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Breast cancer is the second leading cause of cancer-related
death in women and is a complex disease with high intra-
tumoral and intertumoral heterogeneity. Such heteroge-
neity is a major driving force behind failure of current
therapies and development of resistance. Due to the limi-
tations of conventional therapies and inevitable emer-
gence of acquired drug resistance (chemo and endocrine)
as well as radio resistance, it is essential to design novel
therapeutic strategies to improve the prognosis for breast
cancer patients. Deregulated Notch signaling within the
breast tumor and its tumor microenvironment (TME) is
linked to poor clinical outcomes in treatment of resistant
breast cancer. Notch receptors and ligands are also impor-
tant for normal mammary development, suggesting the
potential for conserved signaling pathways between nor-
mal mammary gland development and breast cancer. In
this review, we focus on mechanisms by which Notch re-
ceptors and ligands contribute to normal mammary gland
development and breast tumor progression. We also dis-
cuss how complex interactions between cancer cells and
the TME may reduce treatment efficacy and ultimately
lead to acquired drug or radio resistance. Potential
combinatorial approaches aimed at disrupting Notch-
and TME-mediated resistance that may aid in achieving
in an improved patient prognosis are also highlighted.

Breast cancer is themost prevalent cancer among wom-
en worldwide (ShahidSales et al. 2018; Ghasemi et al.
2019). Breast cancer is a highly heterogeneous disease
with many subtypes, and treatment choice is based on
the presence or absence of different hormone receptors,
such as estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2
(HER2), as well as tumor grade and age of the patient (Des-
medt et al. 2008). Unfortunately, traditional treatment
methods, including chemotherapy, endocrine therapy,
and radiation therapy are often not curative, and only im-

prove clinical outcome (Schmidberger et al. 2003; Yang
et al. 2020) in a subset of patients. In addition, while
some patients respond to therapies initially, de novo or ac-
quired therapeutic resistance further compromises clini-
cal response, resulting in worsened patient outcome.
While therapeutic resistance is often associated with tu-
mor cells themselves, signaling ligands and soluble factors
within the tumor microenvironment (TME) may contrib-
ute to this process through aberrant activation of various
signaling pathways in tumor cells, whichmay assist them
in escaping the immune response (Quail and Joyce 2013;
Zahreddine and Borden 2013).

The highly conservedNotch signaling pathway is one of
the key regulators including cell fate and cell differentia-
tion decisions in the developing mammary gland (Dontu
et al. 2004; Bouras et al. 2008; Chakrabarti et al. 2018). Re-
cent studies established thatNotch signaling is frequently
deregulated in the progression of different breast cancer
subtypes as well as in acquisition of therapeutic resistanc-
es (Shi and Harris 2006; Guo et al. 2011; Takebe et al.
2015; Brzozowa-Zasada et al. 2017; Lamy et al. 2017;
Krishna et al. 2019). The Notch signaling pathway is me-
diated through one of the four Notch receptors and one of
five Notch ligands. Due to its ubiquitous nature, global
targeting of Notch signaling through all receptors is likely
to have adverse effects. However, preclinical research re-
veals that therapeutic targeting of selective Notch recep-
tors/ligands and components of the TME enhance the
effectiveness of modern clinical therapies for breast can-
cer (Mollen et al. 2018). As such, further study is required
to determine the safety and efficacy of therapeutic strate-
gies in the treatment of breast cancer.

In this review,webrieflyhighlight context- and subtype-
dependent intriguing pleiotropic functions of Notch sig-
naling as an oncogene or suppressor. We then describe
the changes in the expression of different Notch receptors
and ligands in the context of normal mammary gland
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development followed by breast carcinoma development,
and then discuss their involvement in the interplay be-
tween tumor cells, cancer stem cells (CSCs), and immune
cells (T-cells, tumor-associated macrophages (TAMs) and
myeloid-derived suppressor cells (MDSCs), and cancer-as-
sociated fibroblasts (CAFs) present in the TME of breast
cancer. We also summarize recent research describing
the involvement of Notch signaling in acquisition of
breast cancer chemoresistance, endocrine resistance, and
radiation resistance, thereby supporting Notch signaling
as apromising therapeutic target. Furthermore,weaddress
current knowledge on combinatorial therapeutic targeting
of both Notch and the TME to enhance current treatment
efficacy for treatment-resistant breast cancer patients.

Notch signaling overview

Notch signaling is an evolutionarily conserved cell to cell
communication pathway that reiteratively regulates a
diverse array of cellular processes including proliferation,
cell fate decisions, embryonic development, and renewal
and maintenance of adult tissue (Artavanis-Tsakonas
et al. 1999; Lai 2004; Bray 2006; Fortini 2009).Thebasicmo-
lecular players in this pathway are four receptors
(NOTCH1–4) and five ligands (Delta-like ligand 1 [DLL1],
Delta-like ligand 3 [DLL3], Delta-like ligand 4 [DLL4], Jag-
ged 1 [JAG1], and Jagged 2 [JAG2]) in mammals (Nickoloff
et al. 2003;Hori et al. 2013; Bray 2016).Under normal phys-
iological conditions, binding of a Notch ligand to its recep-
tor initiates Notch signaling by releasing the intracellular
domain of the Notch receptor (NICD) following cleavage
by amember of the disintegrin andmetalloproteinase fam-
ily (ADAM17orADAM10)of proteases and a presenilin-de-
pendent γ-secretase complex (Brou et al. 2000; Fortini 2001;
Hori et al. 2013). The releasedNICD then translocates into
the nucleus where it modulates gene expression primarily
by binding to the ubiquitous transcription factor CSL
(CBF1/suppressor of hairless/Lag-1, also known as RBPJ).
NICD binding to CSL recruits additional transcription fac-
tors, converting the complex from a transcriptional repres-
sor into an activator in conjunction with cofactors such as
master mind-like (MAML) proteins. This complex then in-
duces transcriptionofdownstreamtargets includingseveral
Hairy/Enhancer of Split related genes (HES andHEY) (Brou
et al. 2000; Fortini 2001; Bray 2016). BothHES andHEYpro-
teins are comprised of two domains, one that regulates
DNA-binding specificity and a second helix-loop-helix
domain that determines formation of either homo or heter-
odimers.Througheither interactionwithcorepressorsorby
sequestration of different transcriptional factors, dimers of
HES andHEYproteins regulate cell growth, differentiation,
angiogenesis, and apoptosis (Kageyama et al. 2007).

Notch as oncogene

EarlyNotch signaling studies focused on its pivotal role in
development and tissue homoeostasis (Artavanis-Tsako-
nas et al. 1999; Shih Ie and Wang 2007; Chakrabarti
et al. 2018). However, an oncogenic potential for Notch

signaling was first discovered in a subset of human
T-cell acute lymphoblastic leukemia (T-ALL) patients
with chromosomal translocation (Reynolds et al. 1987;
Ellisen et al. 1991; Radtke et al. 1999; Aster et al. 2008;
Zou et al. 2013). This translocation occurs due to the fusion
of the 3′ end ofNOTCH1with the T-cell receptor β (TCRB)
promoter enhancer region, leading to the formation of
truncated and constitutively active NOTCH1 protein.
The oncogenic role of this truncated form of NOTCH1
was identified by Pear et al. (1996) in a mouse bone mar-
row transplantation study in which higher expression of
truncated NOTCH1 promoted T-ALL. Furthermore, a
gene sequence study of primary human T-ALL tumors of
all molecular subtypes revealed that 50%–60% of tumor
samples showed activating NOTCH1 mutations (Weng
et al. 2004). Subsequent identification of activating muta-
tions in Notch genes have been reported in studies of oth-
er hematopoietic malignancies, including B-cell chronic
lymphocytic leukemia (Di Ianni et al. 2009), mantle cell
lymphoma (Kridel et al. 2012), and splenic marginal
zone lymphoma (Kiel et al. 2012) and are often correlated
with poor patient outcome and therapeutic resistance.
A potential oncogenic function for Notch has also been

reported in solid tumors, such as lung (Dang et al. 2000;
Allen et al. 2011; Yuan et al. 2015), breast (Gallahan and
Callahan 1997; Reedijk et al. 2005; Hu et al. 2006; Stylia-
nou et al. 2006), ovarian (Park et al. 2006; Zhu et al. 2019),
and squamous cell carcinomas (Fukusumi and Califano
2018; Loganathan et al. 2020). The first evidence of an on-
cogenic role for Notch in solid tumors was noted in mu-
rine breast tumors, in which MMTV (mouse mammary
tumor virus) insertion into theNotch4 locus results in for-
mation of a truncated and active form of Notch4 capable
of driving the formation of mammary tumors. A similarly
truncated and activated form of NOTCH4 has been found
in human breast cancer BT474 (ER+ HER2+) and HS578
(TNBC) cell lines (Imatani and Callahan 2000), and an ac-
tivated NOTCH1 ICD domain is observed in certain hu-
man mammary cancer epithelial cell lines (Stylianou
et al. 2006). NOTCH3 seems to play a role specifically
in the proliferation of ERBB2 (HER2)-negative breast can-
cer cell lines (Yamaguchi et al. 2008). Studies in primary
human breast cancers have shown that high-level expres-
sion of JAG1 and/or NOTCH1 in tumors correlates with
poor overall survival of patients with advanced breast can-
cer (Reedijk et al. 2005; Dickson et al. 2007). It has also
been shown that NUMB, a key negative regulator of the
Notch pathway, is lost in >50% of tumors due to ubiquiti-
nation and proteosomal degradation, and this loss is also
correlated with higher-grade tumors (Pece et al. 2004). Be-
sides breast cancer, oncogenicNotch functionwas further
validated in several additional cancers, including non-
small cell lung carcinoma, colorectal cancer, melanoma,
and medulablastoma (Radtke and Raj 2003; Nowell and
Radtke 2017).

Notch as tumor suppressor

While the studies described above suggest that Notch sig-
naling plays a pro-tumorigenic role, growing evidence also
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suggests that these same pathways can have a potent tu-
mor suppressor function in both solid tumors and hemato-
logical malignancies (Dotto 2008; Nowell and Radtke
2017). For example, two studies identified predominant
NOTCH1, NOTCH2, and NOTCH3 mutations in head
and neck squamous cell carcinoma (HNSCC) patients.
Mutations identified from these studies were missense,
nonsense, or insertion/deletions within the extracellular
domain of the Notch receptors, and therefore are predict-
ed to result in loss of function (Agrawal et al. 2011; Ock
et al. 2016). Subsequently, loss-of-function mutations
(both missense and nonsense) in Notch components
were evident in various squamous cell carcinomas
(SCCs), including cutaneous SCCs (Wang et al. 2011; Pick-
ering et al. 2014), esophageal SCCs (Song et al. 2014), lung
SCCs (Wang et al. 2011), and bladder SCCs (Rampias et al.
2014). In addition to SCCs, Notch also behaves as a tumor
suppressor in other solid cancers such as PDAC (pancreat-
ic ductal carcinoma) (Avila and Kissil 2013), HCC (hepato-
cellular carcinoma) (Viatour et al. 2011), and NSCLC
(nonsmall cell lung cancer) (Zou et al. 2018).Most of these
studies focused on Notch receptors; however, it remains
unclear whether Notch ligands have any tumor-suppres-
sive function. The predominant oncogenic function of
Notch signaling in breast cancer and lymphocytes versus
the tumor-suppressive role in SCCs and other cancers
highlights the intriguing dual role of a single signaling
pathway. In this review, we focus primarily on the onco-
genic function of Notch signaling in subtypes of breast
cancer, highlighting areas where therapeutic targeting of
this pathway may improve patient outcome.

Role of notch signaling in mammary gland development

Unlike other organs, the majority of mammary gland de-
velopment occurs postnatally at the onset of puberty.
The mammary gland comprises two primary lineages,
the inner luminal and the outer basal/myoepithelial cell
layers. The mammary gland undergoes cycles of major
modeling and remodeling during pregnancy and involu-
tion, suggesting the presence of adult stem cells. While
these adult stem cells were originally believed to reside
in the basal/myoepithelial cell layer (Shackleton et al.
2006; Rios et al. 2014), recent studies also support the pres-
ence of lineage-specific stem cells in both the luminal and
basal lineages (Van Keymeulen et al. 2011, 2017). For ex-
ample, lineage tracing experiments using Notch1-Cre-
ERT2mice demonstrate thatNotch1 receptor exclusively
labels ERα− luminal progenitors. Notch1 expressing lumi-
nal mammary cells are strictly unipotent in adult mice,
but surprisingly can give rise to both basal and luminal
progeny in transplantation experiments or when tracing
is initiated in embryos, demonstrating cell plasticity
(Rodilla et al. 2015). Similarly, using a Notch3-Cre-ERT2
transgenic mouse, it was shown that Notch3 is expressed
in luminal progenitor population that gives rise to ductal
lineage cells capable of survivingmultiple successive preg-
nancies, suggesting a capacity to self-renew (Lafkas et al.
2013). Another study based on short- and long-term line-

age tracing using Notch2-Cre mice show that Notch2 la-
bels two luminal progenitor populations, S and L, that
give rise to respective lineages during puberty (Šale et al.
2013). In this study it was shown that Notch2 paralogue
is particularly important for tertiary branches and alveolar
clusters. However, the function of Notch2 in pregnancy is
not clear and needs further studies. In contrast to Notch1,
Notch2, and Notch3 receptors, lineage studies with
Notch4 are not yet available, most likely due to lack of
good lineage tracing mouse model. However, interesting
studies show that Notch4 is restricted to both basal and
myoepithelial compartments containing the mammary
stem cell population (Raouf et al. 2008; Harrison et al.
2010). Inhibition of Notch4 reduces mammary stem cell
andbipotent lineage cell number aswell as branchingmor-
phogenesis in vitro (Soriano et al. 2000; Dontu et al. 2004).
It was also suggested that Notch4 can inhibit lumen for-
mation of alveolar structures, suggesting its role in cell po-
larity of mammary epithelial cells. Taken together, these
studies have clearly demonstrated a critical role for Notch
receptors during normal mammary gland development
and cell fate determination.

Compared with the function of Notch receptors, the
function of Notch ligands in basal and luminal cells in
normalmammary gland development are less established.
Gene expression studies have shown that Dll1 is ex-
pressed at higher levels in basal cells, whereas Jag1 is high-
er in luminal progenitor cells (Bouras et al. 2008).Dll4 and
Jag1 expression are higher in mammary glands during
pregnancy (Raafat et al. 2011), as are Notch target genes
such asHey2, but their function is not yet understood. Re-
cent studies from our group usingDll1 conditional knock-
out mice and reporter mouse models (Dll1mCherry and
Dll1GFP-Cre-ERT2) demonstrated that Dll1 is predominant-
ly expressed in basal cells and promotes virgin mammary
gland development by recruiting neighboring mammary
gland macrophages (Chakrabarti et al. 2018). Our results
indicate that cross-talk between Dll1+ mammary stem
cells and macrophages maintain the local stem cell niche
in virgin mammary glands. Few interesting questions still
remain such as if a similar cross-talk between Dll1+ stem
cells/progenitors and macrophages or other stromal cells
also occurs during pregnancy and/or involution.

Role of Notch signaling in different subtypes
of breast cancer

Breast cancer remains amajor clinical challengewith high
rates of mortality and recurrence. It is a highly heteroge-
neous disease, as tumors display diverse morphological,
immunohistochemical, and phenotypic features. Cur-
rently, breast cancers are classified into five major sub-
types: luminal A and B (60%–70%), HER2 (10%), basal-
like, and claudin-low (15%–20%) (Prat and Perou 2011;
Hon et al. 2016). Both luminal A and B breast cancers
are positive for estrogen (ER) and progesterone (PR) recep-
tors. Luminal A tends to be less aggressive, with a low pro-
liferation rate (low Ki67) and higher survival rates with
fewer recurrences relative to luminal B (ER+ and/or PR+,
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HER2+ or HER2−) tumors, which are more aggressive and
highly proliferative (highKi67) (Ellis et al. 2008; Creighton
2012).MostHER2-positive tumors are high-graded aggres-
sive tumors with poor survival rates (Li and Li 2013).
Basal-like subtypes express high levels of basal cell mark-
ers and basal cytokeratins (Yehiely et al. 2006; Rakha et al.
2008). Finally, claudin-low breast tumors are associated
with stem cell and epithelial-to-mesenchymal transition
(EMT)-mediated processes (Hennessy et al. 2009; Dias
et al. 2017). Both basal-like and claudin-low subtypes are
characterized by the absence of all hormone receptors
(ER−PR−HER2−) and thus are categorized as triple-nega-
tive breast cancer (TNBC) (Lehmann et al. 2011). These
are highly aggressive with high rates of distant metastasis
and poor prognosis due to lack of effective targeted
therapies.
The importance of Notch signaling in human breast

cancer development has been well documented (Reedijk
2012); however, understanding of the role of Notch
receptors and ligands in different breast cancer subtypes
remains incompletely understood. In the following sub-
sections, we discuss the function of differentNotch recep-
tors and ligands in different subsets of breast cancer.

Notch receptors in different subtypes of breast cancer

The functional outcome of Notch signaling is highly de-
pendent on the cellular context as well as on the temporal
and spatial expression of each of its receptors and ligands
(Bray 2006; Capaccione and Pine 2013). Therefore, it is not
surprising that aberrant expression or function of Notch
signaling components can promote or suppress different
subtypes of breast cancer. A brief account of this intrigu-

ing dual function of Notch signaling component in the
context of breast cancer subtypes is presented in Table 1.

Notch1 An oncogenic function for Notch1 is well estab-
lished in breast cancer. Hu et al. (2006) demonstrated that
overexpression of activated murine Notch1 in transgenic
mice blocks mammary gland development and induces
mammary tumors. Earlier studies also show NOTCH1
is activated and associated with metastatic breast cancer
cells (Mohammadi-Yeganeh et al. 2015). High-level
JAG1/NOTCH1 expression is connected to poor overall
patient survival in human breast cancer, suggesting that
a JAG1/NOTCH1 activation loop may provide oncogenic
function in promoting tumor formation (Reedijk et al.
2005). In addition, transcriptional profiling of patient tu-
mors and 14 breast cancer cell lines linked NOTCH1
and survivin, both downstream targets of NUMB, to the
TNBC subgroup in an inverse manner. Mechanistically,
the oncogenic effect of Notch signaling in TNBC was
thought to occur within CD24lowCD44high CSCs (Ren-
nstam et al. 2010). Notably, another study revealed that
the increased NOTCH1 activity observed in TNBC was
due to a PEST (rich in proline [P], glutamic acid [E], serine
[S], and threonine [T]) domain mutation in NOTCH1
(Wang et al. 2015), highlighting the importance of this
domain in Notch signaling. A recent study in the
BRCA1 transgenic mouse model identified Notch1 as a
top putative oncogene able to overcome the apoptosis
caused by BRCA1 deficiency and to promote TNBC for-
mation by activating the epithelial–mesenchymal transi-
tion (EMT) signaling pathway (Miao et al. 2020). Several
studies also highlight the strong connection of NOTCH1
signaling with EMT, migration, and invasion of TNBC

Table 1. Function of Notch receptors/ligands in different subtypes of breast cancer

Components of Notch
pathway Breast cancer subtypes Function

NOTCH1 MMTV/neu transgenic mice (Hu et al. 2006), BRCA1 GEMM (Shao et al. 2015), ER+

luminal cell lines (Bolós et al. 2013), TNBC cell lines (Mohammadi-Yeganeh et al.
2015), TNBC human patients (Rennstam et al. 2010; Wang et al. 2015), invasive
ductal carcinoma (IDC) human patients (Reedijk et al. 2005)

Oncogenic

NOTCH2 HER2+ human patients (Florena et al. 2007), basal subtype of IDC human patients (Lee
et al. 2018)

Oncogenic

ER+ luminal cell lines (Fu et al. 2010), TNBC cell lines (O’Neill et al. 2007) Tumor-
suppressive

NOTCH3 MMTV/neu transgenic mice(Hu et al. 2006), ER+ and HER2+ human patients (Hirose
et al. 2010; Xu et al. 2016)

Oncogenic

TNBC cell lines (MDA-MB-231 and T98G) (Zhang et al. 2016), ERBB2− basal tumor
cells (Choy et al. 2017)

Tumor
suppressive

NOTCH4 MMTV/neu transgenic mice (Hu et al. 2006), WAP-h-Int3sh transgenic mice (Raafat
et al. 2004), TNBC human patients (Yao et al. 2011; Wang et al. 2018)

Oncogenic

JAG1 TNBC and basal-like human patients (Li et al. 2014; Chen et al. 2016), TNBC cell lines
(Sethi et al. 2011; Tao et al. 2011), luminal cell lines (Li et al. 2014)

Oncogenic

JAG2 Luminal and TNBC cell line (Xing et al. 2011; Kontomanolis et al. 2018) Oncogenic
DLL1 ER+ luminal and TNBC mammary tumors (Kumar et al. 2019), TNBC cell lines (Shui

et al. 2017)
Oncogenic

DLL4 Luminal A and B, TNBC, and HER2 human patients and cell lines (Kontomanolis et al.
2014)

Oncogenic

DLL3 Less evident in breast cancer Not known
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cells (Shao et al. 2015) and ER+ MCF-7 cells (Bolós et al.
2013), suggesting that Notch1 is a key regulator of EMT
in breast cancer (Espinoza andMiele 2013). Based on these
findings, a better understanding of the connection be-
tween CSCs, EMT, and Notch1 activity is needed to ap-
preciate the predominant oncogenic function of this
receptor in breast cancer.

Notch2 Unlike Notch1, the specific role of Notch2 in
breast cancer remains ambiguous. In a study, increased
NOTCH2 receptor protein and mRNA expression corre-
lated with better survival in ER+ luminal breast cancer pa-
tients (Fu et al. 2010). Similarly, a recent human breast
cancer MDA-MB-231 (TNBC) xenograft study revealed
anti-tumorigenic and apoptotic activity for NOTCH2
(O’Neill et al. 2007). On the contrary, a report shows
thatNOTCH2 is positively correlatedwithHER2 (Florena
et al. 2007) and NOTCH2 activation maintains the mes-
enchymal phenotype in basal subtype of invasive breast
cancer patients (Lee et al. 2018). Thus, better understand-
ing of the context-dependent Notch2 activity is impera-
tive in breast cancer subtypes for successful targeted
therapy against Notch2.

Notch3 Similar to Notch2, Notch3 has been reported to
have a dual function in breast cancer. While constitutive
Notch3 signaling exhibits oncogenic potential in a murine
breast cancer model (Hu et al. 2006), NOTCH3 amplifica-
tion and overexpression at the protein and mRNA level
were associated with better survival in HER2− and ER+ hu-
man breast cancer patients (Hirose et al. 2010; Xu et al.
2016). In TNBC, ectopic NICD3 overexpression facilitated
the inhibition of EMT through up-regulation of the HIPPO
pathway and E-cadherin in an RBPJ-dependent manner,
whereby knockdown of NOTCH3 abrogated this effect
(Zhang et al. 2016). Additionally, nonsense and missense
NOTCH3mutations inbreast cancer support its tumor sup-
pressor capabilities through control of the cellular senes-
cence pathway (Cui et al. 2013). In contrast, in some
recent studies NOTCH3 signaling was shown to promote
the growth of basal breast cancers in functional studies
(Choy et al. 2017). The dual function of Notch3may either
be subtype-dependent or may relate to the choice of model
and/or cell lines used. Future experiments involvingmouse
models suchas conditional knockout and reportermodel in
the context of breast cancer will clarify the molecular
mechanism of signaling through Notch3 in breast cancer.

Notch4 The oncogenic function of Notch signaling in
breast cancer was first shown using MMTV-In3 (Notch4)
transgenic mice. Both Notch1 and Notch4 are common
sites of proviral integration in murine mammary tumors
and induce mammary (MMTV) tumors when overex-
pressed in transgenic mice (Raafat et al. 2004; Hu et al.
2006). NOTCH4 has recently been shown to be overex-
pressed in TNBC carcinoma patient samples (Yao et al.
2011; Wang et al. 2018). Activation of NOTCH4 signaling
is also associated with cancer progression and regulation
of breast CSC activity (Harrison et al. 2010), which impli-
cates NOTCH4 in recurrence of breast carcinoma. Anoth-

er interesting recent study demonstrates that NOTCH4
maintains quiescent mesenchymal-like breast CSC via
transcriptionally activating SLUG and GAS1 in TNBC
(Zhou et al. 2020). Thus, similar to Notch1, Notch4 func-
tions predominantly as an oncogene in breast cancer.

As is clear, Notch receptor-mediated signaling can play
either an oncogenic or tumor suppressor role depending
on breast cancer subtype and/or context; therefore, specif-
ic and judicial targeting of Notch receptors in the appro-
priate context will clearly be required to optimize
therapeutic safety and efficacy. In addition, the functional
role of individual Notch receptors in mediating breast
cancer resistance to therapy will be required. Moreover,
as the majority of Notch signaling studies are performed
using human breast cancer cell lines engrafted into immu-
nocompromised mice, further validation of these studies
using mouse models with intact immune background is
critically required.

Notch ligands in different subtypes of breast cancer

WhileNotch receptors in breast cancer progression have re-
ceivedthelion’s shareof attention todate, the roleof specific
ligands inbreastcancerbiology isnowbeingappreciated.For
example, JAG1-inducedNotch signaling has been implicat-
ed inmultiple formsofcancerandmultiple aspectsof cancer
biology including tumor recurrence,metastatic process, and
drug resistance (Dickson et al. 2007; Li et al. 2014; Andrieu
et al. 2016).Oneof the first evidence that JAG1was involved
inahumancancerwasthe recognition that JAG1mRNAex-
pression is up-regulated in breast cancer and correlates with
a poor overall breast cancer survival in a dose-dependent
fashion (Reedijk et al. 2005; Dickson et al. 2007). Accumu-
latingevidencehas also revealed that JAG1-mediatedNotch
activationhascrucial roles inmaintainingCSCpopulations,
augmenting cell survival and proliferation, metastasis, and
promoting tumorangiogenesis (Li et al. 2014; Bednarz-Knoll
et al. 2016; Chen et al. 2016). Interestingly, two overlapping
subtypes,TNBCandbasal-likebreast cancer,whicharenor-
mally more aggressive and have poorer prognoses and re-
duced disease-free survival showed higher levels of JAG1
expression. In contrast, lower JAG1 expression was evident
in less aggressive T47D and MCF-7 luminal subtype breast
cancer cell lines (Li et al. 2014). Further research studies in
mice have demonstrated that JAG1 expression in TNBC
cells favors osteolytic bone metastasis by activating the
Notch signalingpathway in thebone stromalmicroenviron-
ment (Sethi et al. 2011;Tao et al. 2011).Theup-regulationof
another Notch ligand, DLL4 in tumor, suggests that it has a
prime role in tumor angiogenesis. Zohny et al. (2020) and Jia
et al. (2016) demonstrated that inhibition of DLL4 impaired
vasculature development and reduced breast tumor growth
along with tumor angiogenesis in DLL4 heterozygous
knockout mice and in a human patient-derived xenograft
(PDX) model, respectively. DLL4 is also overexpressed in
breast cancer cells and is linked to nodal and distant metas-
tasis (Kontomanolis et al. 2014).

The role of the other Notch ligands, namely, JAG2,
DLL1, and DLL3 in breast cancer is less evident, but sev-
eral recent studies indicate that they may contribute to
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pathology. For example, hypoxia-induced JAG2-driven
Notch activation can promote breast cancer metastasis
and self-renewal of cancer stem-like cells (Xing et al.
2011). Reduced JAG2 in two luminal breast cancer cell
lines, MCF-7 and T47D, promoted caspase activity, sug-
gesting that Notch signaling prevents these cells from un-
dergoing apoptosis (Kontomanolis et al. 2018). Moreover,
in vitro coculture studies show that JAG2 is likely to play
an important role in breast tumor angiogenesis, since its
inhibition in breast cancer cells reduces endothelial tube
formation (Pietras et al. 2011).
Previouswork fromour laboratory has shown thatDLL1

protein is significantly up-regulated in ER+ breast tumors
compared with either normal breast tissue or TNBC tu-
mors. In addition, our study also suggested for the first
time that overexpression of DLL1 protein is highly corre-
lated with poor survival of ER+ breast cancer patients.
Functional studies using human and mouse breast cancer
cells further demonstrate that DLL1 enhances tumor
growth and metastasis of ER+ luminal cells by promoting
cell proliferation, maintenance of breast CSCs, and
angiogenesis (Kumar et al. 2019). Corroborating our data,
another in vitro study showed thatmiRNA-mediated dys-
regulation of DLL1 inhibits migration and invasion in lu-
minal and TNBC breast cancer cell lines (Shui et al.
2017). Further in vivo studies addressing the mechanisms
of action of DLL1 in TNBC development are required to
understand the complex role of this ligand in TNBCs. In
this regard, our laboratory is currently focused on identify-
ing possiblemechanisms underlying the carcinogenic role
of Dll1 in breast cancer subtypes by utilizing multiple
transgenic reporter and knockout mouse models. We are
also currently determining whether DLL1-mediated
Notch signaling represents a novel effective therapeutic
target for treatment of patientswith aggressive breast can-
cer (S Kumar, A Nandi, S Singh, et al., unpubl.).
In both preclinical and clinical studies, the role of the

Notch ligand DLL3 in breast cancer remains the least
clear. While studies suggest that expression of DLL3 is
directly related to high-grade patient samples of lung
and cervical carcinomas, this does not appear to be the
case in breast cancer patients (Furuta et al. 2019; Regzed-
maa et al. 2019). These data suggestNotch ligands provide
attractive options for therapy in cancer treatment due to
their more restricted expression patterns and better-de-
fined functions. Since high expression levels of most
Notch ligands result in aberrant Notch activity and corre-
lates with poor clinical outcome, it is possible that differ-
ential Notch ligand activation in breast cancer subtypes
may be associated with oncogenesis and progression of a
particular breast cancer subtype, leading to different clin-
ical outcomes.

Notch signaling within the TME of breast cancer

Initial research exploring the role of Notch signaling in
breast cancer progression solely focused on tumor cells.
However, in recent years, the involvement of juxtacrine
Notch signaling between tumor cells and unique cell

types within the TME has been recognized (Meurette
and Mehlen 2018). The cross-talk between the cancer
cells and their environment involving juxtacrine and para-
crine signaling is important for new targeted therapy in
breast cancer progression and drug resistance (Hanahan
and Coussens 2012). Indeed, Notch activation in tumor
cells promotes secretion of numerous soluble factors
that can have paracrine effects on cells within the TME
(Shen et al. 2017), including immune and stromal cells
such as CAFs (cancer associated fibroblasts) and endothe-
lial cells. However, CAFs can also augment Notch signal-
ing and induce resistance by promoting secretion of
several cytokines and chemokines (Tsuyada et al. 2012;
Boelens et al. 2014). Indeed, breast cancer CAFs can in-
duce NOTCH3/JAG1 activation through secretion of IL-
6 (Studebaker et al. 2008). Tsuyada et al. (2012) showed
that CAFs can produce high levels of chemokine CCL-2,
which can regulate the CSC phenotype and NOTCH1 ex-
pression in breast cancer cell lines. Consistently, in a xe-
nograft model in which fibroblasts and breast cancer
cells were cotransplanted in NOD/SCID/IL-2Rg-null
mice, loss of CCL-2 significantly reduced tumorigenesis
and NOTCH1 expression, therefore suggesting that
CAFs can cross-talk with the cancer cells via a CCL-2/
NOTCH1 axis (Huang et al. 2019). As CAFs are a crucial
regulator of Notch-dependent interactions between
CSCs and TME cells, they may also contribute to the de-
velopment of breast cancer resistance, which depends on
CSCs. Although CAFs regulate Notch activity, it is cur-
rently unclear whether Notch receptors or ligands are re-
sponsible for CAF recruitment and activation and will
require further study.
Another, very well-established immune component of

breast cancer is the tumor-associated macrophages
(TAMs) (Lewis and Pollard 2006; Qian and Pollard 2010).
Jagged-mediated NOTCH signaling in breast cancer is as-
sociated with macrophage differentiation toward TAMs
in the TME of luminal breast cancer patient samples
(Liu et al. 2017). Furthermore, in this study authors also
show that coculture of tumor cells and TAMs result in
macrophage differentiation toward more M2 type. Al-
though TAMs can behave both in an inflammatory and
an immune-suppressive way, in breast cancer patient
samples, TAMs are mostly associated with immune sup-
pressive M2 type, because tumor cells secrete high levels
of M-CSF (macrophage colony-stimulating factor) and
thus skew macrophages toward the more immunosup-
pressive M2 subtype (Sousa et al. 2015). Similarly, in the
basal subtype of breast cancer, Notch signaling through
JAG1 in breast tumor cells activates keymacrophage-acti-
vating cytokines such as IL-β and CCL-2, which helps in
recruitment of M2 type macrophages, which in turn se-
cretes TGF-β and activates TGF-β signaling in tumor cells
(Shen et al. 2017). Such cross-talk between tumor cells
and TAMs through Notch signaling may also be impor-
tant for drug-resistant conditions, which needs further ex-
ploration (Shen et al. 2017).
Similar to TAMs, myeloid-derived suppressor cells

(MDSCs) are also over-represented in the TME of breast
cancer (Kumar et al. 2018) and can promote tumor
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progression through a wide array of mechanisms includ-
ing immune suppression (Gabrilovich 2017). Peng et al.
(2016) showed that MDSCs can induce Notch signaling
in breast cancer cells and endow CSC activity through
IL-6/STAT-3 and nitric oxide/Notch cross-talk signaling.
However, it is unclear which Notch receptor is involved
in this study. Similarly,Welte et al. (2016) showed that ad-
dition ofMDSCs to breast cancer cells increases CSCs and
Notch target genes such as Hes and Hey. Notch reporter
activity was used to confirm activation of Notch upon ad-
dition of MDSCs in vitro; however, it is not clear which
Notch receptor or ligand was involved besides the media-
tor RBPJ.

Tregs (regulatory T-cells), another strong immune com-
ponent for immune suppression have been reported to be
increased by both JAG1 and JAG2 through mesenchymal
stem cells in an animal model of allergic airway inflam-
mation (Cahill et al. 2015). Both JAG1 and JAG2 are highly
expressed in TNBC (Dickson et al. 2007; Xing et al. 2011;
Lamy et al. 2017). As Tregs promote evasion of immune
surveillance and are linked to tumor invasiveness and
poor prognosis, Notch-mediated impairment of Treg func-
tionmay have prodigious impact on breast cancer therapy.
However, no study has directly addressed Notch signaling
in Tregs in the context of breast cancer. Thus, it will be
important to understand the regulation of different Notch
ligands and receptors in the recruitment of Tregs. It is in-
teresting to note that Notch signaling can also impair
Treg function, whichmay limit their immunosuppressive
function (Charbonnier et al. 2015). Connection of Notch
signaling to other immune cells such a B cells, Dendritic
cells (DC) in TME of breast cancer is not yet understood.
Considering the limited success of immunotherapy tar-
geting tumor cells in breast cancer, it will be important
to understand the regulatory role of Notch signaling be-
tween cancer cells and immune cells within the TME of
different subsets of breast cancer for better drug targets in-
volving Notch signaling and immune cells. A brief sche-
matic representation of the immune and stromal cells
under the regulatory role of Notch signaling in breast
TME is presented in Figure 1.

Role of Notch signaling in emergence of resistance
to current breast cancer therapies

Considering the aberrant activation of both Notch recep-
tors and ligands and their cross-talk with other oncogenic
signaling pathways in breast cancer development, metas-
tasis, recurrence, and resistance, the Notch pathway has
been identified as a potential therapeutic target for adjunc-
tive strategies to currently available treatment modalities
(chemotherapy, endocrine therapy, and radiotherapy) for
breast cancer patients. A brief account of different Notch
targeting agents used in the context of breast carcinoma
is presented in Table 2. Clinically, progression of breast
cancer treatment has improved over the past decades,
but challenges remain due to the emergence of therapeutic
resistance among a subset of breast cancer patients. The
possible mechanisms underlying different kinds of thera-

peutic resistance in breast cancers are thought to be driven
in part by the interplay of the Notch pathway with CSCs,
the heterogeneity of the TME and activation of other sig-
naling pathways (Meurette and Mehlen 2018). The next
section of the review will elucidate the role of different
Notch receptors and ligands in the development of treat-
ment-resistant breast cancer, which has also been illus-
trated in Figure 2.

Chemoresistance

Chemotherapies, including anthracyclines/cyclophos-
phamide and taxanes, are an important component of
standard-of-care breast cancer treatment. However, che-
moresistance is a major clinical challenge for certain sub-
sets of breast cancer patients. Although, some reports
suggest that HER2+ patients do better with chemothera-
py, the insensitivity to chemotherapy in another subset
of patients such as in TNBC is associated with a 40%–

80% risk of recurrence, resulting in distant metastasis
and death for most patients (Echeverria et al. 2019). Inter-
estingly, these TNBC patients do better with chemother-
apy initially; however, many of these patients develop
chemoresistance over time. For metastatic stage IV
TNBC patients, chemotherapy resistance accounts for
90% of therapy failure (Nedeljković and Damjanović
2019). Therefore, there is an urgent need to identify the
mechanistic basis for breast cancer chemoresistance. Li
et al. (2015) showed that the inhibition of Notch signaling

Figure 1. Pleiotropic function of Notch signaling between can-
cer cells and immune cells within breast tumor microenviron-
ment (TME). Notch signaling is implicated in cross-talk
between cancer and immune cells. Notch activation in cancer
cells may affect immune cell recruitments. The oncogenic and
tumor-suppressive functions ofNotch signaling through different
subsets of immune cells in context of breast cancer are represent-
ed. (CAF) Cancer-associated fibroblast, (M1Φ) macrophage type-
1, (M2Φ) macrophage type-2, (MDSC) myeloid-derived stem
cell, (Treg) regulatory T cell.
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pathway (NOTCH1 primarily) with γ-secretase inhibitor
(GSI) could enhance the sensitivity to doxorubicin treat-
ment in MDA-MB-231 TNBC cells. Another recent study
demonstrated antibody-specific inhibition of JAG1 sensi-
tizes bone metastases to chemotherapy in TNBC cells in
vivo in mice, showcasing an important role for JAG1
and the Notch pathway in promoting chemoresistance
in breast cancer metastasizing to bone (Zheng et al.
2017). Thus, chemotherapeutic targeting JAG1 may im-
prove the efficacy of chemotherapy in that substantial
portion of TNBC breast cancer patients who eventually
develop metastatic relapse in bone and other organs.
These studies along with others suggest Notch signaling
activation is a hallmark for TNBC. Interestingly, many
of these Notch signaling work through CSCs. For exam-
ple, it has been shown that specific inhibition of Notch1
signaling enhances the antitumor efficacy of chemothera-
py in TNBC through reduction of CSCs (Qiu et al. 2013).
Another study demonstrates that JNK regulates TNBC tu-
morigenesis by promoting CSC phenotype through
Notch1 signaling via activation of c-Jun (Xie et al. 2017)
and indicates that JNK/c-Jun/Notch1 signaling is a poten-
tial therapeutic target for TNBC.
Similar to receptors, higher expression of Notch signal-

ing ligands such as DLL4 was detected in a docetaxal-re-
sistant luminal ER+ luminal MCF-7 breast cancer cell
line with increased CSC activity (Wang et al. 2017). More-
over, DLL4 is an important biomarker of chemoresistant

breast cancer subtypes (Hoey et al. 2009; Wang et al.
2017). Hoey et al. (2009) have demonstrated that targeting
of the DLL4–NOTCH1 axis with humanized anti-DLL4
monoclonal antibody alone or in combination with the
chemotherapeutic agent, irinotecan, decreased CSC fre-
quency in a human patients derived xenograft model. Re-
cent studies from our group identified function of Dll1 in
chemoresistance of breast cancer throughNF-κB signaling
(S Kumar, A Nandi, S Singh, et al., unpubl.). Compared
with the predominantly chemoresistant functions of
Notch ligands and receptors, a few studies also highlight
the inhibitory role of Notch signaling in chemoresistance.
For example, a recent study demonstrated that down-reg-
ulation of NOTCH3 correlated with low-grade chemore-
sistance in the luminal ER+ MCF-7/ADAM breast
cancer cell line (Gu et al. 2016), potentially due to its neg-
ative impact on transcription factor Fra1 (fos-related anti-
gen-1), which is required for the EMT that promotes
chemoresistance in breast cancer (Gu et al. 2016). Togeth-
er, these findings suggest that effective targeting of specif-
ic Notch signaling pathway should have a major impact
on chemoresistant cancer patient survival.
In addition to Notch signaling in CSCs in tumor cells, a

growing body of evidence supports the notion that compo-
nents of the TME play specific roles in the development of
chemoresistance through Notch signaling. As such, ther-
apeutic strategies that target Notch signaling interactions
between cancer cells and cells within the TME could pave

Table 2. Different Notch pathway targeting agents used in breast cancers

Agents Mechanism Biological target
Developmental

stage

GSIs (individual therapy)
MK0752, RO4929097, PF-03084014
(NCT00106145, NCT02338531,
NCT01151449)

Inhibition of final Notch
Cleavage by γ-secretase

Metastatic or locally advanced breast
cancer or recurred triple-negative
breast cancer

Phase I/II clinical
trial

Combined therapy
MK0752+docetaxel (NCT00645333) Locally advanced or metastatic breast

cancer
Phase I/II clinical
trial

MK0752+ tamoxifen or letrozole
(NCT00756717)

Notch homologs, Notch
ligands, multiple other γ-
secretase substrates

Early stage breast cancer Pilot study
clinical trial

RO4929097+ letrozole
(NCT01208441)

Postmenopausal ER+/PR+ stage I or II
breast cancer

Phase Ib clinical
trial

RO4929097+vismodegib
(NCT01071564)

Metastatic breast cancer Phase I clinical
trial

RO4929097+paclitaxel + carboplatin
(NCT01238133)

Stage II or II triple-negative breast
cancer

Phase I clinical
trial

Notch receptor monoclonal antibodies
(Choy et al. 2017)

Interference with Notch
receptors

Notch3 Preclinical

Notch ligand DLL4 monoclonal
antibodies (21M18, DLL4 antibody)
(Hoey et al. 2009)

Interference with ligand-
receptor interactions

Specific for DLL4 Preclinical

Notch-soluble receptor decoys
(Kangsamaksin et al. 2015; Liu et al.
2016; Colombo et al. 2018)

Interference with ligand-
receptor interactions

Relatively specific for Notch paralogs
potential pan-Notch inhibition

Preclinical

siRNA, miRNA- based therapeutics
(Shen et al. 2013; Ahmadzada et al.
2018; Loh et al. 2019)

Interference with expression
of Notch signaling
component

Specific for target mRNAs Preclinical
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the way for a new generation of therapies. However, pro-
gress has been impeded by limited understanding of the
mechanisms of acquired chemoresistance through
Notch-dependent tumor−stromal interactions and the ab-
sence of predictive biomarkers for response to such TME
directed chemoresistance therapies. An interesting study
by Sethi et al. (2011) demonstrated that JAG1 in TNBC
cells promotes bone metastasis by activating the Notch
pathway in supporting bone cells (osteoblasts). It would
be interesting to see whether this could contribute to che-
moresistance in future studies. Expression of Jag1 may
also be important when expressed on stromal cells. For ex-
ample, a recent study demonstrated that fibroblasts ex-
pressing Jag1 on their surface activate Notch3 signaling
in TNBC cells, thus promoting the expansion of TNBC
cells resistant to chemotherapy and reinitiating tumor
growth (Boelens et al. 2014). These studies highlight the
functional significance of cross-talk ofNotch signaling be-
tween tumor cells andTME through juxtracrine signaling.
Thus, it is important to fully elucidate the subcellular dis-
tribution of different Notch components within the TME
and to determine their function in breast cancer chemore-
sistance to develop targeted strategies that may address
chemotherapy resistance.

Endocrine resistance

Endocrine therapy is mostly effective in ER+/PR+ breast
cancers that are initially dependent on the ER signaling
pathway (Santiago-Gómez et al. 2019). Tamoxifen, a
selective ER modulator (SERM) is the current endocrine
therapy of choice (An 2016). Other anti-estrogens, such
as SERDs (fulvestrant) or aromatase inhibitor (AI), are
most often utilized when tamoxifen treatment fails
(Howell et al. 2004). Unfortunately, a serious limitation
of endocrine therapies is the development of either de

novo resistance, an inability of patients to respond to
any ERmodulators, or acquired resistance in which a sub-
set of patients gains resistance during the course of treat-
ment (Osborne 1998; Early Breast Cancer Trialists’
Collaborative Group 2005; Early Breast Cancer Trialists’
Collaborative Group et al. 2011b). As a result, the 5-yr sur-
vival rate of the resistant patients is only 20% (Gonzalez-
Angulo et al. 2007; Clarke et al. 2015).

The Notch pathway plays an important role in estrogen
therapy-resistant breast cancer in luminal A type and lu-
minal B breast cancer (Haughian et al. 2012; Yun et al.
2013; Gelsomino et al. 2018). NOTCH3-mediated signal-
ing is increased by tamoxifen in tamoxifen- and fulves-
trant-resistant MCF-7 cell lines and the subsequent
interplay between NOTCH3 and PBX1 controls the ex-
pression of a large number of genes associated with endo-
crine resistance (Magnani et al. 2013). In addition, another
Notch receptor,NOTCH4 has been shown to confer endo-
crine resistance and stemness in a tamoxifen resistant
MCF-7 breast cancer cell line by sustaining CSCs (Haugh-
ian et al. 2012; Lombardo et al. 2014). In another study,
NOTCH1 was suggested to be sufficient to activate ER-
mediated transcription even in the absence of estrogen de-
lineating its possible function in endocrine resistant
breast cancer cell line (Hao et al. 2010). Several other stud-
ies provided evidence that other Notch components such
as JAG1 and JAG2 are also elevated in endocrine-resistant
luminal breast cancers, leading to an increase in CSC ac-
tivity (Simões et al. 2015). Magnani et al. (2013) recently
published that pharmacological inhibition or genetic abla-
tion of Notch signaling could block growth of endocrine-
resistant cancer cells, suggesting that combining current
treatment options with a blockade of Notch signaling
might be therapeutically beneficial. Furthermore, accu-
mulating evidence indicates that CSCs are key drivers of
acquired endocrine resistance in ERα+ breast tumors

Figure 2. Interaction between cellular
components of tumor microenvironment
and breast cancer cells regulates Notch
signaling driven therapeutic resistances
in breast tumors. Different cellular com-
ponent of tumor microenvironment can
induce cancer stem cell survival, stem-
ness, and resistance through either TGF-
β-dependent mechanism and or by releas-
ing soluble factors such as cytokines,
chemokines, and growth factors that fa-
vor angiogenesis and immunosuppressive
environment. All of these factors in
turn augment Notch ligand- and recep-
tor-mediated chemoresistance, endocrine
resistance, and radio resistance in breast
tumors. (CAF) Cancer-associated fibro-
blast, (CSC) cancer stem cell, (CXCL)
chemokine (C-X-C motif) ligand, (CCL)
chemokine (C-C motif) ligand, (IL) inter-
leukin, (M-CSF) macrophage colony-stim-
ulating factor, (MSC) mesenchymal stem

cell, (TAM) tumor-associated macrophage, (TGF) transforming growth factor, (Treg) regulatory T cell, (VEGF) vascular endothelial
growth factor.
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(Simões et al. 2011, 2015; Piva et al. 2014). Therefore, it is
imperative to identify components of Notch signaling
pathways that can be targeted to eradicate breast CSCs
and hence provide long-term disease-free survival.
Notably, a recent study from our group has demonstrat-

ed that progression of ER+ breast cancer depends onDLL1-
mediated Notch signaling and its effects on CSCs (Kumar
et al. 2019). However, it is not yet clear whether the tu-
mor-promoting function of DLL1 on CSCs is also respon-
sible for endocrine resistance. As cross-talk between
DLL1-mediated Notch signaling and Wnt signaling be-
tween mammary stem cells and macrophages have been
established in normal mammary gland (Chakrabarti
et al. 2018), it is possible that the effect of DLL1 on endo-
crine resistancemay function independent of ER signaling
by regulating other signaling pathways in CSCs such as
Wnt and SHH pathways (Takebe et al. 2015; Koury et al.
2017). These studies are currently under investigation in
our laboratory.
Besides tumor cell intrinsic function, a myriad of evi-

dence has revealed that heterogeneous cell types within
the TME can also actively influence endocrine resistance
(Junttila and de Sauvage 2013). A recent study has demon-
strated that infiltration of macrophages in tamoxifen-re-
sistant breast cancer TME is driven by up-regulation of
JAG1 expression in tumor cells and found that Notch ac-
tivation of these tumor-infiltrating macrophages directly
suppresses CD8+ T-cell responses in vitro (Ruffell and
Coussens 2015), providing a potential mechanistic basis
for Notch-dependent immune evasion by resistant tu-
mors cells. Another convincing link between endocrine
resistance and tumor stroma was demonstrated by Simi-
an’s group (Pontiggia et al. 2012), who showed that can-
cer-associated fibroblast-derived soluble factors induce
tamoxifen resistance in ER+ murine breast tumors. Simi-
larly, other preclinical and clinical studies revealed that
CD146− CAFs inhibit ER expression in the MCF-7 cell
line and decrease clinical response to tamoxifen with
worse patient outcome (Brechbuhl et al. 2017; Morgan
et al. 2018). Fibroblasts have also been shown to promote
therapy resistance in breast cancer cells through expres-
sion of JAG1 and exosomal transfer leading to activation
of NOTCH3 and STAT1 signaling in cancer cells (Boelens
et al. 2014). However, their connection to endocrine resis-
tance is not so clear. CAFs and TAMs can collaborate via
cell–cell interaction to promote endocrine resistance, and
it is possible that Notch signaling may contribute in the
cross-talk between these two cell types. If verified, target-
ing Notch signaling in CAFs and TAMs could be a prom-
ising therapeutic strategy to improve clinical outcome for
endocrine resistant breast cancer patients.

Radiation resistance

Radiotherapy is another effective nonsurgical modality
for breast cancer treatment (Charaghvandi et al. 2017) in
which high-energy radiation destroys cancer cells through
DNA damage, either directly or through generation of free
radicals (Balaji et al. 2016). In comparison with chemo-
therapy, radiotherapy is more efficacious for local tumor

control, with fewer side effects (Ozpiskin et al. 2019).
Moreover, the pivotal role of adjuvant radiotherapy in
leading to reduced recurrence and long-term mortality
has been well established (Early Breast Cancer Trialists’
Collaborative Group et al. 2011a). Nevertheless, some pa-
tients still may not benefit from this treatment owing to
individual variation in radio-sensitivity and may experi-
ence recurrences that ultimately challenge their progno-
sis and quality of life. This could be due to the presence
of CSCs in tumors (Choi et al. 2020). A few recent studies
have associated aberrant Notch signaling with radio resis-
tance and CSCs. For example, amodest induction of JAG1
expression on the surface of nonadherent CSC-enriched
cells was observed after fractionated radiation (Eyler and
Rich 2008). In another study, increased levels of activated
NOTCH1 were present in the culture media of CSC-en-
riched cells after radiation (Phillips et al. 2006). Although
this study showed a correlation between the levels of JAG
and activated NOTCH1 and radiation treatment, more in
depth research is required to determine whether the
Notch pathway contributes to CSC-mediated radio resis-
tance in breast cancer. In addition, characterization of
the expression patterns of Notch receptors and ligands
in response to radiation would be crucial for determining
whether the use of specificNotch inhibitor in conjunction
with radiation would represent a beneficial treatment op-
tion for breast cancer patients.
Another causal factor for radio resistance could be shed-

ding of cancer cells from primary tumors in circulation in
the form of circulating tumor cells (CTCs) (Yadav and
Shankar 2019). Enumeration and characterization of
CTCs hold great promise as predictive biomarkers for
guiding optimal treatment. Interestingly, some recent re-
ports demonstrated the association of increasedCTCs and
Notch signaling in HER2+ breast cancer (Jordan et al.
2016). Positive CTC status has been validated as prognos-
tic of recurrence-free survival, breast cancer-specific sur-
vival in metastatic breast cancer (Franken et al. 2012;
Janni et al. 2016). However, if Notch signaling-mediated
CTCs are connected to radio resistance is not yet clear.
With current lineage tracing technique and novel mouse
reporter models to track Notch-activated cancer cells, it
will be very interesting to determine whether the CTCs
contain Notch receptor- or ligand-positive cells. It would
be interesting to determine whether the Notch signaling-
mediated CTCs has CSC function in future studies.
In addition to cancer cells, radiotherapy affects twoma-

jor components of the TME-immune cells and tumor
blood vessels, which later participate in the activation of
different immune suppression pathways and induction
of radio resistance. Very few studies address the role of
Notch signaling in the TME in radio resistance. However,
Notch signaling is frequently activated by hypoxia during
tumor progression through activation of the hypoxia-in-
ducible factor-1α (HIF-1α) transcription factor. Such hyp-
oxia-driven Notch signaling may support the dormancy
of CSCs, preserving their potential for proliferation and
differentiation, thus protecting them from radiotherapy.
In addition, HIF-1α tumor cell expression is tightly regu-
lated within the TME and its activation promotes the
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recruitment of immunosuppressive populations of TAMs
with an M2 phenotype, MDSCs, and Treg cells into the
TME of radio-resistant breast cancers (Carvalho and Villar
2018; Darragh et al. 2019; Jarosz-Biej et al. 2019). As such,
additional insights into the signaling network between
Notch signaling, HIF-1α, and the TME in breast cancer
could provide new hints for overcoming radio resistance.
Although Notch dysregulation is common in breast can-
cer, Notch signaling in radiation resistance is an evolving
field. Thus, understanding of the context-dependent inter-
actions betweenNotch and other therapeutically relevant
pathways may provide insight in combining Notch thera-
peutics with radiotherapy for synergistic improvements.

Conclusions

In this review, we have summarized crucial roles for indi-
vidual Notch receptors and ligands in the normal mam-
mary gland development and progression of different
breast cancer subtypes and highlighted significant pre-
clinical and clinical studies revealing how aberrant Notch
signaling modulates CSCs to induce drug and radio resis-
tance. Indeed, Notch signaling has gained increasing at-
tention as a potential therapeutic target to overcome
current treatment failure. Notably, we also highlighted
the function of Notch ligands in breast cancer develop-
ment and drug and radiation resistance, which are highly
understudied and need future thorough investigation. For
example, determining which Notch ligands are specifi-
cally involved in certain subtypes of breast cancer might
be useful for identifying patients who are most likely
able to respond to different therapies, paving the way for
reduction of the therapeutic complications associated
with nonselective Notch inhibitors. Furthermore, we
have highlighted how Notch signaling driven alterations
in the TME impact the efficacy of current therapies in
breast cancer patients. Detailed mechanistic analysis of
the emergence of Notch-mediated resistance to chemo-
therapy, endocrine therapy, and radiotherapy are not
well explored. However, studies outlined in this review
suggest that combination therapies targeting both Notch
signaling pathway and TMEmight promote new potential
therapeutic intervention in the treatment of aggressive
chemoresistant, endocrine-resistant, and radio-resistant
breast cancer patients.
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microenvironment as A “game changer” in cancer radiother-
apy. Int J Mol Sci 20: 3212. doi:10.3390/ijms20133212

Jia X, Wang W, Xu Z, Wang S, Wang T, Wang M, Wu M. 2016. A
humanized anti-DLL4 antibody promotes dysfunctional an-
giogenesis and inhibits breast tumor growth. Sci Rep 6:
27985. doi:10.1038/srep27985

JordanNV, BardiaA,Wittner BS, BenesC, LigorioM,ZhengY, Yu
M, Sundaresan TK, Licausi JA, Desai R, et al. 2016. HER2 ex-
pression identifies dynamic functional states within circulat-
ing breast cancer cells. Nature 537: 102–106. doi:10.1038/
nature19328

Nandi and Chakrabarti

1434 GENES & DEVELOPMENT



Junttila MR, de Sauvage FJ. 2013. Influence of tumour micro-en-
vironment heterogeneity on therapeutic response. Nature
501: 346–354. doi:10.1038/nature12626

Kageyama R, Ohtsuka T, Kobayashi T. 2007. The Hes gene fam-
ily: repressors and oscillators that orchestrate embryogenesis.
Development 134: 1243–1251. doi:10.1242/dev.000786

Kangsamaksin T,Murtomaki A, Kofler NM,CuervoH, Chaudhri
RA, Tattersall IW, Rosenstiel PE, Shawber CJ, Kitajewski J.
2015. NOTCH decoys that selectively block DLL/NOTCH
or JAG/NOTCH disrupt angiogenesis by unique mechanisms
to inhibit tumor growth. Cancer Discov 5: 182–197. doi:10
.1158/2159-8290.CD-14-0650

Kiel MJ, Velusamy T, Betz BL, Zhao L,Weigelin HG, ChiangMY,
Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, et al.
2012. Whole-genome sequencing identifies recurrent somatic
NOTCH2 mutations in splenic marginal zone lymphoma. J
Exp Med 209: 1553–1565. doi:10.1084/jem.20120910

Kontomanolis E, Panteliadou M, Giatromanolaki A, Pouliliou S,
Efremidou E, Limberis V, Galazios G, Sivridis E, Koukourakis
MI. 2014. Delta-like ligand 4 (DLL4) in the plasma and neo-
plastic tissues from breast cancer patients: correlation with
metastasis. Med Oncol 31: 945. doi:10.1007/s12032-014-
0945-0

Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X,
GeorgiouN, Papamanolis V, Fasoulakis ZN. 2018. TheNotch
pathway in breast cancer progression. ScientificWorldJournal
2018: 2415489. doi:10.1155/2018/2415489

Koury J, Zhong L, Hao J. 2017. Targeting signaling pathways in
cancer stem cells for cancer treatment. Stem Cells Int 2017:
2925869. doi:10.1155/2017/2925869

Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B,
Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, et al.
2012. Whole transcriptome sequencing reveals recurrent
NOTCH1 mutations in mantle cell lymphoma. Blood 119:
1963–1971. doi:10.1182/blood-2011-11-391474

Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, Sin-
ghal SS. 2019. Notch signaling in breast cancer: from pathway
analysis to therapy. Cancer Lett 461: 123–131. doi:10.1016/j
.canlet.2019.07.012

Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-
Torres K, Gluck C, Sinha S, Gabrilovich D, Chakrabarti R.
2018. ΔNp63-driven recruitment of myeloid-derived suppres-
sor cells promotes metastasis in triple-negative breast cancer.
J Clin Invest 128: 5095–5109. doi:10.1172/JCI99673

Kumar S, Srivastav RK, Wilkes DW, Ross T, Kim S, Kowalski J,
Chatla S, Zhang Q, Nayak A, Guha M, et al. 2019. Estrogen-
dependentDLL1-mediatedNotch signaling promotes luminal
breast cancer. Oncogene 38: 2092–2107. doi:10.1038/s41388-
018-0562-z

Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. 2013.
Notch3marks clonogenic mammary luminal progenitor cells
in vivo. J Cell Biol 203: 47–56. doi:10.1083/jcb.201307046

Lai EC. 2004.Notch signaling: control of cell communication and
cell fate. Development 131: 965–973. doi:10.1242/dev.01074

Lamy M, Ferreira A, Dias JS, Braga S, Silva G, Barbas A. 2017.
Notch-out for breast cancer therapies. N Biotechnol 39:
215–221. doi:10.1016/j.nbt.2017.08.004

LeeGH, Yoo KC, AnY, LeeHJ, LeeM,UddinN, KimMJ, Kim IG,
Suh Y, Lee SJ. 2018. FYN promotes mesenchymal phenotypes
of basal type breast cancer cells through STAT5/NOTCH2 sig-
naling node. Oncogene 37: 1857–1868. doi:10.1038/s41388-
017-0114-y

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB,
Shyr Y, Pietenpol JA. 2011. Identification of human triple-neg-
ative breast cancer subtypes and preclinical models for selec-

tion of targeted therapies. J Clin Invest 121: 2750–2767. doi:10
.1172/JCI45014

Lewis CE, Pollard JW. 2006. Distinct role of macrophages in dif-
ferent tumor microenvironments. Cancer Res 66: 605–612.
doi:10.1158/0008-5472.CAN-05-4005

Li SG, Li L. 2013. Targeted therapy in HER2-positive breast can-
cer. Biomed Rep 1: 499–505. doi:10.3892/br.2013.95

Li D, MasieroM, BanhamAH, Harris AL. 2014. The notch ligand
JAGGED1 as a target for anti-tumor therapy. Front Oncol 4:
254.

Li ZL, Chen C, Yang Y, Wang C, Yang T, Yang X, Liu SC. 2015. γ
Secretase inhibitor enhances sensitivity to doxorubicin in
MDA-MB-231 cells. Int J Clin Exp Pathol 8: 4378–4387.

Liu J, Shen JX,WenXF,GuoYX,ZhangGJ. 2016. TargetingNotch
degradation system provides promise for breast cancer thera-
peutics. Crit Rev Oncol Hematol 104: 21–29. doi:10.1016/j
.critrevonc.2016.05.010

LiuH,Wang J, ZhangM, XuanQ,WangZ, Lian X, ZhangQ. 2017.
Jagged1 promotes aromatase inhibitor resistance by modulat-
ing tumor-associated macrophage differentiation in breast
cancer patients. Breast Cancer Res Treat 166: 95–107. doi:10
.1007/s10549-017-4394-2

Loganathan SK, Schleicher K, Malik A, Quevedo R, Langille E,
Teng K, Oh RH, Rathod B, Tsai R, Samavarchi-Tehrani P,
et al. 2020. Rare driver mutations in head and neck squamous
cell carcinomas converge on NOTCH signaling. Science 367:
1264–1269. doi:10.1126/science.aax0902

Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman
MA. 2019. The regulatory role ofMicroRNAs in breast cancer.
Int J Mol Sci 20: 4940.

Lombardo Y, Faronato M, Filipovic A, Vircillo V, Magnani L,
Coombes RC. 2014. Nicastrin and Notch4 drive endocrine
therapy resistance and epithelial to mesenchymal transition
in MCF7 breast cancer cells. Breast Cancer Res 16: R62.
doi:10.1186/bcr3675

Magnani L, Stoeck A, Zhang X, Lanczky A, Mirabella AC, Wang
TL, Gyorffy B, LupienM. 2013. Genome-wide reprogramming
of the chromatin landscape underlies endocrine therapy resis-
tance in breast cancer. Proc Natl Acad Sci 110: E1490–E1499.
doi:10.1073/pnas.1219992110

Meurette O, Mehlen P. 2018. Notch signaling in the tumor mi-
croenvironment. Cancer Cell 34: 536–548. doi:10.1016/j
.ccell.2018.07.009

Miao K, Lei JH, ValechaMV, Zhang A, Xu J, Wang L, Lyu X, Chen
S, Miao Z, Zhang X, et al. 2020. NOTCH1 activation compen-
sates BRCA1 deficiency and promotes triple-negative breast
cancer formation. Nat Commun 11: 3256. doi:10.1038/
s41467-020-16936-9

Mohammadi-Yeganeh S, Mansouri A, ParyanM. 2015. Targeting
of miR9/NOTCH1 interaction reducesmetastatic behavior in
triple-negative breast cancer. Chem Biol Drug Des 86: 1185–
1191. doi:10.1111/cbdd.12584

Mollen EWJ, Ient J, Tjan-Heijnen VCG, Boersma LJ, Miele L,
Smidt ML, Vooijs M. 2018. Moving breast cancer therapy up
a notch. Front Oncol 8: 518. doi:10.3389/fonc.2018.00518

MorganMM, LivingstonMK,Warrick JW, Stanek EM, Alarid ET,
Beebe DJ, Johnson BP. 2018. Mammary fibroblasts reduce ap-
optosis and speed estrogen-induced hyperplasia in an organo-
typicMCF7-derived ductmodel. Sci Rep 8: 7139. doi:10.1038/
s41598-018-25461-1
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