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Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly
applied on maize crops. Its worldwide use results in widespread presence as a
contaminant in surface streams and ground-waters. In this study, we isolated, for
the first time, the Plectosphaerella cucumerina AR1 nicosulfuron-degrading fungal
strain, a new record from Alnus leaf litter submerged in freshwater. The degradation
of nicosulfuron by P. cucumerina AR1 was achieved by a co-metabolism process
and followed a first-order model dissipation. Biodegradation kinetics analysis indicated
that, in planktonic lifestyle, nicosulfuron degradation by this strain was glucose
concentration dependent, with a maximum specific degradation rate of 1 g/L in glucose.
When grown on natural substrata (leaf or wood) as the sole carbon sources, the
Plectosphaerella cucumerina AR1 developed as a well-established biofilm in 10 days.
After addition of nicosulfuron in the medium, the biofilms became thicker, with rising
mycelium, after 10 days for leaves and 21 days for wood. Similar biofilm development
was observed in the absence of herbicide. These fungal biofilms still conserve the
nicosulfuron degradation capacity, using the same pathway as that observed with
planktonic lifestyle as evidenced by LC-MS analyses. This pathway involved first the
hydrolysis of the nicosulfuron sulfonylurea bridge, leading to the production of two
major metabolites: 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-(aminosulfonyl)-
N,N-dimethyl-3-pyridinecarboxamide (ASDM). One minor metabolite, identified as 2-
(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (N3), derived from
the cleavage of the C-S bond of the sulfonylurea bridge and contraction by elimination of
sulfur dioxide. A last metabolite (N4), detected in trace amount, was assigned to 2-(4,6-
dimethoxy-pyrimidin-2-yl)-N,N-dimethyl-nicotinamide (N4), resulting from the hydrolysis
of the N3 urea function. Although fungal growth was unaffected by nicosulfuron, its
laccase activity was significantly impaired regardless of lifestyle. Leaf and wood surfaces
being good substrata for biofilm development in rivers, P. cucumerina AR1 strain could
thus have potential as an efficient candidate for the development of methods aiming to
reduce contamination by nicosulfuron in aquatic environments.

Keywords: ascomycete fungus, herbicide, sulfonylurea, degradation, co-metabolism, natural substrata,
Plectosphaerella cucumerina
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INTRODUCTION

Nicosulfuron (2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulf-
amoyl]-N,N-dimethylpyridine-3-carboxamide) is a sulfonylurea
class herbicide used worldwide as a post-emergence herbicide to
protect maize crops from weeds. It inhibits acetolactate synthase
(ALS) enzyme activity, a key enzyme involved in the branched-
chain amino acid biosynthesis (Schloss, 1990), which results
in the inhibition of plant growth. Despite the low agronomic
dose recommended for nicosulfuron in crops (in Europe, 60 g
active ingredient/ha; CE 1107/2009), this molecule is frequently
detected in surface and ground-waters due to its high mobility, its
Groundwater Ubiquity Score (GUS) being of 3.34 (Pfeiffer, 2010).
This transfer can be explained by the high solubility (>7 g/L
at pH ≥ 6.5) and low Kd coefficient of the molecule (ranging
from 0.14 to 2.15 L/kg, Gonzalez and Ukrainczyk, 1996, 1999;
Oliveira et al., 2001; Regitano and Koskinen, 2008; Trigo et al.,
2014; Azcarate et al., 2015). The nicosulfuron environmental
concentrations found in various surface waters from Canada,
United States, and Europe, averaging 0.3–0.5 µg/L, are non-
negligible (Battaglin et al., 2000; de Lafontaine et al., 2014;
Moschet et al., 2014), the highest amounts detected peaking up
to 3.29 µg/L (Battaglin et al., 2009). Overall, the high detection
frequency of nicosulfuron in surface waters implies chronic
exposure of aquatic microbial communities and eventually a set
of adaptations regarding its use by microbes.

Responses of aquatic fungi to organic contaminants are
sequential regarding exposure time and can take from hours to
weeks. After an acute exposure to the pesticide, the first fungal
responses consist in the oxidative attack of the molecule both in
the intracellular (i.e., cytochrome P450 monooxygenases) and/or
extracellular (i.e., peroxidases and laccases) spaces, followed by a
methylation or conjugation process which improve the molecule
solubility as well as its release out of the cell (Krauss et al., 2011).
After a chronic exposure, fungi can mineralize the molecule with
more or less success.

Regarding the sensitivity of fungi to nicosulfuron, most studies
have been performed in soils. For instance, soil fungi are sensitive
to nicosulfuron when repeatedly applied at dose rates higher
than the recommended one, probably because ALS genes are also
present in numerous fungal species (Karpouzas et al., 2014). In
contrast, increasing levels of nicosulfuron exposure have been
shown to increase the bacterial abundance and diversity in soil
(Petric et al., 2016). This tolerance to nicosulfuron seems to
be widespread in soil bacteria, mainly among Firmicutes and
Actinobacteria. In aquatic microbial communities, responses to
nicosulfuron are rather different comparing to those observed
in soils (Carles et al., 2017b). While chronic exposure to
nicosulfuron enhances fungal diversity in aquatic microbial
communities associated with leaf litter, the diversity of bacteria
was severely impaired. At the same line, the pre-exposure history
of these aquatic microbial communities to contamination played
a significant role in their ability to biodegrade nicosulfuron
(Carles et al., 2017b).

Degradation of nicosulfuron can require up to 70 days
in natural aquatic environments (Cessna et al., 2015), both
abiotic and biotic degradation processes co-occurring.

Chemical hydrolysis of the sulfonylurea linkage has been
described as the main abiotic degradation process (Sarmah
and Sabadie, 2002), its rate being greater as pH of the medium
decreases (Berger and Wolfe, 1996). This phenomenon was
also observed for Penicillium oxalicum YC-WM1 where
nicosulfuron degradation was due to medium acidification
resulting from oxalate secretion by the fungal strain (Feng et al.,
2017). Two degradation products are usually formed: 2-amino-
4,6-dimethoxypyrimidine (ADMP) and 2-(aminosulfonyl)-
N,N-dimethyl-3-pyridinecarboxamide (ASDM), the latter
being able to cyclize at basic pH (Sarmah and Sabadie, 2002).
Besides, five different photo-products have been identified
during nicosulfuron photodegradation in aqueous media
(Benzi et al., 2011), though the contribution of this process
to total abiotic degradation of the molecule seems to be of
minor importance (EFSA, 2007). Regarding biotic degradation,
nine bacterial [Oceanisphaera psychrotolerans LAM-WHM-
ZC (Zhou et al., 2017), Bacillus subtilis YB1 (Yang et al.,
2008; Lu et al., 2012), Ochrobactrum sp. ZWS16 (Zhao et al.,
2015b), Rhodopseudomonas sp. J5-2 (Zhang et al., 2011),
Alcaligenes faecalis ZWS11 (Zhao et al., 2015a), Klebsiella sp.
Y1 (Wang et al., 2016), Serratia marcescens N80 (Zhang et al.,
2012), Pseudomonas fluorescens SG-1 (Carles et al., 2017a)
and Pseudomonas nitroreducens strain NSA02 (Zhao et al.,
2018)], and three fungal [Talaromyces flavus LZM1 (Song
et al., 2013), Aspergillus niger YF1 (Yang et al., 2008; Lu et al.,
2012) and Penicillium oxalicum YC-WM1 (Feng et al., 2017)]
nicosulfuron-degrading strains have been described in the
literature. In most cases, the metabolites identified were ADMP
and ASDM, suggesting similar degradation pathways. All these
strains have been isolated from environments subjected to
high anthropogenic pressure (i.e., wastewater treatment plants,
agricultural soils), whereas no data are available about degrading
ability of strains exposed to nicosulfuron in final ecological
receptors such as river ecosystems.

The present study investigates the capacity of a fungal strain
of Plectosphaerella cucumerina AR1, isolated from submerged
leaves in a forested river, to degrade nicosulfuron. The influence
of lifestyle, accessible carbon source use and activity of the strain
during the dissipation process of the herbicide was assessed.

MATERIALS AND METHODS

Chemicals and Media
Nicosulfuron (Pestanal, purity 99.6%) and ADMP (2-amino-4,6-
dimethoxypyrimidine, purity 98.0%) were purchased from Sigma
Aldrich (France), and ASDM (2-(aminosulfonyl)-N,N-dimethyl-
3-pyridinecarboxamide, purity 98%) from J and K Scientific
(Germany).

Malt extract and Sabouraud chloramphenicol agar media were
purchased from Sigma Aldrich (France). Potato dextrose agar
(PDA) medium was obtained from Biomérieux (France). Mineral
salt medium (MSM) was composed of (/L): 1 g (NH4)2HPO4,
1 g KH2PO4, 1 g KNO3, 0.2 g MgSO4.7H2O, 0.1 g NaCl, 20 mg
CaCl2, 5 mg FeSO4.7H2O, 1 mL of a salt stock solution and 1 mL
of a vitamin stock solution. The salt stock solution contained
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FIGURE 1 | Plectosphaerella cucumerina AR1 strain. (A) Spores.
(B) Mycelium with hyphae. (C) Septa hypha (arrows) and budding of hypha
(arrow head). (D) Hyphal with phialide (arrow). (E) Colony growth on
Sabouraud chloramphenicol agar medium. (F) Colony growth on PDA
medium.

(/L) 20 g boric acid, 18 g MnSO4.H2O, 2 g ZnSO4, 1 g CuSO4,
2.5 g Na2MoO4, 10 mg Co(NO3)2. The vitamin stock solution
contained (/L) 2 mg biotin, 5 mg thiamine-HCl. The glucose-
mineral salt medium (GSM) was obtained by addition of glucose
(10, 5 or 1 g/L) in MSM. All the media were supplemented by
chloramphenicol (0.5 g/L).

Isolation and Identification of a
Nicosulfuron-Degrading Fungal Strain
The isolation of fungal species was carried out on a nicosulfuron-
degrading aquatic microbial community colonizing Alnus
glutinosa (L.) Gaertn. leaf species (henceforth referred to
Alnus in the text (Carles et al., 2017b)). The isolation was
performed according to Artigas et al. (2017). Briefly, sporulation
was induced in Alnus communities exhibiting nicosulfuron

degradation. Among the spores obtained, a single spore
morphotype (fusoid-type; Figure 1A) was physically isolated
using glass micropipettes under a microscope (Leica DM
IRB, Leica Microsystems, Wetzlar, Germany) and cultivated.
Colony morphology was determined on culture grown on PDA
or Sabouraud chloramphenicol agar media after 14 days of
incubation at 23◦C in the dark. Mycelium and spores were
observed and photographed under an inverted microscope
(Ziess, Axiovert 200M). A 10 µL spore suspension (containing
ca. 15 spores) was then used for germination in 20 mL of malt
extract 1% (pH 6.5) containing 0.5 mg/mL of chloramphenicol
for 15 days at 28◦C.

The identification of the fungal species was performed
through DNA extraction from the fungal mycelium using the
Fast DNA SPIN Kit for soil (MP Biomedicals, United States)
and following the manufacturer’s instructions. Extracted
DNA was then amplified by targeting from the fungal
18S to the 28S regions [using the primer pairs ITS 5 (5′-
GGAAGTAAAAGTCGTAACAAGC-3′) (White et al., 1990) and
NL 4 (5′-GGTCCGTGTTTCAAGAC-3′) (O’Donnell and Gray,
1995)]. The amplification reaction was carried out in a total
volume of 50 µL containing 200 µM of each deoxyribonucleotide
triphosphate (dNTP), 0.2 µM of each primer, 1 X PCR buffer
containing 2.5 mM MgCl2, 0.3 U of Taq polymerase (Eurobio)
and 50 ng of genomic DNA. Polymerase chain reactions (PCR)
were performed as follows: 5 min at 95◦C, followed by 35 steps
[1 min. at 95◦C, 2 min. at 52◦C and 1 min. at 72◦C] and a final
elongation step at 72◦C for 7 min. PCR amplicon was then
sequenced (MWG – Biotech). The sequence obtained (1118 bp)
was compared against NCBI sequences database using BLAST
and deposited in GenBank under the Accession No: MK079567.

Biodegradation of Nicosulfuron
In Planktonic Lifestyle Without or With Glucose as
the Carbon Source
The 100 µM nicosulfuron biodegradation capacity of the strain
was determined by inoculating from 0.25 to 0.35 mg of
mycelium in 100 mL of mineral medium containing (GSM
with 1, 5 or 10 g/L) or not (MSM) glucose in 250 mL
flasks. The flasks were incubated at 28◦C on an orbital
shaker at 150 rpm in the dark to avoid photolysis. Non-
inoculated media served as abiotic controls. Flasks inoculated
only with the fungal strain were used as mycelium growth
control.

In Biofilm Lifestyle With Leaves or Wood as Carbon
Sources
Alnus leaves and commercial wood-sticks (hazel wood)
were macerated overnight in sterile water before being
cut in 1 cm2 squares which were used both as supports
for fungal biofilm development and as carbon sources
for P. cucumerina AR1. Squares were then sterilized by
autoclaving and added in a 250 mL flask containing
a ten-fold diluted malt medium (pH 6.5), 0.5 g/L of
chloramphenicol without (control; 48 squares) or with
0.25–0.35 mg of P. cucumerina AR1 mycelium (96
squares). The flasks were incubated at 28◦C under
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agitation (80 rpm) for 10 days until mature biofilm
formation. Then, 16 non-inoculated squares of each
substratum were placed into a 250 mL flask containing
100 mL of a more environmentally realistic nicosulfuron
concentration of 30 µM in Volvic R©water (abiotic control).
The biofilm-covered squares were incubated in the
same way without (growth control) or with 30 µM
nicosulfuron.

Monitoring of Nicosulfuron Dissipation by
P. cucumerina AR1
Each of the treatments described above for planktonic and
biofilm lifestyles was run in triplicate. The time at which
nicosulfuron was added to the planktonic or biofilm-
covered substrata cultures was considered as Day 0 (D0).
The culture media were sampled at days 0, 3, 6, 10, 14, 21,
28, and 35 to determine herbicide dissipation by HPLC.
The production of metabolites was monitored by LC and
LC-(+)ESI-MS. At the end of the experiment (day 35),
the fungal pellet (planktonic conditions) or one leaf/wood
square (biofilm conditions) was extracted in 0.5 mL (leaf)
and 2.5 mL (fungal pellet and wood) absolute ethanol to
look at sorption onto biomass and/or the substrata. The
suspension was stirred vigorously overnight at room temperature
and centrifuged (13,000 g for 5 min). The extraction was
performed twice in order to ensure a complete desorption. The
combined organic extracts were concentrated and analyzed by
HPLC.

Identification and Quantification of
Nicosulfuron and Its Metabolites
Monitoring and Quantification by HPLC
The quantification of nicosulfuron and its main metabolites
(ASDM and ADMP), in the culture media (dissipation) and
extracted from the fungal biomass, was performed by HPLC on
an Agilent Series 1100 chromatograph (Courtaboeuf, France),
equipped with a DAD set at λ = 220 and 254 nm, and
a reverse phase column (Zorbax Eclipse XDB-C18, 3.5 µm,
75 mm × 4.6 mm) at 22◦C. The mobile phase was composed
of acetonitrile (Solvent A) and acidified water (H3PO4, 0.01%
v/v; pH 2.9) (Solvent B) at a flow rate of 1 mL min−1,
linear gradient 0–1 min: 2% A; 1 –10 min: 2–70% A; 10–
13 min: 70–100% A; 13 – 13.5 min: 100–2% A; 13.5 –
15 min: 0% A. Injection volume: 5 µL. Each sample was
injected twice. Solutions of the commercially available standards
(ASDM and ADMP) were prepared in water, by dilution
of a mother solution at 1 mM. Each standard solution
(covering the expected concentration range) was injected three
times. The metabolites N3 and N4 can be quantified only
by 1H NMR as the standards are not commercially available
(Carles et al., 2017a). A “correlation” can be established
between the concentrations found by 1H NMR and the
HPLC area observed. Nevertheless, this correlation is not very
accurate. Therefore the precise concentrations for N3 and
N4 were not given as they remained very low, in particular
for N4.

Identification by LC-MS
LC/ESI-MS analyses were performed on a Thermo Scientific
UHPLC Ultimate 3000 RSLC coupled with an Orbitrap
Q-Exactive analyzer. The crude supernatants were harvested
(5 min at 13,000 g) before LC-MS analyses and directly injected
in the LC-MS system without any further treatment. The analyses
were carried out in positive mode. The UHPLC was equipped
with a Kinetex EVO C18; 100 x 2.1 mm; 1.7 µm (Phenomenex)
at 30◦C with a gradient acetonitrile + 0.1% Formic acid (Solvent
A) and water +0.1% Formic acid (Solvent B): 0–7.5 min: 5–99%
A (linear); 7.5–8.5 min: 99% A; 8.5–9 min: 99–5% A; 9–11 min:
5% A. Flow: 0.45 mL/min. For the mass spectrometer, gaseous N2
was used as nebulizer gas (50 L/h). The spray voltage was 3.2 kV.
The mass resolution used was 35,000.

Laccase Activity Measurements
Laccase (EC 1.10.3.2) activity was measured in triplicate at each
sampling date from planktonic (varying from 3 to 8 mg of fungal
dry mycelium) and biofilm (one square of leaf/wood) samples
using the 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
(ABTS) substrate (Sigma-Aldrich, St. Louis, MO, United States).
Enzyme activity assays were conducted according to the protocol
of Johannes and Majcherczyk (2000) with some modifications.
Substrate saturating conditions were fixed at 3 mM ABTS
and incubations were performed during 1 h at 20◦C, under
agitation (80 rpm) in the dark. ABTS transformation was
measured spectrophotometrically (420 nm) using an Ultrospec
2000 device (Pharmacia Biotech, Trowbridge, United Kingdom).
The enzymatic activity was expressed as 1 U = 1 µmol ABTS
oxidized/g mycelium dry mass/h (ε420 = 36 M−1 cm−1, Johannes
and Majcherczyk, 2000). Oven dry mass (DM) was determined
systematically for each sample and used to correct laccase activity
(activity/h/g DM).

Biomass Measurements
In the planktonic conditions, fungal biomass production was
determined as the dry mass difference between D0 and D35.
Biomass corresponding to laccase activity assays was also
determined and added to fungal biomass calculations. The
biofilm condition did not allow us to calculate a proper fungal
biomass production because of the influence of the substrata
which was degraded in parallel along the experiment.

Scanning Electron Microscopy (SEM)
Leaf or wood supports, exposed to nicosulfuron and
P. cucumerina AR1 strain (biofilm) or not (control), were
sampled at D0, D10, D21 and D35 and fixed overnight at 4◦C in
0.2 mol/L sodium cacodylate buffer pH 7.4 that contained 1.6 %
glutaraldehyde. Biofilms were then washed and post-fixed 1 h
with 1% osmium tetroxide in 0.2 mol/L sodium cacodylate buffer
(pH 7.4). They were washed 20 min. in distilled water and the
dehydration by graded ethanol was performed from 25◦ to 100◦
(10 min each) to finish in hexamethyldisilazane (HMDS) for
10 min. After drying, the samples were mounted on stubs using
adhesive carbon tabs and sputter-coated with gold-palladium
(JFC-1300, JEOL, Japan).
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Morphology analysis was carried out using a scanning electron
microscope JSM-6060LV (Jeol, Japan) at 5 kV in high-vacuum
mode.

Statistical Analyses
Nicosulfuron dissipation and metabolite production were fitted
to an exponential decay model (f = a × exp(-b × x)) with
(a) initial nicosulfuron concentration and (b) dissipation rate as
parameters estimated) and a sigmoidal model (f = a/(1+exp(-
(x-x0)/b))) with a (maximal ADMP or ASDM concentration), b
(production rate) and x0 (time when the maximal production
rate was achieved) as estimated parameters), respectively, using
Sigma Plot 10.0 for Windows (Systat Software, Inc.). Differences
on the nicosulfuron dissipation rate and metabolite production
rate between treatments were assessed using a one-way ANOVA
test followed by Tukey HSD test. ANOVA tests for the
planktonic lifestyle experiments used glucose as the fixed factor
(10, 5, or 1 g/L), whereas in biofilm lifestyle experiment,
it was the substratum (leaf, wood). Before ANOVA testing,
data were assessed for normality and homoscedasticity. Log
transformations were applied when data did not follow ANOVA
assumptions.

RESULTS

Characterization of Plectosphaerella
cucumerina AR1
The fungal spores isolated from submerged Alnus leaf
communities were fusiform, ends rounded, measuring 8–13 µm
in length and 2.5–4 µm in width (Figure 1A). Based on
ITS1-5.8S-ITS2-28S region sequencing and on macro- and
microscopic characters, the isolated fungus was identified as
Plectosphaerella cucumerina species and named Plectosphaerella
cucumerina AR1.

When cultivated in planktonic conditions, the isolated
P. cucumerina AR1 strain formed threadlike hyphae that grow
into a mycelium forming a cottony mass (Figure 1B). Hyphae
are septated and produce bud leading to branched mycelium
(Figure 1C). Solitary phialides can be produced forming a
flask-shaped projection on the apex of the septated hyphae
(Figure 1D).

The Plectosphaerella cucumerina AR1 colony showed different
aspects depending on the solid culture medium used, varying
from a white, fluffy and aerial mycelium in Sabouraud
chloramphenicol agar medium (Figure 1E) to a beige, smooth
in appearance with some white mycelia diffusing from a central
dome in PDA medium (Figure 1F). In both cases, the diameter of
the colonies reached around 4.5 cm after 14 days at 23◦C.

Biodegradation of Nicosulfuron by
Planktonic P. cucumerina AR1
P. cucumerina AR1 cultivated in mineral medium (MSM) was
unable to dissipate 100 µM nicosulfuron (data not shown).

Nevertheless, when glucose was added as a carbon source,
a dissipation of nicosulfuron was observed that follows an

exponential decay model (R2 > 0.91 and P < 0.001 for all the
conditions tested). This was not the case in abiotic controls.
We thus studied the glucose concentration effect, used as a
classic co-metabolic substrate, on nicosulfuron biodegradation
(Figure 2). The dissipation rates increased with the glucose
concentrations (ANOVA, P < 0.0001) (Tukey’s test, P < 0.05)
(Table 1). Nicosulfuron (100 µM) has completely disappeared
after 21 days of incubation for a concentration of 10 g/L of
glucose, whereas around 1.5% and 13% of nicosulfuron were still
remaining after 35 days of culture, for concentrations of 5 and
1 g/L, respectively. Besides, only 2, 1.6, and 1.3% of nicosulfuron
were recovered after extraction of the fungal biomass with
ethanol after 35 days, when cultures were carried out with
10 g/L, 5 g/L and 1 g/L of glucose, respectively (data not shown).
Therefore, biosorption was not a significant process in herbicide
dissipation. The degradation of nicosulfuron and growth of the
fungal strain did not modify the pH of the culture media which
were all measured at 6.50 ± 0.22 (n = 18) at the end of the
experiment.

During the HPLC monitoring of nicosulfuron (tR = 7.6 min)
biodegradation, two new peaks appeared at shorter retention
times (tR = 4.3 and 5.2 min) with increasing intensities with time.
They were absent from the controls. Analyses of the same samples
by LC-(+)ESI-MS gave a molecular ion at m/z 230.0587 [M+H]+
(C8H12N3O3S+) and main fragment ions at m/z 252.0405
[M+Na]+ and 213.0323 (C8H9N2O3S+) for the metabolite with

TABLE 1 | Kinetic parameters of nicosulfuron dissipation and metabolite formation
in the presence of various glucose concentrations or natural substrata.

Dissipation (1)

and
production (2)

rates (/h)

SE R2 P-value

Glucose Nicosulfuron

Glucose
1 mg/L

0.0739(1)a 0.0013 0.9546 <0.0001

Glucose
5 mg/L

0.1048(1)b 0.0061 0.9592 <0.0001

Glucose
10 mg/L

0.1381(1)c 0.0042 0.9139 <0.001

Metabolites

ADMP (1 mg/L) 5.3795(2)a 0.5782 0.9545 <0.001

ADMP (5 mg/L) 4.8287(2)a 0.0518 0.9882 <0.0001

ADMP
(10 mg/L)

3.9844(2)a 0.0920 0.9944 <0.0001

ASDM (1 mg/L) 3.1444(2)a 0.0934 0.9895 <0.0001

ASDM (5 mg/L) 2.9618(2)ab 0.0519 0.9923 <0.0001

ASDM
(10 mg/L)

2.5519 (2)bc 0.1298 0.9918 <0.0001

Natural
substrata

Nicosulfuron

Leaves 0.1137(1)a 0.0021 0.9512 <0.0001

Wood 0.1139 (1)a 0.0087 0.8815 <0.001

Parameters are expressed as the mean standard error (SE), n = 3. Significant
differences between conditions are indicated by letters (Tukey test, P < 0.05).
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FIGURE 2 | Biodegradation of 100 µM nicosulfuron and production of the major metabolites (ADMP and ASDM) by P. cucumerina AR1 strain in planktonic lifestyle in
the presence of 1 g/L, 5 g/L, and 10 g/L of glucose. The abiotic controls were non-inoculated with the strain. Values are expressed as the mean ± standard error
(SE), n = 3.

the shortest retention time and a molecular ion at m/z 156.0766
[M+H]+ (C6H10N3O2

+) for the second metabolite. According
to the literature (Zhao et al., 2015a) and to our previous
research work (Carles et al., 2017a), they were assigned to ASDM
(2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and
ADMP (2-amino-4,6-dimethoxypyrimidine), respectively. The
structures of both metabolites were confirmed by comparison
with the LC-(+)ESI-MS data of the commercially available
standard compounds under the same conditions. These two
metabolites are formed by the cleavage of the C-N bond in
the sulfonylurea bridge (Supplementary Figure S1). The ASDM
production was faster at 10 g/L of glucose compared to 1 g/L
(Tukey’s test, P < 0.05; Table 1 and Figure 2), accordingly to the
results observed with nicosulfuron. Conversely, the production
kinetics of ADMP showed no significant difference whatever
the glucose concentration tested (Table 1). Nevertheless, both
metabolites were present in similar molar concentrations (∼80–
90 µM) after 35 days of incubation (Figure 2). Another
metabolite, presenting a molecular ion at m/z 347.1456
[M+H]+ (C15H19N6O4

+), a retention time at 2.8 min and
a main fragment ion at m/z 304.1396 (C14H18N5O3

+), was
also detected by LC-(+)ESI-MS in a low amount. It was
identified as 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-
dimethyl-nicotinamide (N3) (Supplementary Figure S1) (Carles
et al., 2017a). Therefore our results indicate that nicosulfuron
was mainly co-metabolically degraded by P. cucumerina
AR1.

The greater the glucose concentration supplied was, the faster
the nicosulfuron dissipation (Figure 2 and Table 1). This result
can be explained by an increase of mycelium biomass with
the increase of glucose concentrations, irrespective of presence

of nicosulfuron (ANOVA, P < 0.0001, Figure 3). However,
specific nicosulfuron dissipation calculations (corrected by
mycelium biomass) showed an inverse correlation between
specific nicosulfuron dissipation and glucose concentration,
varying from 19% at 1 g/L glucose to 8% at 10 g/L
(Figure 4).

Although nicosulfuron has no impact on P. cucumerina
AR1 growth, laccase activity was significantly impaired
by both the presence of nicosulfuron and the increasing
concentration of glucose (ANOVA, P < 0.0001 for both
factors; Figure 5A). Only 30% of the laccase activity
remained when P. cucumerina AR1 was jointly exposed to
nicosulfuron and 10 g/L glucose compared to 1 g/L (Tukey’s test
P < 0.05).

Biodegradation of Nicosulfuron by
Benthic P. cucumerina AR1
Characterization of the Biofilm Development
The P. cucumerina AR1 capacity to degrade nicosulfuron
in benthic conditions was tested on two natural substrata
(alder leaf and hazel wood). The biofilm evolution was
monitored by SEM analyses. The SEM micrographs showed
no microbial development on leaf and wood supports
sterilized by autoclave and incubated in 1/10 diluted malt
1% medium, pH 6.5 (Figures 6A,B control; D0). In contrast,
supports inoculated with P. cucumerina AR1 presented a well-
established biofilm before nicosulfuron addition (Figures 6A,B
biofilm; D0).

These biofilms were then exposed to nicosulfuron in
Volvic R©water. The architecture of biofilms evolved slightly
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FIGURE 3 | Biomass production of P. cucumerina AR1 in the presence of
various glucose concentrations and with or without 100 µM nicosulfuron after
35-day incubation. Values are expressed as the mean ± standard error (SE),
n = 3. Differences between experimental conditions are marked by letters
a > b > c (Tukey’s test, P < 0.05).

FIGURE 4 | Specific biodegradation percentage of 100 µM nicosulfuron by
P. cucumerina AR1 in the presence of various glucose concentrations. Values
are expressed as the mean ± standard error (SE), n = 3. Differences between
treatments are marked by letters a > b (Tukey’s test, P < 0.05).

differently between leaf and wood substrata. Specifically, a
compact and thick biofilm, with rising mycelium, was formed
more rapidly on leaves (10 days; Figure 6A biofilm; D10)
than on wood (21 days; Figure 6B biofilm; D21). At the end
of the experiment, both biofilm structures were comparable
(Figures 6A,B biofilm; D35), without apparent differences
between control biofilms and those exposed to nicosulfuron.

Nicosulfuron Biodegradation
The dissipation of nicosulfuron (30 µM) was observed both
for leaf and wood grown biofilms (Figure 7). The adsorption
of nicosulfuron on subtrata was around 0.15 ± 0.076 %
and 2.82 ± 0.69 % (n = 3) for leaf and wood, respectively

(data not shown). Surprisingly, wood grown biofilms were
able to degrade nicosulfuron as soon as they were exposed
to the herbicide, as opposed to leaf grown biofilms which
showed a 3 day delay in nicosulfuron degradation (Figure 7).
Nevertheless, the nicosulfuron degradation kinetics was
the same overall, exhibiting comparable rates, whatever the
substratum tested (Table 1). At day 21, the nicosulfuron
degradation by the wood grown biofilms was maximal,
reaching around 97% dissipation. Then, the nicosulfuron
concentration remained unchanged until the end of the
experiment. On the contrary, for the leaf grown biofilms, the
degradation of nicosulfuron reached also 97% after 21 days
and continued up to 100% at the end of the experiment
(Figure 7). During this biodegradation process, the pH of
the medium was not significantly modified since the values
were of 6.40 ± 0.36 at the end of the experiment under all the
conditions.

Nicosulfuron was degraded by biofilms with the same
pathway as that observed for planktonic lifestyle. The two major
metabolites, ADMP and ASDM as well as the minor one, N3,
were formed under these conditions (data not shown). A fourth
metabolite, with a retention time of 2.3 min and a molecular
ion at m/z 304.1396 [M+H]+ (C14H18N5O3

+), was also detected
by LC-(+)ESI-MS after 6 days of incubation but in a very low
amount. This ion was already observed in the mass spectrum
of N3 as the main fragment ion, suggesting that N4 came
directly from N3. It was assigned as 2-(4,6-dimethoxy-pyrimidin-
2-yl)-N,N-dimethyl-nicotinamide (N4) by comparison with the
literature data (Carles et al., 2017a) (Supplementary Figure S1).

During the 35-day experiment, the integrated laccase activity
was about 8 times higher for leaf grown biofilms compared to
wood grown biofilms (Figure 5B). This activity was decreased
(about 55–60%) when biofilms were exposed to nicosulfuron.

DISCUSSION

Plectosphaerella cucumerina AR1 is a filamentous Ascomycete
fungus, mostly encountered in the terrestrial environment
as a pathogen of various plant species and vegetables [e.g.,
lettuce (Usami and Katagiri, 2017), cabbage (Li et al., 2017),
broomrape (Xu et al., 2016), sunflower (Zhang et al., 2015),
bottle gourd (Yan et al., 2016), tomato, melon (Carlucci et al.,
2012), potato (Gao et al., 2016)] and to a lesser extent in
marine ecosystems where it has been described as host of
ascidian invertebrates (López-Legentil et al., 2015), sponges
(Wang et al., 2008) and shells (Velmurugan et al., 2011). To our
knowledge, this is the first time that P. cucumerina (Figure 1)
has been isolated from submerged plant litter in a freshwater
ecosystem.

Furthermore, P. cucumerina AR1 was described as a biological
control agent against potato cyst nematodes (Atkins et al., 2003;
Jacobs et al., 2003; Dandurand and Knudsen, 2016; Kooliyottil
et al., 2017). It was used as a bioherbicide in agricultural crops
and pastures (Bailey K. et al., 2017; Bailey K.L. et al., 2017) and
would also be involved in the remediation of metal polluted
environments (Santelli et al., 2010, 2011).
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FIGURE 5 | (A) Integrated 35-day laccase activity in fungal mycelia grown in the presence or absence of nicosulfuron at different glucose concentrations (1, 5, and
10 g/L). (B) Integrated 35-day laccase activity in leaf and wood biofilms supplemented or not with nicosulfuron. Values are expressed as the mean ± standard error
(SE), n = 3. Differences between experimental conditions are marked by letters a > b > c > d (Tukey’s test, P < 0.05).

FIGURE 6 | Scanning electron micrographs of leaf (A) or wood (B) surface exposed to 30 µM nicosulfuron and colonized (biofilm) or not (control) by P. cucumerina
AR1 strain from day 0 (D0; exposure to nicosulfuron) to the end of the experiment (D35). No contamination of the support was observed for control leaf (A) or wood
(B) supports throughout the experiment (D0–D35). The support surface is completely covered by P. cucumerina AR1 biofilm before being exposed to nicosulfuron
(D0, (A,B)). A fungal development was observed at D10 for leaf (A) and D21 for wood (B) supports with appearance of a more compact and longer mycelium. Scale
bars represent 500 µm.
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FIGURE 7 | Biodegradation of 30 µM nicosulfuron by P. cucumerina AR1 biofilms on leaf and wood. The abiotic controls correspond to the substrata non-inoculated
by the strain. Values are expressed as the mean ± standard error (SE), n = 3.

Our results showed that P. cucumerina AR1 can also be used
to reduce nicosulfuron contamination since we demonstrated
that (i) it was tolerant to nicosulfuron in contrast to what was
described for other fungal species (Karpouzas et al., 2014) and
(ii) it was able to degrade the nicosulfuron herbicide both in
planktonic (Figure 2) and in biofilm conditions with various
simple and complex carbon sources (glucose, leaf or wood;
Figure 7). Regarding the literature, this is the first time that
a leaf-associated fungal strain able to degrade nicosulfuron has
been isolated in freshwater, the other ones being isolated from
agricultural soil or sludge (Yang et al., 2008; Zhang et al., 2011,
2012; Lu et al., 2012; Song et al., 2013; Zhao et al., 2015a,b, 2018;
Wang et al., 2016; Carles et al., 2017a; Feng et al., 2017; Zhou et al.,
2017).

As already shown with almost all the isolated nicosulfuron-
degrading strains, except the Oceanisphaera psychrotolerans
LAM-WHM-ZC and Pseudomonas nitroreducens NSA02 strains
which are able to degrade nicosulfuron in mineral medium,
using nicosulfuron as the carbon source (Zhou et al., 2017; Zhao
et al., 2018), the nicosulfuron degradation by P. cucumerina
AR1 was achieved by a co-metabolism process (Figure 2).
Our results showed that the herbicide dissipation was mainly
due to biodegradation since the pH values of the medium
of all the cultures remained around neutrality (ranging
from 6.1 to 6.7) at the end of the experiment, contrarily
to what was observed with Penicillium oxalicum YC-WM1
fungal strain. In this last case, nicosulfuron was degraded
by hydrolysis resulting from the acidification of the medium
(Feng et al., 2017).

In most cases, the biodegradation rate of a pollutant is
improved by the addition of increasing concentrations of
the extra carbon source (e. g., Wang et al., 2013; Kirui
et al., 2016; Sun et al., 2017) as we observed in our study
(Figure 2). However, the specific nicosulfuron biodegradation
by the planktonic P. cucumerina AR1 was shown to be greater
when the concentration of glucose decreased (Figure 4). This
phenomenon has already been described for other pollutants
(Ye et al., 2011; Shi et al., 2013; Wu et al., 2016). Indeed, the
degradation efficiency increased with increasing concentration
of glucose until an optimal concentration. Then, the addition
of the carbon source to excess inhibited the degradation.
This suggests that the optimal glucose concentration for the
maximal degradation efficiency of nicosulfuron by planktonic
P. cucumerina AR1 would be around 1 g/L under the conditions
tested (Figure 4).

Plectosphaerella cucumerina AR1 used the same nicosulfuron
degradation pathway irrespective of its lifestyle, planktonic
or in biofilms (Figure 2 and Supplementary Figure S1).
It produced two major metabolites, ADMP and ASDM,
which were obtained by a pathway common to all the
strains described until now, consisting in the biotic
hydrolytic cleavage of the sulfonylurea bridge (e.g., Zhang
et al., 2012; Song et al., 2013; Zhao et al., 2015a, 2018;
Wang et al., 2016; Carles et al., 2017a). The minor N3
metabolite was derived from the cleavage of the C-S bond
of the sulfonylurea bridge and contraction by elimination
of the sulfur dioxide group, as previously observed
with some others nicosulfuron-degrading strains (Song
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et al., 2013; Zhao et al., 2015a; Carles et al., 2017a; Zhou
et al., 2017). Similarly to what was observed during the
nicosulfuron degradation by the bacterial strain Pseudomonas
fluorescens SG-1 (Carles et al., 2017a), the hydrolysis
of the N3 urea function lead to the production of the
N4 metabolite in small amounts when P. cucumerina
AR1 was grown in benthic conditions (Supplementary
Figure S1).

Plectosphaerella cucumerina AR1 strain developed
indifferently on both natural substrata studied (alder leaf
and hazel wood) (Figure 6). However, the biofilm grew
faster on the leaf than on wood. This could be explained
by the greater laccase activity rates recorded for the former
(Figure 5B). This led to a faster decay of leaves and thus
faster nutrient supply for fungal growth comparing to
wood substratum which has a more complex molecular
arrangement (Golladay and Sinsabaugh, 1991; Gulis
et al., 2004). This could also explain the greater laccase
activity rates recorded in the leaf substratum (Figure 5B).
However, this higher enzyme activity was not correlated
with nicosulfuron degradation capacity of P. cucumerina
AR1, which was similar between leaf and wood biofilms
(Table 1). Furthermore, the presence of nicosulfuron did
not impact the growth of the fungus since the biofilm
development on both substrata was similar to what was
observed in the control conditions without herbicide.
Similar results were obtained for the planktonic culture
conditions for which fungal biomasses were comparable in
all experiments, irrespective of the presence of nicosulfuron
(Figure 3).

When exposed to nicosulfuron, P. cucumerina AR1
biofilms kept the capacity to biodegrade the molecule
whatever the substrata tested (Figure 7), thus probably
using the decomposition of the natural substrata as
nutrients and carbon sources. The present study also shows
that nicosulfuron degradation efficiency was greater for
P. cucumerina AR1 monospecific biofilms on alder leaves
(100% dissipation after 28 days, the present study) than
for plurispecific natural biofilms hosting P. cucumerina
on the same leaf species (29–66% dissipation in 40 days,
Carles et al., 2017b). The decreased ability of P. cucumerina
AR1 to dissipate nicosulfuron could be explained either
by a relative low presence of the fungus in the natural
leaf-associated microbial communities or by microbial
interactions within the biofilm. Overall, this is the first
time that a benthic strain was shown to be able to degrade
nicosulfuron herbicide, all the degradation experiments
conducted until now with isolated bacterial and fungal
strains being tested in planktonic conditions (Feng
et al., 2017; Yang et al., 2008; Zhang et al., 2011, 2012;
Lu et al., 2012; Song et al., 2013; Zhao et al., 2015a,b,
2018; Wang et al., 2016; Carles et al., 2017a; Zhou et al.,
2017).

The nicosulfuron degradation obtained for P. cucumerina
AR1 in biofilm conditions showed statistically similar dissipation
rates than those observed in planktonic culture conditions
containing 5 g/L of glucose (Table 1). This suggests that the

natural substrata we provided for co-metabolism reactions could
not allow P. cucumerina AR1 to degrade the nicosulfuron
herbicide at the optimal conditions, since we have shown
that a lesser carbon concentration equivalent to 1 g/L of
glucose would be more efficient in planktonic conditions.
These results still have to be confirmed in biofilm conditions
by testing different leaf and wood substrata varying in their
composition, and thus in their capacity of decomposition
and releasing nutrients (Bani et al., 2018; Bastias et al.,
2018).

In contrast to what was often observed in pollutant exposed
microbial communities and/or populations (e.g., da Silva
Coelho et al., 2010; Artigas et al., 2017; de Araujo et al.,
2017; Singh et al., 2017), the laccase activity decreased in
the presence of nicosulfuron, showing a reduction of about
60% activity, whatever the lifestyle (Figure 5). The obtained
results highlight that laccase activity responses to xenobiotic
contamination are probably molecule-specific (Baldrian,
2006).

CONCLUSION

We report here the isolation and characterization of a
leaf-associated fungus issued from a river ecosystem,
identified as a Plectosphaerella cucumerina strain. This
isolated strain was able to biodegrade the nicosulfuron
herbicide by a co-metabolic process. The degradation
pathway was shown to be common to almost all the already
described nicosulfuron-degrading strains, starting with the
hydrolytic cleavage of the sulfonylurea bridge. Nicosulfuron
exposure impaired the fungal laccase activity. However,
P. cucumerina AR1 was able to degrade nicosulfuron in
planktonic lifestyle using glucose as the carbon source,
with an optimal concentration of 1 g/L. It was also capable
of colonizing natural substrata such as alder leaves or
hazel wood to form biofilms and to retain its nicosulfuron
biodegradation capacity. This suggests that the nutrients
and carbon constituting these natural substrata can be used
to ensure the co-metabolic reactions and the nicosulfuron
dissipation.

Knowing that both leaf and wood surfaces allow the
development of extensive biofilms in streams and that
fungi are extremely important in their development, the
P. cucumerina AR1 strain is considered as a potentially
useful candidate for the development of methods aiming
to reduce contamination by nicosulfuron in aquatic
environments.
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