FOS activation in portions of the striatum is 
related to addict by morphine (36). The gene 
transcript for CBP that is a protein binds to 
CREB (CBP or Crebbp) and strongly linked 
protein p300 are essential cofactors for many 
nuclear transcription factors (37). Since direct 
pathways for CBP activation by GnRH and 
insulin, i.e., mitogen-activated protein kinase 
(MAPK) and PKC can phosphorylate CBP, 
CBP action in the gonadotroph was studied 
(38). As FSH increases, it affects the Sertoli 
receptors and increases the adenylate cyclase 
and cAMP levels, resulting in phosphorylation 
of the CREB1 transcription factor on serine-133 
(39). CREB1 induces the transcription factors 
required to activate other genes involved 
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in spermatogenesis (40). It regulates the 
hormones that regulate spermatogenesis and 
anti-apoptotic factors (41). According to the 
data shown by the String database, there is 
an interaction between FOS with Interleukins 
receptor, apoptosis-related cysteine peptidase 
(CASP1), Mitogen-activated protein kinase 
14 (MAPK14), Jun proto-oncogene (JUN), 
and FBJ murine (42); in addition, according 
to another study, in evaluating specific types 
of male infertility, Interleukins and FOS in 
seminal plasma should be extended; Thus, the 
changed FOS influences the innate immunity 
level in male infertility (43). 

Studies have shown that CREB1, CREM, 
and FOS in the mouse and rat spermatogonial 
stem cell model helps the process of 
spermatogenesis by activating the Ras/Erk1/2 
pathway and CDK2 promoter (44, 45). For 
expressing the late spermatogenic genes, there 
is a known master switch, including several 
spermatid-specific transcriptional regulators. 
The transcriptional activator CREMT, highly 
expressed in round spermatids is essential for 
expressing many important postmeiotic genes, 
for instance, Prm1, Prm2, Tnp1 and Tnp2, is 
encoded by the Crem gene (46, 47).

The coordinated action of a set of 
general transcription factors is necessary for 
transcription initiation by RNA polymerase 
II in eukaryotes (48, 49). The TBP is one of 
the major factors in transcription initiation; as 
well, during spermatogenesis, it shows a stage-
specific expression pattern (50). Previous 
studies showed that testicular tissue in 
sterilized male mice was investigated, and the 
number of genes involved in spermatogenesis. 
The number of sperms in these mice was also 
evaluated. This study showed that spermatozoa 
were decreased and spermatogenesis was 
controlled by the TBP gene and TBP has been 
shown to affect the various factors involved in 
spermatogenesis (51). 

Vesselin M. Chorbov et al. (2011) showed 
that DNA methylation in addicted men’s 
sperm was higher than those who quit the 
addiction. Hypermethylation of CpG loci in 
the promoter of genes involved in suppressing 
necrotic tumors, such as HDAC1 and HDAC1 
gene expression, decreases. Increased DNA 
methylation in sperm may represent a method 
of epigenetic inheritance of opioid abuse 

or dependence phenotypes (52). According 
to Betina González in 2018, drug addiction 
modifies epigenetic homeostasis and next-
generation outcomes, increases methylation of 
cytosine levels in sperm DNA and germ cells, 
and decreases HDAC1 gene expression. It also 
decreases spermatogenesis, which has a higher 
gene expression rate with drug withdrawal 
but is lower than normal (53). Jinghua Wang 
(2007) stated that morphine chronically 
inhibits interleukin-2 (IL-2) at the genomic 
and protein levelresulting in the inhibition 
of the CREB gene. In addition, chronic 
morphine treatment inhibits acetylation and 
trimethylation of histones and decreases 
DNA demethylation and access to the IL-2 
promoter. These findings suggest that chronic 
morphine treatment may act through both 
transcriptional and epigenetic mechanisms 
to inhibit the IL-2 production and ultimately 
reduce CREB gene expression (13). Alcohol, 
cocaine, and nicotine increase methylation 
of cytosine levels in DNA and decrease FOS 
gene expression (54). According to another 
study, cellular and molecular examination in 
mice showed that spermatogonia stem cells 
were necessary for sperm production. Also, 
knocking down a set of genes, especially the 
TBP gene, reduces the production of sperm, 
which also increases apoptosis rates in these 
rats (55).

Conclusion

In conclusion, we have indicated for the 
first time the adverse effects of morphine on 
key molecules involved in fertility-related 
pathways in the male rat. It appears that 
morphine could decrease the reproductive 
parameters in this animal model of addiction. 
We suggest that morphine was able to affect 
the downregulation of the key molecule in the 
fertility-related pathways in the male rat. 
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