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Introduction
Long noncoding RNAs (lncRNAs) are a major class of 
noncoding RNAs and exceed 200 nucleotides in length. Orig-
inally suspected of being the result of transcriptional noise, 
lncRNAs have been shown to have a broad range of functions 
including transcriptional regulation, mediating protein inter-
actions, and influencing mRNA splicing.1 The ENCODE 
project has demonstrated that 74.7% of the human genome is 
transcribed, and more than 9,000 lncRNAs have been anno-
tated.2,3 A large number of lncRNAs have also been identi-
fied in many other organisms. For instance, the FANTOM3 
annotation project has discovered 34,030 lncRNA transcripts 
in the mouse genome.4 These studies have led to the projection 
that there may be more lncRNAs than protein-coding genes. 
The roles in biological processes and mechanism of action for 
the majority of lncRNAs have not yet been determined.5,6 For 
functional annotation, a weighted gene co-expression network 

analysis (WGCNA)7 of lncRNAs with well-annotated 
protein-coding genes offers an approach for insight into the 
biological roles of lncRNAs.

A definitive link between cancer and lncRNAs has been 
established through disease state studies and their functions 
in development and cellular differentiation.8–10 Examples of 
well-studied lncRNAs associated with cancer include HOX 
antisense intergenic RNA (HOTAIR), prostate cancer anti-
gen 3 (PCA3) and metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1). HOTAIR interacts with Polycomb 
Recessive Complex 2 (PRC2) and the LSD1/CoREST/
REST complex to modify histones, which results in silencing 
at multiple sites.11,12 PCA3  in contrast has no known func-
tion but acts as an effective noninvasive diagnostic marker for 
prostate cancer.13,14 MALAT1, which was first discovered in 
a differential expression study of non–small-cell lung cancer 
tumors, has been linked to 16 different cancer types including 
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cervical cancer and hepatocellular carcinoma.15–18 These three 
lncRNAs share the common feature found in most cancer-
associated lncRNAs, which are overexpressed in cancerous 
tissues.13,18,19 The significant changes in expression levels aid 
in determining the function of these cancer-associated lnc
RNAs, which have become important for diagnosis and prog-
nosis of cancers.

This study is unique in the application of co-expression 
analysis to normal (noncancerous) tissues to determine 
lncRNA and cancer gene associations. Previous studies 
have focused on differential expression between normal and 
cancerous tissues. An example is the genome-wide differen-
tial and co-expression analysis of hepatoblastoma tissues.20 
Bipartite network analysis has also been performed to predict 
lncRNA–disease associations.21 In this study, we use a previ-
ously compiled data set consisting of 2,968 microarray expres-
sion profiles across a wide spectrum of tissues.22 All expression 
profiles were obtained using the Affymetrix HG-U133 Plus 
2.0 Array, which provides suitable genome coverage for known 
protein-coding genes with 98.6% of our cancer gene list being 
represented in the array probes. This microarray platform also 
contains probes for 1,970 lncRNAs.23 By utilizing the avail-
able data for co-expression analysis, we have examined the 
previously uncharacterized lncRNAs for their potential role 
in cancer and functional annotation.

Methods
Gene lists. A core and an extended gene list of known 

cancer genes were compiled for this study (Supplementary File 
S1). The core list comprised the known causal cancer genes 
from the Catalogue of Somatic Mutations in Cancer (COS-
MIC) Cancer Gene Census List from the Wellcome Trust 
Sanger Institute.24 Redundant genes and genes that do not 
have protein-level expression were removed from the list. The 
UniProt knowledgebase was used to determine if there was 
evidence of protein-level expression.25 The core list consist-
ing of 472 protein-coding cancer genes was used to select 
microarray probes for the co-expression analysis of cancer 
genes and lncRNAs. To expand the core list for all plausible 
cancer genes, additional cancer genes not present within the 
core list were added to create the extended gene list. A custom 
search query was used to search the UniProt knowledgebase 
for additional cancer genes. Among the search criteria was 
a requirement for evidence of protein-level expression. The 
extended list consisting of 951 protein-coding cancer genes 
was used to select microarray probes for the WGCNA. The 
lncRNAs used in this study (Supplementary File S1) have at 
least one corresponding probe on the Affymetrix HG-U133 
Plus 2.0 Array.

Microarray expression data. The microarray gene 
expression data set was compiled in our previous study.22 The 
data set had 2,968  microarray gene expression profiles gen-
erated using the Affymetrix HG-U133 Plus 2.0 Array with 
54,675 probe sets. A data integration method was developed to 

combine the expression profiles from 131 different microarray 
studies into a single data set.22 Most human tissue types were 
represented in the integrated microarray data set, and the high 
quality of the data set was demonstrated by examining tissue-
specific gene expression patterns as well as for identifying 
co-expressed genes.

Co-expression analysis of cancer genes and lncRNAs. 
For each cancer gene probe in the core list, co-expression was 
calculated against all lncRNA probes individually using the 
microarray expression data. Co-expression was measured by 
Pearson product–moment correlation with Microsoft Excel 
(2013). The top 10 absolute correlation values were kept. 
P-values were calculated using R 3.0.2.26 Due to the high 
degrees of freedom, the P-value after Bonferroni correction 
for multiple testing in each correlation measurement returned 
a significance of ,6.53E-13. Cancer gene and lncRNA func-
tion were retrieved from the NCBI Gene database.27 Cancer 
gene disease associations were provided in the COSMIC 
Cancer Gene Census List.24

Weighted gene co-expression network analysis. The 
co-expression network was constructed using the WGCNA 
package.7 The normalized expression data for probes from the 
extended cancer gene list and lncRNAs were used as input. 
Given the relatively large data set and our interest in finding 
all the co-expression modules, we opted for a smaller mini-
mum module size at 10 probes. The merge cut height, defined 
as the threshold of dissimilarity, 1-Topological Overlap Matrix 
(TOM), below which separate modules would be merged, was 
set to 0.2. Visual inspection of the initial hierarchical cluster-
ing revealed no outliers, and soft thresholding was set to 4. An 
unsigned network with connections based upon absolute cor-
relations was constructed. Module assignment of cancer genes 
and lncRNAs was performed using democratic vote method. 
A gene was assigned to the module that had the highest 
number of probes for the gene. Genes with equal numbers of 
probes in different modules were assigned using the highest 
mean module membership for the probes.

Functional term enrichment analysis. Each module was 
analyzed for gene ontology term enrichment using the Data-
base for Annotation, Visualization and Integrated Discovery 
(DAVID).28 The analysis was performed using the Affymetrix 
probe identifiers in each module with the Affymetrix HG-U133 
Plus 2.0 Array as the background. Where significant, functional 
annotation terms were selected for biological process, molecular 
function, and Online Mendelian Inheritance in Man (OMIM) 
disease association.29 The P-value provided by DAVID was 
used as the measure of significance. The significance threshold 
was set to 0.1 for the reported functional terms.

Network visualization. Network visualization was per-
formed using the VisANT software.30 All edges were based 
on TOM values with a threshold set for a minimum of one 
connection for each node. The 100 probes with the highest 
intramodal connectivity were analyzed. Node size was deter-
mined by connectivity.
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Results
Normal cross-tissue expression profiles show high 

co-expression between lncRNAs and cancer genes. Cancer 
genes and lncRNAs appear to be involved in some common 
biological functions. Examples include the involvement in 
development and transcriptional regulation. Both cancer 
genes and lncRNAs have been shown to have tissue-specific 
expression patterns.5 We thus hypothesize that associations 
between known cancer genes and lncRNAs could be demon-
strated through correlations in expression across various tis-
sue samples. Previous studies have also shown that different 
isoforms of a cancer gene or lncRNA may have specific activ-
ity, function, and impact on cancer progression.31,32 Because 
of this possibility and our concern about the poor quality of 
some probe sets, we studied the microarray data at the probe 
level instead of combining multiple probe sets for a gene. We 
examined the highest co-expression correlations between the 
lncRNA and cancer gene probes. The degree of co-expression 
is shown here as a measure of the Pearson product–moment 
correlation. Since lncRNAs may have a silencing effect, the 
absolute correlation was used in the ranking to account for a 
negative Pearson correlation.33,34

The core cancer genes are a curated list of genes from the 
COSMIC cancer gene census database.24 From the integrated 
microarray expression data set, which contains 2,968 profiles 
of various normal tissue samples,22 we extracted the expres-
sion profiles for the corresponding probes of all available 

lncRNAs and core cancer genes. The 10 highest correlations 
were compiled (Supplementary File S2). Interestingly, a large 
majority of the co-expressed lncRNA probes show positive 
correlation with cancer genes and the minority show nega-
tive correlation. The well-known lncRNA HOTAIR showed 
a positive correlation (0.38) with homeobox C13 (HOXC13) 
and the lower level of positive correlation (0.28) with the tran-
scription factor paired box 1 (PAX1). The lowly expressed 
lncRNA, PCA3, only showed a low level of positive correla-
tion (0.23) with Rho guanine nucleotide exchange factor 12 
(ARHGEF12).

To highlight the extent of co-expression between lnc
RNAs and cancer genes, the pairs with the highest cor-
relations were compiled and annotated. Ten cancer genes 
with the highest absolute correlations with lncRNAs are 
shown in Table  1. All the correlation values are greater 
than 0.8 and well below the significance threshold of 0.05 
(P-value  ,  6.53E-13). The majority of the lncRNAs ana-
lyzed in this study lack any functional annotation, and this 
is reflected in the highly co-expressed lncRNAs. MEG3 is 
the only lncRNA to have functional annotation. Notably, 
two lncRNAs, LOC100505812 and ITGB2 antisense RNA 
1 (ITGB2-AS1), demonstrate high co-expression with mul-
tiple cancer genes. For the cancer genes highly co-expressed 
with LOC100505812, three (PTPRC, FLI1, and IKZF1) are 
associated with acute lymphoid leukemia and two (IKZF1 and 
MYD88) are associated with diffuse large B-cell lymphoma. 

Table 1. Identification of lncRNAs highly co-expressed with known cancer genes.

Cancer gene Function Disease associations IncRNA Function Correlation  
coefficient

PTPRC Protein tyrosine phosphatase  
receptor involved in T-cell 
activation.

Acute lymphoid leukemia LOC100505812 Uncharacterized 0.86215

FLI1 Transcription factor and  
proto-oncogene

Ewing sarcoma, ALL LOC100505812 Uncharacterized 0.85744

IKZF1 Zinc finger transcription  
factor involved in lymphocyte  
differentiation

ALL, diffuse large B-cell  
lymphoma (DLBCL)

LOC100505812 Uncharacterized 0.84260

ITGB2-AS1 Uncharacterized 0.83235

C21orf96 (RUNX1-IT1) Uncharacterized 0.82207

RBM15 RNA-binding motif protein Acute megakaryocytic  
leukemia

LOC144438 Uncharacterized 0.83453

HNRNPA2B1 Ribonucleoprotein involved  
in pre-mRNA processing

Prostate cancer FLJ31306 Uncharacterized 0.81977

CNBP Zinc finger SSDNA and  
SSRNA-binding protein

Aneurysmal bone cyst LOC388789 Uncharacterized 0.81457

MYD88 Adapter protein for Toll-like  
receptor and interleukin-1 (IL-1) 
signaling

DLBCL LOC100505812 Uncharacterized 0.81449

LCK Protein tyrosine kinase  
involved in T-cell development

ALL ITGB2-AS1 Uncharacterized 0.81244

CHN1 GTPase-activating protein  
involved in neuronal  
signal-transduction

Extraskeletal myxoid  
chondrosarcoma

MEG3 Potential tumor  
suppressor that  
interacts with p53

0.81079

WAS Signal transduction protein  
possibly involved in actin  
filament reorganization

Lymphoma ITGB2-AS1 Uncharacterized 0.81049
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ITGB2-AS1 has high co-expression with IKZF1 and LCK, 
both of which are associated with acute lymphoid leukemia. 
The third cancer gene co-expressed with ITGB2-AS1, WAS, 
is associated with lymphoma. The proteins encoded by the 
cancer genes have various functions. Two of the 10 proteins 
function as transcription factors, and 5 have DNA- or RNA-
binding capacity. While the majority of the proteins appear 
to have functions related to transcription, the other proteins 
include receptors, phosphatases, and kinases. Four of the 10 
cancer genes are involved in the immune response.

Weighted gene co-expression network analysis shows 
close associations of lncRNAs and cancer genes. WGCNA 
with the extended gene list resulted in 37 distinct modules 
(Figs.  1A and 1B). With the exceptions of Module 3 and 
Module 5, the six largest modules showed a greater number 
of cancer gene probes within the module than lncRNA probes 
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Figure 1. WGCNA of cancer genes and lncRNAs. (A) Cluster dendrogram of the co-expression modules. The modules were designated numerically 
based on size, and the six largest modules with Module 1 as the largest module are labeled adjacent to their respective color band. The grey band 
contains probes not assigned to any module. (B) Chart of the probe counts for cancer genes and lncRNAs respectively for each module.

(Fig. 1B). Module 3 had twofold more lncRNAs than cancer 
genes. All of the modules contained at least one lncRNA 
probe, and Module 34 was the only module that contained 
only lncRNA probes. Nevertheless, the majority of the mod-
ules showed a relatively equal distribution of lncRNAs and 
cancer genes. There were 1,493 out of the 5,079 probes ana-
lyzed (29.4%) which were not assigned to any modules (shown 
in grey in Fig. 1A). Out of the 2,632 cancer gene probes, 489 
(18.6%) were not assigned, whereas 1,004 out of the 2,447 
lncRNA probes (41.0%) were left out.

Modules 1, 4, and 5 were chosen for further analysis. 
These selected modules were larger in size and showed high 
connectivity and module membership (data not shown) as well 
as divergence in expression patterns from one another.

Module 1 shows functional enrichment of transcrip-
tional activity and blood-specific expression patterns. To 
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Figure 2. (Continued)

Figure 2. Expression, functional term enrichment, and network visualization of the largest Module 1 with high level of expression in blood. (A) Chart 
of the average expression levels of Module 1 genes in broad tissue types. Error bars represent standard deviations. (B) DAVID functional analysis of 
Module 1 genes. The enriched terms for biological process, molecular function, and OMIM disease association are plotted against fold enrichment with 
the corresponding P-value. (C) VisANT network visualization of the top 100 probes with the highest intramodal connectivity within Module 1. Node size is 
proportional to intramodal connectivity and edges are based upon TOM values with the minimum threshold set to 0.06.

examine the expression pattern of the module, samples were 
grouped by tissue types, and the mean expression level in each 
tissue type was calculated. As shown in Figure 2A, the aver-
age expression level of Module 1 genes is significantly higher 
in blood cells than the other tissues. Within the blood tis-
sue type, neutrophils have the highest expression. The blood-
specific expression pattern is also evident in the Module 1 
expression heat map (Supplementary Fig. S1A). The other 
tissue types have median to low expression for both lncRNAs 
and cancer genes. Interestingly, the cancer genes have a more 
uniform high expression pattern in blood cells in comparison 
to lncRNAs, which show moderate expression in blood cells.

To determine the biological significance of the module, 
functional term enrichment using the DAVID web server was 
performed (Fig. 2B). While the highest fold enrichment has 
been found in a component of the innate immune response, 
there is a significant enrichment for lymphocyte activation for 
Module 1. Other terms show functional enrichment for pro-
cesses involved in cell death. The tissue specificity and gene 
ontology term enrichment reinforce the OMIM disease asso-
ciation with acute myeloid leukemia (AML).

To visualize the co-expression network and identify hub 
genes, the 100 probes with the highest intramodal connec-
tivity were analyzed using the VisANT software (Fig. 2C). 
The network visualization shows dense connectivity within 
the module. The lncRNA LOC100505812 is a hub gene for 
Module 1, providing further evidence of the module’s role in 
lymphocyte activation. Two other uncharacterized lncRNAs 
are present in Module 1, ITGB2-AS1and C17orf44. Module 
1 is the largest module with 879 co-expressed probes. Thus, 
although the other lncRNAs do not represent hub genes 

in the network of the selected probes, they may have high 
connectivity degrees and possibly play a central role in the 
biological function of the module.

Module 4 expression is low in blood and enriched for 
genes associated with intracellular signaling pathways. 
In contrast to Module 1, Module 4 shows significantly lower 
expression in blood samples than the other tissue types (Fig. 3A). 
Module 4 genes do not show obvious tissue-specific expression 
patterns. The lncRNAs show relatively low expression across 
tissues when compared to the cancer genes (Supplementary 
Fig. S1B). Functional terms for Module 4 are enriched for intra-
cellular signaling pathways involved in cell proliferation at the 
process level and phosphatase and kinase activity at the molecu-
lar level (Fig. 3B). Interestingly, Module 4  shows an OMIM 
disease association for AML similar to Module 1. Module 4 
also has less disparity between the proportion of lncRNAs to 
cancer genes and a larger number of higher intramodal con-
nectivity for lncRNAs than Module 1 (Fig. 3C). The network 
visualization reveals a tendency of the lncRNAs to not have 
connections with each other but many connections with the 
cancer genes. For the nodes with the highest connectivity in 
Module 4, only 1.3% of the potential lncRNA–lncRNA con-
nections were above the TOM connection threshold of 0.06, 
and of the potential connections between lncRNAs and can-
cer genes, 13.5% were above the TOM connection threshold. 
The uncharacterized lncRNA, LOC100130776, is identified 
as a potential hub gene within Module 4, and the lncRNA, 
AC009133.2 (GenBank accession) is of interest as well due to 
its high connectivity within the module.

Module 5 exhibits high expression in brain tissues, 
OMIM disease association with neuroblastoma, and 
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Figure 3. (Continued)

Figure 3. Expression, functional term enrichment, and network visualization of Module 4 genes with low level of expression in blood. (A) The average 
expression levels of Module 4 genes in broad tissue types with standard deviation bars. (B) The functional enrichment of biological process, molecular 
function, and OMIM disease association terms for Module 4 plotted against fold enrichment with the corresponding P-value. (C) VisANT network 
visualization of the top 99 probes with the highest intramodal connectivity within Module 4 (RNASEH2B excluded from visualization due to no connectivity 
above the edge threshold). The minimum TOM value threshold for edges is set to 0.06.

functional enrichment for neural development. Module 
5 genes show significantly higher levels of expression in the brain 
and retina tissues than the other tissue types (Fig. 4A). Moreover, 
the expression level in the brain is higher than in the retina. The 
heat map of Module 5 expression shows that cancer genes gener-
ally have higher expression than the lncRNAs in the brain sam-
ples (Supplementary Figure S1C). Within the brain tissue group, 
dorsolateral prefrontal cortex has the highest mean expression 
level.

Functional term enrichment indicates that Module 
5 genes may play a role in neural development (Fig. 4B). Mod-
ule 5 has the significant enrichment of the biological process 
terms, positive regulation of developmental process and neu-
ron differentiation. Not surprisingly given its brain-specific 
expression pattern, Module 5 is the only module to show an 
OMIM disease association with neuroblastoma. Although 
Module 5 does not show any significant molecular function 
term enrichment for transcriptional regulation as the previous 
two modules analyzed, it is similar to Module 4  in its term 
enrichment for intracellular signaling functions. Module 5 is 
also enriched for microtubule binding.

Network visualization of Module 5  shows less con-
nectivity than Modules 1 and 4 (Fig.  4C). The pattern of 
high numbers of connections between lncRNAs and cancer 
genes is also observed in this module. However, there is not 
a greater propensity of connections between lncRNAs and 
cancer genes as was observed in Module 4. For the nodes 
with the highest connectivity in Module 5, 59.3% of the 
potential lncRNA–lncRNA connections were above the 
TOM connection threshold of 0.06, and of the potential 
connections between lncRNAs and cancer genes, 57.1% 

were above the TOM connection threshold. Six lncRNAs 
are identified as hub genes within Module 5. Four of the 
hub genes, LOC645323, LOC643763, LOC150622, and 
RFPLS are uncharacterized, whereas the other two hub 
genes, MEG3 and SOX2OT, have been studied. SOX2OT 
has been shown to be expressed specifically in the brain and 
linked to neurogenesis in mice.35 MEG3 is implicated in a 
variety of cancers, and MEG3 knockouts cause developmen-
tal disorders in mice.36

Discussion
In this study, we have demonstrated high degrees of 
co-expression between lncRNAs and cancer genes in non-
cancerous tissues. We have cataloged the lncRNAs that are 
highly co-expressed with the cancer genes in the core list. 
This catalog can serve as a prioritizing resource for research 
focused on the causal cancer genes and their potential inter-
actions with lncRNAs. We have highlighted the biological 
significance of these interactions through the analysis of the 
highest correlations between lncRNAs and cancer genes. 
Interestingly, cancer genes that have high correlation with 
the same lncRNA also tend to share a common disease asso-
ciation. The co-expression analysis has also provided new 
insights into the association of lncRNAs and cancer genes. 
The mainly positive correlations in expression between lnc
RNAs and cancer genes imply function beyond transcrip-
tional inhibition. Tissue-specific cancer genes, especially 
those expressed in blood or brain tissues, tend to have higher 
degrees of co-expression with lncRNAs. The cancer gene with 
the highest lncRNA co-expression, CHN1, is predominantly 
expressed in the brain, consistent with the relatively high 
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Figure 4. (Continued)

Figure 4. Expression, functional term enrichment, and network visualization of Module 5 genes with high proportion of lncRNAs and high level of 
expression in brain tissues. (A) Average expression levels of Module 5 genes in broad tissue types with standard deviation bars. (B) Functional 
enrichment analysis of Module 5 genes. The enriched terms for biological process, molecular function, and OMIM disease association are plotted against 
fold enrichment with the corresponding P-value. (C) VisANT network visualization of the top 100 probes with the highest intramodal connectivity within 
Module 5. The minimum TOM value threshold for edges is set to 0.06.

level of expression for lncRNAs in this tissue type.37 In addi-
tion, our results suggest a potential role of lncRNAs in the 
immune response. LOC100505812 is located on chromosome 
19 adjacent to the caspase recruitment domain family mem-
ber 8 (CARD8) gene, which is involved in the inflammation 
response. It is possible that LOC100505812 may have a func-
tional role in the immune response as well as the leukemia 
and lymphoma disease states. However, the expression of 
LOC100505812  may also be the result of transcriptional 
noise due to its close proximity to the CARD8  gene since 
lncRNAs and protein-coding genes are equally likely to be 
transcribed with adjacent genes.2 Both LOC100505812 and 
ITGB2-AS1 present interesting possibilities as leukemia or 
lymphoma biomarkers.

We have also performed gene co-expression network anal-
ysis to identify modules containing both lncRNAs and cancer 
genes. The expression patterns of the modules and their enrich-
ment for biological process, molecular function, and disease 
association terms have provided the initial characterization for 
the previously uncharacterized lncRNAs. We have identified 
candidate lncRNAs that are hub genes within the biologically 
significant modules and thus warrant further studies. For 
instance, LOC100505812 is a hub gene in Module 1, which 
shows functional term enrichment for transcriptional regula-
tion and disease association for AML. Moreover, the analysis 
of three co-expression modules has provided new insights into 
the potential roles of lncRNAs in cancer. While Modules 1 
and 4 share AML disease association, there is a stark contrast 
in the expression patterns between the two modules. Recent 
studies have suggested the involvement of several lncRNAs 
such as HOTAIRM1 and RUNX1 in AML, but still little is 
known about their roles in the disease.38,39 Given the elevated 

expression pattern, the lncRNAs within Module 1 may have 
more functional potential related to the disease when com-
pared with Module 4. However, overexpressed lncRNAs have 
previously served as diagnostic biomarkers. Thus, Module 4 
with low level of expression in normal blood cells may pro-
vide some interesting diagnostic lncRNAs for cancer. Module 
5 is of particular interest due to its brain-specific expression 
pattern, greater proportion of lncRNAs than cancer genes, 
and disease association with neuroblastoma. While lncRNAs 
have been shown to be involved in neural development, little 
is known about their role in neuroblastoma.37 Further char-
acterization of the lncRNAs within Module 5 could provide 
insights into this disease.

We have shown the utility of our integrated microar-
ray expression data set for functional annotation of lncRNAs 
associated with cancer genes. The data set contains 2,968 high-
quality expression profiles of various normal tissue samples, 
which have been selected, after manual curation, from the 
vast amount of microarray data in public databases.22 We have 
used this high-quality data set for the co-expression analysis of 
cancer genes and lncRNAs. Since highly co-expressed genes 
are often involved in similar biological processes, the findings 
provide useful information for lncRNA annotation as well as 
cancer research. Our approach is different from the differential 
expression analysis of cancerous and normal samples, which 
is commonly used to identify disease-associated lncRNAs. 
Since cancer is a highly heterogeneous disease and lncRNAs 
are normally expressed at low levels, the analysis of gene co-
expression in a wide range of normal tissue types may allow for 
the broader identification of cancer-associated lncRNAs and 
functional characterization. This approach can also be used 
to determine lncRNA associations with other disease states. 
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Nevertheless, one limitation in this study is that only 1,865 
lncRNAs are represented in the microarray platform (Affyme-
trix HG-U133 Plus 2.0 Array). This limitation can be over-
come by utilizing RNA-seq data. With the rapid accumulation 
of RNA-seq data in public databases, a high-quality expression 
data set containing all lncRNAs will be compiled and used for 
the gene co-expression network analysis in the future.
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the ten lncRNA probes with the highest absolute Pearson 
product moment correlation.

Supplement figure 1. Heat maps to show expression 
patterns across normal tissue samples in (A) Module1,  
(B) Module  4, and (C) Module 5. The probes are sorted 
by their average expression levels across the tissue types 
highest to lowest.
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