17328 measured reflections

 $R_{\rm int} = 0.031$

4015 independent reflections

3356 reflections with $I > 2\sigma(I)$

mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Chloro-8-hydroxy-6-methyl-1,4naphthoguinone

Daniel Teoh-Chuan Tan,^a Hasnah Osman,^a‡ Azlina Harun Kamaruddin,^b Samuel Robinson Jebas^c§ and Hoong-Kun Fun^c*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.mv

Received 17 March 2009; accepted 19 March 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.038; wR factor = 0.109; data-to-parameter ratio = 29.3.

The molecule of the title compound, $C_{11}H_7ClO_3$, is planar, with a maximum deviation of 0.0383 (10) Å from the naphthoquinone plane. An intramolecular O-H···O hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by intermolecular C-H···O hydrogen bonds. Short intramolecular $Cl \cdots O$ [2.8234 (8) Å] and $O \cdots O$ [2.5530 (11) Å], and intermolecular Cl···Cl [3.2777 (3) Å]contacts further stabilize the crystal structure.

Related literature

For the biological activity of the related compound 7methyljuglone, see: Mahapatra et al. (2007); Van der Koov & Meyer (2006). For the synthesis of 7-methyljuglone from the title compound, see: Musgrave & Skovles (2001); Mahapatra et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

[‡] Additional Correspondence author e-mail: ohasnah@usm.my.

Crystal data

C ₁₁ H ₇ ClO ₃	V = 1836.96 (3) Å ³
$M_r = 222.62$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 10.7546 (1) Å	$\mu = 0.40 \text{ mm}^{-1}$
b = 10.3104 (1) Å	T = 100 K
c = 16.8370 (2) Å	$0.30 \times 0.21 \times 0.14$
$\beta = 100.285 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.891, \ T_{\max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	137 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
4015 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3-H1O3\cdots O2\\ C2-H2A\cdots O1^{i}\\ C3-H3A\cdots O2^{ii} \end{array}$	0.86	1.73	2.5530 (11)	161
	0.93	2.51	3.4124 (12)	163
	0.93	2.57	3.3000 (12)	136

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + 1, y, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. HO and AHK thank the Malaysian Government for the FRGS fund (203/PKIMIA/ 671026). DT-CT thanks Universiti Sains Malaysia for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2597).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

[§] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Experimental

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Mahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). *Bioorg. Med. Chem.* 15, 7638–7646.
- Musgrave, O. C. & Skoyles, D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1318– 1320.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Van der Kooy, F. & Meyer, J. J. M. (2006). S. Afr. J. Chem. 59, 60-61.

supplementary materials

Acta Cryst. (2009). E65, o871-o872 [doi:10.1107/S1600536809010137]

5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone

D. T.-C. Tan, H. Osman, A. H. Kamaruddin, S. R. Jebas and H.-K. Fun

Comment

5-Hydroxy-7-methyl-1,4-naphthoquinone (7-methyljuglone) has recently been reported to exhibit activity against *mycobacterium tuberculosis* (Van der Kooy & Meyer, 2006; Mahapatra *et al.*, 2007). Naturally occurring 7-methyljuglone is synthesised from 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone in high yield (Musgrave & Skoyles, 2001; Mahapatra *et al.*, 2007). This paper reports the molecular structure of 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone; the precursor to synthetic 7-methyljuglone.

The asymmetric unit of (I) consists of one molecule of 8-Chloro-5-hydroxy-7-methyl-1,4-naphthoquinone. The napthoquinone ring is essentially planar with the maximum deviation from planarity being 0.0383 (10) Å for atom C8. The bond lengths in (I) have normal values (Allen *et al.*, 1987).

An intramolecular O–H···O hydrogen bond generates an S(6) ring motif (Bernstein *et al.*, 1995). The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds (Table 2) (Fig 2). Short intramolecular Cl···O = 2.8234 (8) Å; O···O = 2.5530 (11)Å and intermolecular Cl···Clⁱ = 3.2777 (3) Å [symmetry code: (i) 1 - x, y, 3/2 - z] contacts further stabilize the crystal packing.

Experimental

The title compound was prepared from the Friedel-Crafts acylation of 4-chloro-3-methylphenol with maleic anhydride (Musgrave & Skoyles, 2001). Repeated Soxhlet extraction of the crude Friedel-Crafts product with n-hexane, and silica gel column chromatography purification [chloroform and n-hexane (1:9)] of the n-hexane extract afforded the title compound. Finally, slow evaporation of a n-hexane solution at 305 K gave single crystals of the title compound.

Refinement

H atoms were positioned geometrically [C-H = 0.93 (aromatic) or 0.96Å (methyl)] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(\text{aromatic C})$ and $1.5U_{eq}(\text{methyl C})$. A rotating–group model was used for the methyl groups. The O bound hydrogen atom was located from the Fourier map and and refined isotropically with $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular H bond is drawn as a dashed line.

Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing dimer formation. Dashed lines indicate the hydrogen bonding.

5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone

Crystal data	
C ₁₁ H ₇ ClO ₃	$F_{000} = 912$
$M_r = 222.62$	$D_{\rm x} = 1.610 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6307 reflections
<i>a</i> = 10.7546 (1) Å	$\theta = 2.8 - 30.1^{\circ}$
b = 10.3104 (1) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 16.8370 (2) Å	T = 100 K
$\beta = 100.285 \ (1)^{\circ}$	Block, red
$V = 1836.96(3) \text{ Å}^3$	$0.30 \times 0.21 \times 0.14 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	4015 independent reflections
Radiation source: fine-focus sealed tube	3356 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 100 K	$\theta_{max} = 35.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -12 \rightarrow 17$
$T_{\min} = 0.891, T_{\max} = 0.945$	$k = -16 \rightarrow 16$
17328 measured reflections	$l = -27 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_0^2) + (0.0595P)^2 + 0.6106P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$

4015 reflections

 $\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$

137 parameters

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.60008 (2)	0.08776 (3)	0.687132 (14)	0.02314 (8)
O1	0.40351 (7)	0.18970 (8)	0.57005 (5)	0.02395 (16)
O2	0.64859 (7)	0.18264 (8)	0.31989 (4)	0.02085 (15)
O3	0.83772 (7)	0.06289 (8)	0.40048 (4)	0.02028 (14)
H1O3	0.7847	0.1042	0.3653	0.030*
C1	0.46492 (8)	0.18621 (9)	0.51561 (6)	0.01565 (16)
C2	0.40771 (9)	0.23850 (9)	0.43571 (6)	0.01789 (17)
H2A	0.3271	0.2743	0.4292	0.021*
C3	0.46720 (9)	0.23648 (9)	0.37229 (6)	0.01852 (17)
H3A	0.4275	0.2710	0.3232	0.022*
C4	0.59410 (9)	0.18056 (9)	0.37912 (5)	0.01556 (16)
C5	0.77541 (8)	0.06817 (8)	0.46273 (6)	0.01477 (15)
C6	0.83488 (8)	0.01527 (9)	0.53621 (6)	0.01568 (16)
H6A	0.9135	-0.0238	0.5394	0.019*
C7	0.77959 (8)	0.01969 (9)	0.60416 (5)	0.01563 (15)
C8	0.65972 (8)	0.07923 (9)	0.59849 (5)	0.01508 (15)
C9	0.59512 (8)	0.12905 (8)	0.52543 (5)	0.01356 (15)
C10	0.65466 (8)	0.12451 (8)	0.45647 (5)	0.01354 (15)
C11	0.84754 (10)	-0.03753 (11)	0.68182 (6)	0.02193 (19)
H11A	0.9265	-0.0738	0.6736	0.033*
H11B	0.7964	-0.1044	0.6993	0.033*
H11C	0.8632	0.0290	0.7222	0.033*
Atomia digal		2)		
Alomic displi	acement purameters (A	/		
	1/ ¹¹ I	I^{22} I^{33}	U^{12}	U^{13}

 U^{23}

supplementary materials

Cl1	0.02101 (12)	0.03306 (14)	0.01720 (11)	0.00279 (9)	0.00841 (8)	0.00089 (8)
01	0.0164 (3)	0.0311 (4)	0.0264 (4)	0.0055 (3)	0.0096 (3)	-0.0001 (3)
O2	0.0206 (3)	0.0258 (3)	0.0170 (3)	0.0004 (3)	0.0055 (3)	0.0009 (3)
03	0.0172 (3)	0.0258 (3)	0.0200 (3)	0.0053 (3)	0.0093 (3)	0.0014 (3)
C1	0.0117 (3)	0.0146 (3)	0.0210 (4)	0.0004 (3)	0.0040 (3)	-0.0023 (3)
C2	0.0123 (4)	0.0162 (4)	0.0243 (4)	0.0018 (3)	0.0009 (3)	-0.0017 (3)
C3	0.0150 (4)	0.0188 (4)	0.0206 (4)	0.0015 (3)	0.0000 (3)	0.0006 (3)
C4	0.0146 (4)	0.0150 (3)	0.0170 (4)	-0.0012 (3)	0.0027 (3)	-0.0009 (3)
C5	0.0122 (3)	0.0152 (3)	0.0181 (4)	-0.0003 (3)	0.0058 (3)	-0.0017 (3)
C6	0.0115 (3)	0.0164 (4)	0.0193 (4)	0.0008 (3)	0.0034 (3)	-0.0012 (3)
C7	0.0126 (3)	0.0168 (4)	0.0171 (4)	-0.0006 (3)	0.0017 (3)	-0.0010 (3)
C8	0.0130 (3)	0.0174 (4)	0.0154 (4)	-0.0011 (3)	0.0043 (3)	-0.0013 (3)
C9	0.0103 (3)	0.0137 (3)	0.0172 (4)	-0.0002 (3)	0.0040 (3)	-0.0017 (3)
C10	0.0113 (3)	0.0141 (3)	0.0156 (3)	0.0001 (3)	0.0033 (3)	-0.0014 (3)
C11	0.0189 (4)	0.0279 (5)	0.0177 (4)	0.0024 (4)	-0.0001(3)	0.0016 (3)

Geometric parameters (Å, °)

Cl1—C8	1.7287 (9)	C5—C6	1.3980 (13)
01—C1	1.2222 (12)	C5—C10	1.4092 (12)
O2—C4	1.2438 (11)	C6—C7	1.3812 (13)
O3—C5	1.3423 (11)	С6—Н6А	0.9300
O3—H1O3	0.8581	С7—С8	1.4156 (13)
C1—C2	1.4777 (14)	C7—C11	1.5002 (13)
С1—С9	1.5008 (12)	C8—C9	1.3980 (13)
C2—C3	1.3393 (14)	C9—C10	1.4234 (12)
C2—H2A	0.9300	C11—H11A	0.9600
C3—C4	1.4670 (13)	C11—H11B	0.9600
С3—НЗА	0.9300	C11—H11C	0.9600
C4—C10	1.4667 (13)		
С5—03—Н1О3	99.0	C6—C7—C8	118.69 (8)
01—C1—C2	118.62 (8)	C6—C7—C11	119.62 (8)
O1—C1—C9	123.19 (9)	C8—C7—C11	121.69 (8)
C2—C1—C9	118.18 (8)	C9—C8—C7	121.48 (8)
C3—C2—C1	122.65 (8)	C9—C8—Cl1	122.56 (7)
С3—С2—Н2А	118.7	C7—C8—Cl1	115.95 (7)
C1—C2—H2A	118.7	C8—C9—C10	118.71 (8)
C2—C3—C4	120.92 (9)	C8—C9—C1	123.27 (8)
С2—С3—НЗА	119.5	C10—C9—C1	118.02 (8)
С4—С3—НЗА	119.5	C5—C10—C9	119.69 (8)
O2—C4—C10	121.37 (8)	C5—C10—C4	119.08 (8)
O2—C4—C3	119.69 (8)	C9—C10—C4	121.21 (8)
C10—C4—C3	118.94 (8)	C7—C11—H11A	109.5
O3—C5—C6	117.51 (8)	C7—C11—H11B	109.5
O3—C5—C10	122.69 (8)	H11A—C11—H11B	109.5
C6-C5-C10	119.80 (8)	C7—C11—H11C	109.5
C7—C6—C5	121.57 (8)	H11A—C11—H11C	109.5
С7—С6—Н6А	119.2	H11B—C11—H11C	109.5
С5—С6—Н6А	119.2		

O1—C1—C2—C3	-178.75 (9)	O1—C1—C9—C8	-2.55 (14)
C9—C1—C2—C3	0.15 (13)	C2-C1-C9-C8	178.61 (8)
C1—C2—C3—C4	0.34 (14)	O1-C1-C9-C10	176.82 (9)
C2—C3—C4—O2	-178.28 (9)	C2-C1-C9-C10	-2.03 (12)
C2—C3—C4—C10	1.01 (14)	O3—C5—C10—C9	-178.76 (8)
O3—C5—C6—C7	178.08 (8)	C6—C5—C10—C9	1.06 (13)
C10-C5-C6-C7	-1.75 (13)	O3—C5—C10—C4	-0.34 (13)
C5—C6—C7—C8	0.12 (13)	C6—C5—C10—C4	179.48 (8)
C5—C6—C7—C11	-179.54 (9)	C8—C9—C10—C5	1.20 (13)
C6—C7—C8—C9	2.23 (13)	C1—C9—C10—C5	-178.19 (8)
C11—C7—C8—C9	-178.11 (9)	C8—C9—C10—C4	-177.18 (8)
C6—C7—C8—Cl1	-177.07 (7)	C1—C9—C10—C4	3.43 (12)
C11—C7—C8—Cl1	2.59 (12)	O2-C4-C10-C5	-2.09 (13)
C7—C8—C9—C10	-2.87 (13)	C3—C4—C10—C5	178.63 (8)
Cl1—C8—C9—C10	176.38 (7)	O2—C4—C10—C9	176.30 (8)
C7—C8—C9—C1	176.48 (8)	C3—C4—C10—C9	-2.98 (13)
Cl1—C8—C9—C1	-4.26 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A		
O3—H1O3···O2	0.86	1.73	2.5530 (11)	161		
C2—H2A···O1 ⁱ	0.93	2.51	3.4124 (12)	163		
C3—H3A···O2 ⁱⁱ	0.93	2.57	3.3000 (12)	136		
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z+1$; (ii) $-x+1$, y , $-z+1/2$.						

Fig. 2