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Reactive oxygen species in organ-specific autoimmunity
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Abstract Reactive oxygen species (ROS) have been

extensively studied in the induction of inflammation and

tissue damage, especially as it relates to aging. In more

recent years, ROS have been implicated in the pathogenesis

of autoimmune diseases. Here, ROS accumulation leads to

apoptosis and autoantigen structural changes that result in

novel specificities. ROS have been implicated not only in

the initiation of the autoimmune response but also in its

amplification and spreading to novel epitopes, through the

unmasking of cryptic determinants. This review will

examine the contribution of ROS to the pathogenesis of

four organ specific autoimmune diseases (Hashimoto thy-

roiditis, inflammatory bowel disease, multiple sclerosis,

and vitiligo), and compare it to that of a better character-

ized systemic autoimmune disease (rheumatoid arthritis). It

will also discuss tobacco smoking as an environmental

factor endowed with both pro-oxidant and anti-oxidant

properties, thus capable of differentially modulating the

autoimmune response.
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Abbreviations

ROS Reactive oxygen species

NADPH Nicotinamide adenine dinucleotide phosphate

NOS Nitric oxide synthase

MAO Monoamine oxidase

Introduction

Reactive oxygen species (ROS), also known as free radi-

cals, were first described by Fenton in 1894 [1] and then

studied since the mid 1950s for their involvement in aging

and age-related conditions [2]. In more recent years, ROS

were shown to play a role in physiological processes [3]

(such as the synthesis of thyroid hormones and prolifera-

tion of thyroid follicular cells [4]), in cellular signaling as

second messengers [5], in the normal response of phago-

cytes to intracellular pathogens, and in a variety of

pathological conditions ranging from sarcopenia [6] to

cancer [7].

Oxygen is activated by the addition of electron(s) do-

nated by a variety of substances. This transfer of electrons

from a substance (reductant) to another one (oxidant) is

called redox reaction, a highly conserved reaction that

leads to the production of ROS. There are three major

ROS: superoxide anion, hydrogen peroxide, and hydroxyl

radical (Fig. 1, boxed).

Addition of one electron to molecular oxygen leads to

the production of superoxide anion (O2
-�), the precursor of

the other two ROS. In fact, superoxide anion can dismutate

spontaneously to produce hydrogen peroxide by the
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addition of another electron and two protons, or be con-

verted enzymatically by the cytosolic superoxide dismutase

1 and the mitochondrial superoxide dismutase 2 (Fig. 1).

Hydrogen peroxide (H2O2), a stable ROS, then diffuses

through lipid bilayers or intramembranous aquaporins [8],

and likely represents the dominant ROS involved in redox

signaling due to its stability. Through the classic Fenton

reaction (based on the reduction of transition metals, for

example from Fe2? to Fe3?), H2O2 is then split into hy-

droxyl radical (OH�) and a hydroxide ion. Hydroxyl radi-

cals are highly reactive and exist for only a microsecond,

resulting in an oxidative damage that localizes to the site

where they are produced [9]. Hydroxyl radicals can also be

formed directly from superoxide anion in the presence of

hydrogen peroxide through the Haber–Weiss reaction

(Fig. 1).

Several additional molecules can be produced from the

three main ROS described above. For example, H2O2 in the

presence of a chloride anion is converted bymyeloperoxidase

into hypochlorous acid, a species important for destroying

pathogens within the phagocytic compartment of immune

cells [10]. Superoxide can also react with nitric oxide to pro-

duce a highly reactive peroxynitrite species (Fig. 1).

This cellular production of ROS is counterbalanced by

the presence of numerous molecular and enzymatic

antioxidants. Molecules that work as anti-oxidant include

vitamins C, A and E, uric acid, glutathione, pycnogenol,

and thioredoxin [11]. Antioxidant enzymes include cata-

lase, thioredoxin reductase, glutathione peroxidase, glu-

tathione reductase, glutathione S-transferase, ascorbate

peroxidase, ascorbate reductase, and glucose-6-phosphate

dehydrogenase [12]. Catalase neutralizes two hydrogen

peroxide equivalents into two waters and one molecular

oxygen (Fig. 1). On the other hand, glutathione peroxidase

uses glutathione as a reducing agent to generate two water

equivalents from one hydrogen peroxide species (Fig. 1).

To regenerate the pool of glutathione, glutathione reduc-

tase converts nicotinamide adenine dinucleotide phosphate

to its oxidized form, return oxidized glutathione into its

reduced form [13, 14].

Cellular sources that produce ROS

There are three major intracellular sources of ROS: electron

leak from the mitochondrial respiratory chain, NADPH

oxidases, and uncoupled nitric oxide synthase reactions

(Fig. 2). ROS can also be generated by monoamine oxidase,

and other oxidases such as xanthine oxidase, lipoxygenases,

cyclooxygenases, and monooxygenases.

Electron leak from the mitochondrial respiratory

chain

Mitochondria generate about 90 % of all ROS [15] during

the process of ATP production. This process, called

oxidative phosphorylation, is driven by the electron trans-

port chain, which consists of five protein complexes loca-

ted on the inner mitochondrial membrane (Fig. 2, box).

The first four complexes utilize oxygen and high-energy

electrons to generate a proton gradient in the intermem-

brane space. The gradient then provides the energy needed

to drive the production of ATP by complex. During cellular

stress, electrons leak from the respiratory chain and react

with molecular oxygen to generate superoxide anion and

the secondary ROS [15], which then leave the mitochon-

dria through the permeability transition pore located on the

outer membrane [16].

Fig. 1 Schematic

representation of the three major

reactive oxygen species

(superoxide, hydrogen peroxide,

and hydroxyradical) and the

enzymatic pathways that

produce them. NADH

nicotinamide adenine

dinucleotide, NADPH

nicotinamide adenine

dinucleotide phosphate, GSH

glutathione, GSSG glutathione

disulfide, SOD superoxide

dismutase, NOS nitric oxide

synthases, MAO monoamine

oxidase, MPO myeloperoxidase
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Complex 1, 2, and 3 are the primary sites for ROS

production [17], although other factors such as the ratio of

ubiquinol to ubiquinone, the mitochondrial membrane

potential, and the proton-motive force may be involved

[15]. Complex 1 can reduce oxygen to superoxide on the

leaflet facing the mitochondrial matrix, and contains a

Q-binding site, a flavin mononucleotide, and multiple iron-

sulfur clusters that directly participate in ROS production

[15, 18]. Complex 2 can alter its catalytic activity to

modulate directionality of the electron transport chain to

promote ROS production [19], especially when complex 1

or 3 is impaired [20]. Alternative sources of mitochondrial

ROS may result from cytochrome C electron transfer to

p66-Shc, which subsequently transfers electrons to oxygen

in the intermembrane space to generate both superoxide

and hydrogen peroxide [21]. Complex 3 transfers electrons

from ubiquinol to cytochrome C and mostly generates ROS

at the Q-binding site, which diffuses into both the matrix

and intermembrane space [15].

NADPH oxidase

Nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase is a flavocytochrome originally discovered in

phagocytes. Its function is to release superoxide or

hydrogen peroxide in the phagocytic compartment to

neutralize pathogens. NADPH oxidase generates superox-

ide by the catalytic transfer of high energy electrons from

the nicotinamide moiety of NADPH to flavin adenine

dinucleotide, and then to molecular oxygen.

Phagocytic NADPH oxidase is an assembly of mem-

brane-bound p22 oxidase (p22phox), gp91phox catalytic

subunit, and at least four other cytosolic subunits: p47phox,

p40phox, p67phox, and a small G-protein Rac or p21 Rac

[22]. Non-phagocytic NADPH oxidase (abbreviated as

Nox) refers to homologues of the catalytic gp91 subunit

found in non-phagocytic cells [23]. They have similar

structure to the phagocytic NAPDH but different biological

functions. They are found in endothelial cells and fibrob-

lasts and respond to pro-inflammatory cytokines such as

tumor necrosis factor alpha by enhancing superoxide pro-

duction [24–27], although less efficiently than the phago-

cytic form. There are seven Nox isotypes (Nox 1 through 5,

dual oxidase 1, and dual oxidase 2), mostly localized to the

plasma membrane [28]. They generate ROS on the

cytosolic leaflet of the plasma membrane or release them

into the extracellular milieu, as Nox-containing vesicles

fuse with the plasma membrane during Nox activation [28].

ROS produced in this fashion can in turn inhibit Nox to

maintain a low basal oxidative state or upregulate it in a

feed-forward mechanism [13, 29, 30]. Nox-derived ROS

are involved in apoptosis and fibrosis of various tissues

[31].

Uncoupled nitric oxide synthase reactions

Nitric oxide synthase (NOS) converts L-arginine into

citrulline, using tetra-hydro-biopterin as cofactor, as well

as other substrates. This reaction releases nitric oxide (NO�)

(Fig. 1), an important gas that mediates vasodilation and is

involved in numerous other functions, such as the immune

response against parasites [32]. There are three main types

of NOS: neuronal, endothelial, and inducible. If substrates

become limiting or unusable, the reaction uncouples

Fig. 2 Representation of the

main cellular locations where

ROS are produced. The

abbreviations are the same as

those used in Fig. 1, plus the

following: Nox non-phagocytic

NADPH oxidase, AQP

aquaporin, GPx glutathione

peroxidase, GR glutathione

reductase, mPTP mitochondrial

permeability transition pore,

FAD flavin adenine

dinucleotide, FADH2 flavin

adenine dinucleotide
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generating large amounts of superoxide, which then reacts

with nitric oxide to generate peroxynitrite [10] (Fig. 1), a

substance that negates the important vasodilatory effect of

nitric oxide. ROS can damage nitric oxide synthase and

induce more ROS production in a feed-forward mechanism

fashion, promoting in this case endothelial apoptosis, hyper

coagulation, and monocyte adhesion [33].

Monoamine oxidase

Monoamine oxidase (MAO) is located on the cytosolic

leaflet of the outer membrane of mitochondria and medi-

ates the catabolism of monoamine neurotransmitters. There

are two well-characterized isotypes of MAO that differ

because of their substrate specificity: MAO-A predomi-

nantly catabolizes serotonin and noradrenaline, while

MAO-B preferentially deaminates phenylethylamine and

benzylamine. Dopamine and tyramine are metabolized

similarly by both MAO isoforms. MAO isoforms are

expressed in several other tissues besides the nervous

system: cardiomyocytes, hepatocytes, duodenal villi, ves-

sels, renal collecting tubules, and Bowman’s capsule [34].

In the pancreatic islets, MAO-B is expressed in beta and

alpha cells and negatively regulates insulin secretion [35].

MAO contribute to ROS production mainly through the

synthesis of H2O2 [36] (Fig. 2).

Inhibition of MAO, and thus inhibition of neurotrans-

mitter degradation, represented the first pharmacological

treatment developed for depression in the early 1950s. More

recently, MAO inhibitors are being used in other conditions

because of their ability to decrease ROS production. For

example, Kalurdercic and colleagues identified MAO-

derived hydrogen peroxide as a contributor to cardiac

damage in ischemia reperfusion injury, and proposed MAO

inhibitors as a treatment for this condition [37]. Recently,

MAO-derived ROS have been linked to cardiomyocyte

necrosis and heart failure by impairing activation of tran-

scription factor-EC activation and mitochondria clearance

by lysosomes [38]. In the field of autoimmunity, it has been

shown that the MAO inhibitor phenelzine ameliorates dis-

ease outcomes in a mouse model of multiple sclerosis [39].

Furthermore, phenytoin, an anticonvulsant that inhibits

norepinephrine release and MAO activity, induces prolifer-

ation in cultured melanocytes and has therefore, been pro-

posed as a treatment for vitiligo [40].

ROS in autoimmune diseases

The role of ROS in autoimmunity is complex. The tradi-

tional view holds that ROS accumulation is detrimental to

the autoimmune disease process. Oxidative stress ensues

when the production of ROS surpasses the buffering

capacity of the endogenous antioxidants [41], leading to

oxidation of lipids in the plasma membrane, proteins in

cytosol and nucleus, and nucleic acids that overall damage

the cells in the organ targeted by autoimmunity. Oxidative

stress can also lead to the generation of novel autoantigens

and thus exacerbation of the autoimmune response [42]. In

keeping with these findings, ROS production has been

linked directly to inflammation via the production of TNF-

a: Salzano et al. reported that macrophages release an

oxioreductase that directly stimulates TNF-a [43]. But

more recent studies reveal a regulatory role of ROS where

they prevent progression of chronic inflammatory respon-

ses (reviewed in [44]).

Two excellent reviews have been published on the role

of ROS in systemic autoimmune and inflammatory diseases

[45, 46]. We will discuss here the contribution of ROS to

four organ-specific autoimmune diseases, comparing it to

that reported in rheumatoid arthritis, and use tobacco

smoking as an example of an environmental factor that can

function both as an oxidant and anti-oxidant.

ROS and Hashimoto thyroiditis

As mentioned in the introduction, ROS are fundamental for

the normal functioning of the thyroid follicular cell. ROS,

however, have also been implicated in the pathogenesis of

Hashimoto thyroiditis, in both murine and human models.

The NOD-H2h4 mouse is a congenic strain that develops

autoimmune thyroiditis spontaneously but at a low inci-

dence, an incidence that can, however, be significantly

increased by addition of iodine to the drinking water

[47, 48]. Burek and colleagues showed that thyrocytes

isolated from NOD-H2h4 mice produced significantly more

H2O2 than control thyrocytes when exposed to iodine [49].

They also associated this increased ROS load with higher

expression of intracellular adhesion molecule-1 on thyro-

cytes [50], and therefore, with greater retention capacity of

the lymphocytes that infiltrate the thyroid gland. Incubation

with the antioxidant diphenyleneiodium, an inhibitor of

NADPH oxidase, reduced ROS generation and adhesion

molecule expression in cultured NOD-H2h4 thyrocytes

[50]. Kolypetri and Carayanniotis showed that ROS

increase the apoptosis of NOD-H2h4 thyrocytes exposed to

iodine [51]. Thyroidal accumulation of ROS has also been

shown to promote cleavage of thyroglobulin into several

fragments, likely exposing the immune system to novel

epitopes and thus enhancing the autoimmune response

[52]. Finally, increased content of 4-HNE, a toxic product

from lipid peroxidation used as a marker of oxidative

stress, was found in NOD.H2h4 thyroid glands [53].

Overall, studies in the NOD.H2h4 model suggest that thy-

roidal accumulation of ROS contributes to the initiation

and progression of autoimmune thyroiditis.
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Studies in patients with Hashimoto thyroiditis are more

limited. Ates and colleagues compared 93 cases with

Hashimoto thyroiditis (a third in each of the euthyroid,

subclinical hypothyroidism, and overt hypothyroidism

subgroups), to 31 healthy controls. They found that

oxidative stress parameters in the peripheral blood were

higher in cases than controls, particularly in the overt

hypothyroidism group [54]. In a smaller study of 35

euthyroid Hashimoto cases and 35 healthy controls, Baser

et al. reported that serum oxidant status was higher in cases

than controls, and positively correlated with the levels of

thyroglobulin antibodies [55]. Finally, Ruggieri et al.

analyzed 71 euthyroid Hashimoto thyroiditis cases and 63

healthy controls, reporting that oxidative stress is higher in

cases and that thyroperoxidase antibodies are the main

predictor of the oxidative status independent of thyroid

function [56]. Overall, human studies report an increased

oxidative status in Hashimoto thyroiditis but do not clarify

whether this is the cause or result of thyroid dysfunction.

ROS and inflammatory bowel disease

Increased levels of ROS have been reported throughout the

colon of patients with inflammatory bowel disease. The

increase is not limited to areas of active inflammation, thus

suggesting a role for oxidative stress during the early

phases of disease pathogenesis [57]. Interestingly, because

of the high rate of depression in inflammatory bowel dis-

ease, MAO inhibitors are commonly prescribed in this

patient population [58]. In a review of studies examining

the effectiveness of antidepressants, the MAO inhibitor

phenelzine improved both psychiatric and somatic symp-

toms of inflammatory bowel disease [59]. In addition,

numerous case reports have documented clinical

improvement or remission of the bowel inflammation upon

usage of phenelzine [59, 60]. The normal colon is the organ

that, after the placenta, expresses the highest levels of

MAO-A, and it is reasonable to postulate that these levels

increase even further upon inflammation. Indeed, Magro

and colleagues identified markedly lower levels of

monoamines in the mucosa of ulcerative colitis patients,

suggesting MAO hyperactivity and consequently increased

ROS production [61]. Although no study has directly

assessed the link between MAO activity and ROS levels in

gut mucosa, or their temporal relationship with bowel

inflammation, we suggest that MAO inhibition exerts its

beneficial effects in ulcerative colitis by lowering the levels

of ROS.

ROS and multiple sclerosis

Given the high levels of oxidative activity found in neu-

rological tissues, it is not surprising that ROS have long

been associated with the pathological damage typical of

multiple sclerosis [62]. Indeed, several oxidized molecules

can potentially be used as diagnostic biomarkers [63].

Increased levels of peroxynitrite are found in active mul-

tiple sclerosis lesions [64]. ROS have also been implicated

in the dysregulation of the blood–brain barrier, which

results in faster disease progression due to increased

monocyte infiltration and inflammation [65]. By pro-

teomics, Fiorini and colleagues have shown that patients

with the relapsing-remitting form of multiple sclerosis have

higher levels of oxidized proteins than healthy controls

[66]. Ceruloplasmin, antithrombin III, clusterin,

apolipoprotein E, and complement C3, were upregulated in

cases; vitamin D-binding protein showed an increasing

trend toward oxidation in patients going from remission to

relapse. Using a whole-genome microarray approach, Fis-

cher et al. found that several mitochondrial genes involved

in inducing oxidative stress were upregulated in multiple

sclerosis patients [67]. They also found that microglial cells

and astrocytes upregulated the p22 subunit of the Nox2

complex within active pathological lesions. These findings

suggest that ROS are involved in early disease stages of

multiple sclerosis, when myelin sheaths are still intact but

there is lymphocytic infiltration and microglial activation

[65, 67].

ROS and vitiligo

In patients with vitiligo the epidermis contains increased

levels of ROS, mainly H2O2 and peroxynitrite, as well as

inadequate antioxidant defenses [68]. This ROS increase

originates from several sources, both exogenous (ultravio-

let radiations, trauma, stress, infections, malignancies,

certain drugs) and endogenous. First, there is an elevated

activity of NADPH oxidase and NOS, with secondary

increase production of ROS and reactive nitrogen species

[69] (Fig. 1). Then, there is an accumulation of tetra-hydro-

biopterin, an essential cofactor for the aromatic amino acid

hydroxylases and NOS. Increased biopterin levels boost the

formation of H2O2 and inhibit the function of phenylala-

nine and tyrosine hydroxylases, thus impairing melanin

production in melanocytes and inducing norepinephrine

accumulation in keratinocytes [70]. Finally, there is an

increased activity of MAO-A, which leads to the accu-

mulation of toxic levels of H2O2 [71], and a largely

impaired mitochondrial function [72]. Low levels of

antioxidants, such as catalase, glutathione peroxidase,

glucose-6-phosphate dehydrogenase, superoxide dismu-

tase, and vitamins C and E have been reported in the epi-

dermis and serum of vitiligo patients [73–75]. Recently,

Jian and colleagues have shown that the anti-oxidant

response element nuclear factor E2 protects melanocytes

from H2O2 damage through the induction of antioxidant
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genes, such as heme oxygenase-1, and that this pathway is

functionally deficient in vitiligo melanocytes, rendering

them more susceptible to oxidative stress [76, 77].

Increased skin content of ROS not only directly dam-

ages the melanocytes but also induces an autoimmune

response against them. In fact, ROS modify the structure of

key vitiligo autoantigens such as melan A and tyrosinase,

leading to the formation of novel epitopes which then

trigger autoreactivity. During the early stages of vitiligo,

lipid peroxidation levels, a marker of oxidative stress, have

been reported to be increased, whereas melanocyte anti-

bodies appear in later disease stages [72], suggesting that

ROS play a role in initiating vitiligo and amplifying the

loss of melanocytes.

ROS and rheumatoid arthritis

Oxidative stress plays an important role in the pathogenesis

of rheumatoid arthritis [78]. Staroń and colleagues ana-

lyzed erythrocytes from rheumatoid arthritis cases and

healthy controls and reported increased lipid peroxidation,

decreased activity of antioxidant enzymes, and decreased

sodium–potassium ATPase functions [79]. In the synovial

cavity, Mapp et al. have found increased ROS content,

leading to the oxidation of immunoglobulins, mainly IgM,

recognizing the Fc portion of IgG (so called, rheumatoid

factor), lipoproteins, lipids, and hyaluronan [80].

Immunoglobulins damaged by oxidation are more sensitive

to non-enzymatic degradation by sugars, primarily at

arginine and lysine residues, leading to the formation of

advanced glycation end products [78], as it is seen in

diabetes mellitus where prolonged hyperglycemia glycox-

idates hemoglobin into hemoglobin A1c. Indeed, antibod-

ies to glycoxidized IgG are specifically found in patients

with early synovitis [81]. Increased ROS also damage the

DNA mismatch repair system, which is defective in

rheumatoid arthritis, and the DNA itself, resulting in ele-

vated concentrations of 8-oxo-7-hydro-deoxyguanosine

[78]. Further tissue damage originates from ROS produced

by monocytes and neutrophils [82]. Neutrophils degranu-

late in the synovial joint releasing myeloperoxidase that,

using chloride and H2O2, catalyzes the formation of

hypochlorous acid (Fig. 1). Hypochlorous acid is a very

strong oxidant: it mainly reacts with methionines and

cysteines disrupt protein tertiary structure and activity [83].

In keeping with a pathogenic role of ROS, rheumatoid

arthritis patients who improve upon treatment with mono-

clonal antibodies that block tumor necrosis factor alpha do

show reduced plasma levels of ROS [84].

Animal models of rheumatoid arthritis have been used to

assess the potential therapeutic benefits of anti-oxidant

administration. In the adjuvant-induced rat model of the

disease, paeoniflorin significantly improved the arthritic

symptoms and increased the pain threshold, changes that

were associated with boosted activity of the anti-oxidant

enzymes catalase and glutathione peroxidase [85]. In the

collagen-induced rat model of arthritis, administration of

the antioxidant thymoquinone improved arthritis scoring

and bone histopathology while reducing pro-inflammatory

cytokines and ROS content [86].

Tobacco smoke as a modulator of the oxidants/
anti-oxidants balance

Tobacco smoke contains a variety of ROS, reactive nitro-

gen species, and other compounds that increase the burden

of oxidative stress [87]. It is unquestionable that smoking

has deleterious effects on human health, most notably

related to a higher risk of chronic respiratory diseases

[77, 88, 89] and cancer [90, 91]. Intriguingly, however,

smoking can also be beneficial in a selected group of

conditions, for example in patients with ulcerative colitis

[92–95], Hashimoto thyroiditis (see Supplemental Table 1

in [96]), and Parkinson disease [97, 98]. In addition, it is

known that small amounts of ROS protect the myocardium

from hypoxic damage, in a process termed ischemic pre-

conditioning [99]. It is thus possible that ROS acquired

from cigarette smoking precondition organs targeted by

autoimmunity by inducing some measures of protection.

An excellent review on the varied effect of smoking in

autoimmune diseases has been recently published [100].

Here, we will focus on the pro-oxidant and anti-oxidant

effects of smoking, using autoimmune thyroiditis as an

example.

Pro-oxidant effects of smoking

ROS in smoking cause oxidative damage to DNA, as

indicated by increased urinary levels of 8-hydroxy-20-
deoxyguanosine [101]. Similarly, bronchoalveolar lavage

fluid levels of this molecule positively correlate with

smoking status [102]. Smoking also contains reactive

nitrogen species [77] and thiocyanate that, despite operat-

ing through different mechanisms, also leads to increased

oxidation in certain organs. Thiocyanate, in fact, compet-

itively inhibits the uptake of iodine by the sodium-iodide

symporter, thus reducing the concentration of iodine inside

the thyroid cell and possibly leading to higher oxidative

load [103].

Some carcinogens generated during the combustion of

tobacco contribute to oxidation. For example, 2-amino-9H-

pyrido [2,3-b]indole (abbreviated as AaC) becomes acti-

vated in vivo to form N-oxidized metabolites that cova-

lently bind to DNA (DNA adducts) and albumin (albumin

adducts), promoting mutations and loss of function [104].
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Normal albumin, the most abundant protein in human

serum, normally serves as an anti-oxidant because it

scavenges ROS generated during cell metabolism or

introduced from the environment. Albumin adducts loose

this protective property.

Anti-oxidant effects of smoking

Tobacco leaves contain compounds that inhibit the activity

of MAO, and thus reduce the amount of ROS produced by

these enzymes. Smokers are known to have lower MAO

activity than non-smokers. For example, positron emission

tomography brain scans using 11C-based tracers that bind

to catalytically active MAO have demonstrated a reduced

MAO activity in smokers [105, 106]. More specifically,

[11C]clorgyline, a potent and irreversible inhibitor of

MAO-A, showed a mean 28 % reduction in MAO-A

activity (ranging from 22 to 38 %) across all cortical and

subcortical regions imaged [105]. Similarly, using [11-

C]befloxatone, which also binds MAO-A reversibly, there

was a 60 % average reduction in smokers in cortical

regions [106]. Different tracers or earlier scans (within 2 h

from the last cigarette smoked) could explain the different

percent inhibitions observed in the two studies [107].

What are the compounds in cigarette smoking that

inhibit the activity of MAOs? Likely many and their

presence is perhaps a reason why smokers have difficulty

quitting: MAO inhibition, in fact, could provide a pleasant

anti-depressant effect, although no solid data support this

hypothesis [108]. Trans–trans-farnesol and 2,3,6-trimethyl-

1,4-naphthoquinone specifically inhibit MAO-B [109]; b-
carboline alkaloids inhibit MAO-A and MAO-B [106].

Nicotine, the major tobacco alkaloid, could also have MAO

inhibitory properties. Recently, it has been in fact shown

that nicotine chelates ferrous ion (Fe2?) in a concentration-

dependent fashion. Since Fe2? can produce �OH through

the Fenton reaction (Fig. 1), these results support a role for

nicotine and related alkaloids as antioxidants [110].

Collectively, these results demonstrate that in the highly

complex mixture of chemicals characteristic of tobacco

smoke there are compounds that have pro-oxidant,

antioxidant, or both kinds of properties. Future studies that

examining the oxidation status globally, rather than selec-

tively focusing on oxidative or antioxidant effects, could

help unravel the overall role of smoking tobacco with

regard to oxidation.

Conclusions

The role of ROS in autoimmunity remains complex. ROS

accumulation has been implicated both in the initiation and

progression of autoimmunity, but is still unclear whether it

represents a bona fide trigger or a harmless accompani-

ment. It is, however, intriguing to consider the develop-

ment of selective ROS inhibitors as a tool that could be

used to treat a broad spectrum of autoimmune diseases.
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