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Abstract: Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition,
and functioning of about 1–2% of the world’s population. Its biological basis is unknown, and its
treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential
membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators,
endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric
disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the
Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients.
The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific
and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and
marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients
compared with those in the control. A positive correlation was found between the levels of the three α

isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results
are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is
involved in bipolar disease and suggest that it may be used as a target for drug development.

Keywords: bipolar disorder; Na+, K+-ATPase; α isoforms; endogenous cardiac steroids; ouabain;
marinobufagenin; human; prefrontal cortex; postmortem

1. Introduction

Bipolar disorder (BD) is a chronic multifactorial psychiatric illness that affects the mood, cognition,
and functioning of about 1–2% of the global population [1]. The illness is characterized by episodes
of extreme mood states, mania, and depression, interspaced with periods of euthymia. Symptoms
of mania include elevated mood, hyperactivity, racing thoughts, insomnia, irritability, and risky
behavior. Depression is associated with symptoms, such as sad mood, poor self-esteem, lethargy,
and anhedonia. Despite the availability of a broad range of drugs, the treatment of BD remains
inadequate: Some patients do not respond to the treatment and many suffer from frequent relapses [2].
A better understanding of the mechanisms involved in BD could contribute to the development of
targeted therapies and is of the utmost importance.
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Cardiac steroids (CSs), such as the cardenolides ouabain (OUA) and digoxin, and bufadienolides,
such as marinobufagenin (MBG), were originally discovered in plants and amphibian skin and are
known for their positive inotropic effect [3]. Endogenous cardiac steroids (ECSs), compounds identical
or similar to CSs, are present in human tissues and circulation [4,5]. Although the biosynthetic pathway
was not fully elucidated, ECSs seem to be synthetized in the adrenal gland and brain [6,7] and are
considered hormones involved in numerous physiological and pathological processes, among them
cell growth, salt homeostasis, regulation of blood pressure, and behavior [6–9]. These steroids affect
various neuronal functions, suggesting their role as neurosteroids [10,11].

Na+, K+-ATPase is a ubiquitous plasma membrane transporter that utilizes the energy generated
from ATP hydrolysis to catalyze the exchange of intracellular Na+ for extracellular K+. This enzymatic
activity is essential for the regulation of intracellular osmolarity, pH, and calcium concentration;
maintenance of the plasma membrane electric potential; and co-transport of substances across the plasma
membrane [12]. Na+, K+-ATPase is a hetero-oligomer composed of two major polypeptides: The α

and β-subunits. The α subunit is responsible for the catalytic activity of the enzyme. Three α-subunit
isoforms were described in the brain [13]: The ubiquitous α1 isoform; the α2 isoform, which is
expressed predominantly in glial cells [14]; and the α3 isoform, which is localized mainly in neurons
and dendritic spines [15,16]. The isoforms have different kinetic properties and affinities and they
exhibit species-, tissue-, and cell-specific patterns of expression, thus allowing the fine-tuning of Na+,
K+-ATPase activity [13]. Mutations in the α2 and α3 isoforms were implicated in neurological disease
activity [13,17].

The α subunit of Na+, K+ -ATPase is the only established receptor for CS and ECS. Interaction of
the steroids with the Na+, K+-ATPase results in inhibition of the ion-pumping function and causes
the activation of several signal transduction cascades, including mitogen-activated protein kinase;
extracellular signal-regulated kinase; proto-oncogene tyrosine-protein kinase (Src); the PI3K/Akt, Ca++

signaling, and reactive oxygen species generation pathways [18,19]; and TGF-β signaling [20].
Genetic, biochemical, and behavioral studies implicated the Na+, K+-ATPase and ECS in BD

and other mood disorders: A genetic association was described between BD and single nucleotide
polymorphisms in the Na+, K+-ATPase α subunit gene [21]. Mutations in the Na+, K+-ATPase α3
isoform elicit an array of neurological phenotypes, including manic-like behavior in mice [22,23].
Abnormalities in Na+, K+-ATPase activity [24] and alterations in ECS levels [25–27] were reported in
bipolar individuals. A reduction in brain ECS had a protective effect in depressive-like behavior in
rats [26], with concomitant alterations in catecholamine levels in specific brain regions [28]. Furthermore,
a reduction in brain ECS also protected against manic-like behavior induced by amphetamine (AMPH)
in mice [27], an effect that is associated with protection of the brain from oxidative stress [29].

The prefrontal cortex (PFC), a center for executive and cognitive functions [30], is connected to
many other brain regions, especially to the limbic brain areas [31]. Numerous studies implicated
neuronal activity in the PFC in both the manic and depressive phases of BD [32]: Reduced glial cell
number [33] and decreased cortical thickness [34] were found in the PFC of BD; increased gyrification,
a marker of early developmental pathology, was found to be increased in BD patients [35]; and
discrete miRNA alterations [36] and a reduced density of GABA-synthesizing enzyme, glutamic acid
decarboxylase [37], were observed in the PFC of BD patients.

In view of these observations, we hypothesized that the levels of the α isoforms of the Na+,
K+-ATPase and of ECS in the brain may be altered in BD. To test this hypothesis, we compared the
levels of the three α isoforms of the Na+, K+-ATPase and of endogenous OUA and MBG in the PFC
of bipolar patients with their levels in age- and sex-matched controls and evaluated the potential
correlations among the different isoforms and the two steroids.

2. Results

The study was performed on two cohorts of postmortem brain samples of BD and controls
obtained from the Human Brain Collection Core (HBCC) of the National Institute of Mental Health
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(NIMH) Division of Intramural Programs. In both groups, there was no statistical difference in terms
of age, gender, postmortem interval, brain weight, and pH between the BD and control samples (see
the materials and methods).

2.1. Na+, K+-ATPase α Isoforms in PFC of BD Patients and Controls

The levels of the α isoforms of the Na+, K+-ATPase in the brains of normal and BD patients have
been barely investigated. As in a preliminary study on a small cohort of BD patients and controls (six
in each group), the levels of the α isoforms were extremely variable (data not shown), we initiated a
larger study comparing the α isoform expression levels of 20 BD patients and 20 controls. An example
of the Western blots and a quantitative analysis of all the data is shown in Figure 1A,B, respectively.
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Figure 1. Na+, K+ ATPase α isoform expression in PFC of BD patients and controls. Na+, K+-ATPase α 
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20 per group) was determined by Western blot analysis, as described in the materials and methods. 
(A): Representative Western blots. (B): Quantitative isoform expression. The values were normalized 
to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The bars represent the means; the error 
bars represent the standard error of the means; * differ from the control group p < 0.05; ns: non-
significant. 

Figure 1. Na+, K+ ATPase α isoform expression in PFC of BD patients and controls. Na+, K+-ATPase
α subunit isoform expression in postmortem prefrontal cortex samples of controls and BD patients
(n = 20 per group) was determined by Western blot analysis, as described in the materials and methods.
(A): Representative Western blots. (B): Quantitative isoform expression. The values were normalized
to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The bars represent the means; the error bars
represent the standard error of the means; * differ from the control group p < 0.05; ns: non-significant.

The Na+, K+-ATPaseα2 andα3 isoforms were significantly higher by 28.2% and 23.7%, respectively,
in the PFC of BD patients compared with those in the controls. No difference in α1 isoform abundance
between the two groups was detected (Figure 1). The cross-correlations between the levels of expression
of the three α isoforms of the Na+, K+-ATPase were significant in both the controls (Figure 2A–C) and
in the BD patients (Figure 2D–F). Namely, α1 was positively correlated with a2 and α3 in the controls
(Figure 2A–B) and in the BD patients (Figure 2D–E); the α2 and α3 isoforms were highly correlated in
both the controls (Figure 2C) and in the BD patients (Figure 2F).
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Figure 2. The correlation between the expression of the Na+, K+-ATPase α isoforms in the PFC of
controls and BD patients. The different isoform expression levels (Figure 1) in the controls (A–C) and
BD patients (D–F) were correlated. The Pearson correlation coefficient (r) and the p value (two tailed)
were calculated by using correlation analysis (GraphPad Prism v 8.3.1).

No positive correlation was found between the levels of any of the three α isoforms and the age of
onset of the disease, age of death, or gender of the subjects (data not shown).

2.2. Endogenous OUA and MBG in the PFC of the BD Patients and the Controls

Endogenous OUA and MBG are ligands of Na+, K+-ATPase, which triggers the inhibition of
ion transport and intercellular signaling cascades in different tissues, including the brain (see the
introduction). We tested, therefore, the levels of these steroids in PFC brain samples from the BD
patients and the controls. Importantly, the tissue samples used for the determination of endogenous
OUA and MBG were adjacent to the samples used for the protein extraction and the α isoform
determinations described above. As the determinations of OUA and MBG in this study were based on
the interaction with antibodies, actually, cross-immunoreactive material was being measured. However,
because the anti-OUA antibodies and anti-MBG antibodies used were previously shown to be highly
specific, recognizing predominantly OUA and MBG, respectively (see the materials and methods),
the terms endogenous OUA and endogenous MBG are used.

Both OUA and MBG are present in the human PFC, ranging between 0.1 and 0.5 nmoles/g protein
(or 0.3–1.5 pmoles/g tissue). Analysis of all the samples showed no difference in steroid levels between
men and women (Figure 3), nor any correlation with age (Figure 4). Significantly lower levels of
OUA (0.177 ± 0.028), but not of MBG, were detected in smokers compared with those in non-smokers
(0.291 ± 0.0316) (Figure 5).

Significantly lower levels of MBG (34.5%) were detected in BD patients (0.164 ± 0.009 nmoles/g
protein) as compared with those in the controls (0.298 ± 0.075 nmoles/g protein) (Figure 6). The OUA
levels did not differ between the groups (controls, 0.269 ± 0.032; BD patients, 0.284 ± 0.029 nmoles/g
protein). Cross-correlation analysis between the OUA and MBG levels in the controls (Figure 7A) and
in the BD patients (Figure 7B) showed a lack of association between the two steroids, suggesting that
they differ both metabolically and functionally (see below).
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Cross-correlations between the levels of different α isoforms and the steroids revealed interesting
observations. The correlation between the α1 isoform and the OUA levels in the BD patients and the
controls is shown in Figure 8A,B. Whereas a significant correlation between the two parameters was
seen in the controls (Figure 8A), no correlation was observed in the BD samples (Figure 8B). There was
no significant correlation between the α1 isoform and MBG levels in the samples of both the controls
and the BD patients (Figure 8C,D). The correlations between the α2 and α3 isoforms and the two
steroids in the controls and the BD patients were not significant (see Supplementary Materials file 1,
Figures 1 and 2).
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Figure 3. Endogenous OUA- and MBG levels in PFC in men and women. OUA (A) and MBG
(B) immuno-reactivity levels in the postmortem PFC of all samples assayed were determined with
DELFIA, as described in the materials and methods. Bars represent the means; error bars represent the
standard error of the means.
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Figure 4. The correlation between endogenous OUA and MBG levels in the PFC with age. The OUA
and MBG immuno-reactivity levels of PFC samples of controls (A,C) and BD patients (B,D) were
correlated with age. Pearson (r) and p values (two tailed), depicted in the graphs, were calculated by
using correlation analysis (GraphPad Prism v 8.3.1).
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Figure 5. Endogenous OUA and MBG levels in smokers and non-smokers. OUA (A) and MBG
(B) immuno-reactivity levels in the postmortem PFC of all samples assayed were determined by
DELFIA, as described in the materials and methods. The bars represent the means; the error bars
represent the standard error of the means. * differ from the control group p < 0.05.
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Figure 6. Endogenous OUA- and MBG levels in the PFC of BD patients and controls. OUA and MBG
immuno-reactivity levels in postmortem PFC samples of controls (A) and BD (B) patients (n = 16–19)
were determined with DELFIA, as described in the materials and methods. The bars represent the
means; the error bars represent the standard error of the means; * differ from the control group p < 0.05;
ns: non-significant.
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Figure 7. The correlation between endogenous OUA and MBG levels in the PFC of BD patients and
controls. The levels of OUA and MBG immuno-reactivity (Figure 3) in BD patients (B) and controls (A)
were correlated. The Pearson correlation coefficient (r) and p values (two tailed) were calculated by
using correlation analysis (GraphPad Prism v 8.3.1).
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Figure 8. The correlation between the α1 isoform levels and endogenous OUA and MBG
immuno-reactivity in the PFC of BD patients and controls. The levels of the α1 isoform of the
Na+, K+-ATPase (Figure 1) and OUA and MBG immuno-reactivity (Figure 3) in BD patients (C,D) and
controls (A,B) were correlated. The Pearson correlation coefficient (r) and the p value (two tailed) were
calculated by using correlation analysis (GraphPad Prism v 8.3.1).

3. Discussion

In the present study, we found that the levels of the α2 and α3 isoforms of the Na+, K+-ATPase are
significantly higher in the PFC of BD patients in comparison with those of age- and gender-matched
controls. This is in agreement with our previous study demonstrating an increase in the α2 and
α3 isoforms in the parietal cortex of BD patients [38]. A study on the temporal cortex, however,
showed that the levels of the three α isoforms were not significantly different between BD patients
and controls [26]. Furthermore, lower α2, but not α1 or α3, isoform levels were found in the temporal
cortex of BD patients [39]. Cumulatively, these findings show that the levels of the αisoforms of
the Na+, K+-ATPase in the brain differ between BD patients and controls and that the changes vary
between different brain regions. It is well established that alterations in both neuronal [40,41] and glial
cells [42,43] occur in the brain of BD patients. It is therefore not surprising that we detected alterations
in both the α2 and α3 isoforms, which are largely expressed in glial [14] and neuronal cells [15,16],
respectively. The increase in α2 and α3 isoforms in the PFC of BD patients may be part of the etiology
of the disease or a consequence of its development. In either case, it is reasonable to suggest that
the increase in the isoform levels results from the increased activity of the particular cells. This is
similar to the upregulation of muscle a2 isoform levels following exercise [44] and the increase in the
α3 isoform following excessive neuronal stimulation [17]. Importantly, since all BD patients received
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psychoactive drugs (Table 1), we cannot discriminate between the effect of the disease and a possible
effect of the medications.

Table 1. Characteristics of BD patients and unaffected controls.

Control (n = 20) Bipolar Patients (n = 20)

Age at death (years) 43.12 ± 3.21 42.25 ± 3.23

Cause of death (Suicide/other) 0/20 15/5

Brain weight (g) 1382.75 ± 23.08 1511.75 ± 37.58

Postmortem interval (h) 30.70 ± 3.03 28.97 ± 3.94

Brain tissue pH 6.44 ± 0.05 6.34 ± 0.05

Sex (Men/Women) 14/6 14/6

Alcohol history (none/positive) 4/16 5/15

Use of Psychoactive drugs
(none/positive) 14/6 0/20

We observed a significant positive correlation between the level of expression of the three α

isoforms of the Na+, K+-ATPase in the PFC of the controls (Figure 2A–C) and BD patients (Figure 2D–F).
Namely, individuals with a high α1 isoform level also had a relatively high level of the α2 and α3
isoforms. This link in the expression of the isoforms suggests the existence of a regulatory relationship
between the three isoforms. Indeed, it was previously demonstrated that knockdown of one isoform
affects the expression of the others. For example, knockdown of the α2 isoform in skeletal muscle cells
upregulated the α1 isoform 2.5-fold [45]. In addition, an increase in α1-mRNA decreased α3-mRNA
levels in the aging rat cerebral cortex [46], but α1 and α3 changed in an opposite way in heart
failure, as did α1 and α2 in heart hypertrophy [47]. In view of the positive relationships between
the isoforms in the brain tissue of the controls and the BD patients, it is reasonable to assume that
when brain Na+, K+-ATPase levels increase or decrease, in different people, due to general metabolic
changes, they will be reflected by similar changes in the three α isoforms. Such fluctuations may result,
for example, from cerebral ischemia or lipid metabolism, which are known to alter Na+, K+-ATPase
expression [48–50].

ECSs are normal constituents of the bovine hypothalamus, rat brain, and human CSF [11].
Immunohistochemical studies of mammalian brains revealed high concentrations of these steroids
in the paraventricular nucleus and the supraoptic nucleus [51]. Cultured rat hypothalamic neurons
were shown to secrete CS in vitro [51,52], supporting the premise that the hypothalamus is the source
of endogenous brain CS. The physiological role of ECS in the brain and periphery was recently
reviewed [8,11]

We did not observe any difference in OUA and MBG levels in the PFC between men and women
nor any correlation with age (Figures 3 and 4). However, there were lower levels of OUA in the PFC of
smokers compared with those in non-smokers (Figure 5). A previous study showed increased levels of
plasma OUA in men versus women, and in smokers versus non-smokers [53,54]. These differences
between changes in the brain and peripheral OUA levels further emphasize the metabolic separation
of different ECS in the two compartments, as described previously [8].

The determination of ECS in the brain tissue of BD patients may shed light on the possible
involvement of these steroids in this pathological state. In a previous study on the parietal cortex,
we found that OUA, but not MBG, levels were significantly higher in BD patients than in normal
individuals [26]. In the temporal cortex, opposite results were obtained: Endogenous OUA levels were
lower in BD patients relative to that of the controls. However, these difference were not of statistical
significance, probably due to the small group studied and the large variations in endogenous OUA
levels in the population [38]. To resolve this contradiction, and to focus on a brain area more relevant
to BD, the present study determined OUA and MBG levels in larger groups (20 samples per group) of
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postmortem samples from the PFC of BD and normal subjects. Our results show that the levels of MBG
in the PFC of BD patients are lower than those in normal subjects (Figure 6). OUA levels, on the other
hand, were the same in the two groups. Clearly, these findings indicate that MBG may be involved in
the etiology of BD. In addition, the reported effects of smoking on Na+, K+-ATPase activity [55] and
the recently described finding of a causal risk factor of smoking for developing bipolar disorder [56]
should prompt a study on the determination of brain OUA and MBG levels in a large group of BD
and controls.

The lack of a correlation between OUA and MBG in both the controls and the BD patients (Figure 7)
suggests that the two compounds, although structurally similar, are metabolically separated. Indeed,
previous studies showed that although cholesterol is a common precursor for both steroids, side-chain
cleavage is essential for EO biosynthesis [8,57], whereas MBG synthesis is thought to occur via further
metabolism of cholanic acid [58]. The differences in the levels of the steroids in BD are in accord with
recent observations of altered steroid biosynthesis in the PFC of BD patients [59].

A significant positive correlation was found between the OUA and α1 isoform levels in the
PFC of the control (Figure 8A). The most plausible explanation for this correlation is that OUA has a
regulatory role in controlling the expression of this isoform. The many observations on the effect of
OUA on the translation and transcription of numerous proteins [60,61] are in accord with this notion.
It should be noted that this correlation is absent in samples from BD patients (Figure 8B), suggesting
that fundamental metabolic processes related to the ECS-Na+, K+-ATPase system are impaired in the
disease state.

The hypothesis that monoamine depletion contributes to mood disorder pathology, a notion
referred to as the ‘monoamine hypothesis’, received great attention in neurobiological studies of mood
disorders [62]. Accordingly, monoamine neuronal reuptake and degradation inhibitors were developed
for the treatment of mood disorders. However, the slow pace of action of these drugs, their side-effects,
and poor response in a significant proportion of patients suggests that additional mechanisms participate
in the pathophysiology of mood disorders and of BD in particular. To this end, studies in recent years
have focused on the involvement of additional neurotransmitter/neuromodulators systems [63–65],
mitochondrial function [66], and inflammation [67] in the etiology of BD. It is well established that
Na+, K+-ATPase and ECS affect all these systems: They are involved in neurotransmitter release and
reuptake [10,68], mitochondrial function [69], and inflammation [70]. Hence, the increase in the α2 and
α3 isoforms of the Na+, K+-ATPase and the decrease in MBG in the PFC of BD patients, as found in
this study, may be an intimate part of the molecular mechanisms of BD. Whether these changes are a
cause or consequence of BD merits further investigation.

The present study describes for the first time alterations in Na+, K+-ATPase α isoforms and
endogenous OUA and MBG in the PFC of BD patients., Our results, together with previously published
observations, are in accord with the hypothesis that the Na+, K+-ATPase-ECS system is involved in
mood disorders.

The proposed mechanisms for the participation of Na+, K+-ATPase and ECS in BD are depicted
in Figure 9. We suggest that the bipolar brain, being predisposed to the disease via an altered genome
and biochemistry, exhibits the manic or depression reaction as a result of external stimuli, which
include genetic and environmental factors. The death of most of the BD patients in the present study
was attributed to suicide (Table 1), which suggests that they were likely in the depression state. It is
possible that neurons and other brain cells stimulate multiple factors, including transcription factors,
which affect brain ECS production in the depression state. These transcription factors should be
determined (dotted line). We observed a decrease in the brain MBG level (Figure 6), which is likely
due to the compromised biosynthesis chain of this steroid. It is conceivable that decreased MBG levels
affected Na+, K+-ATPase activity, causing an increase in the levels of α2 and α3 Na+, K+-ATPase
isoforms (Figure 1). The double arrow between the CSs and Na+, K+-ATPase boxes indicates the
feedback in the regulation of the ECS level and Na+, K+-ATPase isoforms’ expression. The Na+,
K+-ATPase–ECS interaction leads to changes in the membrane electrical potential, and the activation
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of mitogen-activated protein kinase (ERK, or MAPK), protein kinase B (AKT), and nuclear factor
kappa-light-chain-enhancer (NFκB) [19,71], which modifies neuronal activity and neurotransmission
that, in turn, participate in the regulation of behavior and BD. The oxidative stress and inflammation,
which are also involved in the Na+, K+-ATPase–ECS interaction [6,29], may add to the compromised
brain biochemistry and support the vicious circle of depression in BD. We also suggest that the levels
of ECS are changed in the mania stage, which may cause the compromised interaction of ECS and
Na+, K+-ATPase. The mania circle requires further investigation. The determination of ECS levels in
the plasma or cerebrospinal fluid of BD patients may provide an additional mechanistic basis for the
proposed mechanisms involved in the two stages of BD.
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Figure 9. Proposed model for the participation of Na+, K+-ATPase and endogenous cardiac
steroids in bipolar disorders. See text for detail. NKA-Na+, K+-ATPase; OUA—Ouabain;
MBG—Marinobufagenin; ERK—mitogen-activated protein kinase; AKT—protein kinase B;
NFkB—nuclear factor kappa-light-chain-enhancer.

4. Materials and Methods

4.1. Brain Samples

All postmortem human brain tissue samples used in this study were obtained from the Human
Brain Collection Core (HBCC), Intramural Research Program, of the NIMH, NIH, Bethesda, MD,
USA [72]. Two groups of samples were received: 12 prefrontal brain samples (6 BD and 6 controls),
which were used in a preliminary study, and a large cohort of prefrontal brain samples (20 BD and
20 controls). The demographic and clinical characteristics of the large cohort are shown in Table 1.
The two groups were matched for several clinical variables. According to analysis of variance (ANOVA),
the groups did not differ in age or postmortem interval, brain weight, and pH. Chi square analysis
indicated that the groups did not differ in terms of gender. The NIMH received ethics approval for the
brain collection.

Pulverized frozen tissues of the PFC of the two groups were used for the determination of the
different α isoforms with Western blot analysis and for the determination of the endogenous OUA
and MBG.
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4.2. Quantification of Na+, K+-ATPase α Isoforms with Western Blot

Pulverized frozen tissues of the prefrontal cortex were kept at −80◦C until analyzed. Samples were
homogenized in radio-immuno-precipitation assay (RIPA) buffer supplemented with 1mM NaVO4

and Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, MO, USA) and centrifuged (14,000× g).
The protein content of the supernatants was determined with the Bio-Rad Protein Assay (Bio-Rad
Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions.

The samples were subjected to Western blot analysis, as previously described [26]. The following
primary antibodies were used: mouse monoclonal anti-Na+, K+-ATPase-α1 subunit antibody (1:10000)
(Merck, Kenilworth, NJ, USA); rabbit polyclonal anti-Na+, K+-ATPase-α2 subunit antibody (1:5000) was
kindly provided by Thomas Pressley (Texas Tech University, Lubbock, TX, USA); mouse monoclonal
anti-Na+, K+-ATPase-α3 subunit antibody (1:5000) and mouse monoclonal anti-GAPDH antibody
were purchased from Sigma-Aldrich. Western blot analysis was performed by an individual blinded to
the subjects’ identity.

4.3. Determination of Endogenous OUA and MBG in Brain Samples

Human PFC samples were thawed and homogenized in PBS (50 mg/mL), sonicated for 5 s,
and centrifuged (5 min, 1000 × g) to remove tissue debris. The supernatants were used for the protein
measurements (Bio-Rad Protein Assay) and for steroid extraction with C18 Sep-Pak cartridges (Waters
Inc., Cambridge, MA, USA). The cartridges were activated with 10 mL of 100% acetonitrile and washed
with 10 mL of water. Then, 0.5 mL of brain extract sample were applied to the cartridges and eluted
with 7 mL of 20% acetonitrile, followed by 7 mL of 80% acetonitrile in the same vial. This enabled the
elution of material with lower and higher polarity, respectively, and allowed measurement of the OUA
and MBG in the samples [73]. The samples were then vacuum dried and kept at −80◦C. Before the
immunoassays, the samples were reconstituted in the initial volume of assay buffer. MBG and OUA were
measured with a fluoroimmunoassay (Dissociation-Enhanced Lanthanide Fluorescent Immunoassay
(DELFIA)). The MBG assay is based on a murine monoclonal anti-MBG 4G4 mAb (1:1000), as described
in detail [74]. This assay is based on the competition between immobilized antigen (MBG-bovine
serum albumin (MBG-BSA) glycoside-thyroglobulin) and MBG, other cross-reactants, or endogenous
CTS within the sample for a limited number of binding sites on an anti-MBG mAbs. Secondary
(goat anti-mouse) antibody labeled with fluorescent europium was obtained from Perkin-Elmer, Inc.
(Waltham, MA, USA). More details about these immunoassays, including cross-immunoreactivity
of the antibodies and the examples of the calibration curves, are provided in the (Supplementary
Material file 2). The endogenous OUA assays were based on a similar principle, here using an
ouabain–thyroglobulin conjugate and ouabain antiserum (anti-OU-M, 1:20000) obtained from rabbits
immunized with a mixture of ouabain–BSA and ouabain–RNAase conjugates [74]. Secondary (mouse
anti-rabbit) antibody labeled with fluorescent europium was obtained from Perkin-Elmer, Inc. The final
concentration of the endogenous steroids in the PFC was expressed as nmoles/g protein and in pmoles/g
protein. The calculation was based on the concentration of steroids and concentration of protein in
the supernatant and/or the amount of tissue in grams used for the extraction. Determination of the
steroids was performed by an individual blinded to the subjects’ identity.

4.4. Statistical Analysis

The data are presented as the means ± standard error. The band density values obtained from
the immunostained α isoforms and ECS were analyzed statistically with the two-tailed paired t-test.
Parameter levels ±3S.D. from the mean were considered outliers (maximum 3 samples out of the
20) and deleted from statistical analysis. Statistical analysis and calculations of Pearson’s correlation
coefficient were performed with GraphPad Prism v 8.3.1 (GraphPad Software, Inc., CA, USA) and
Gaussian Population (Pearson) with two-tailed parametric analyses p < 0.05 was considered significant.
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