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Lung adenocarcinoma (LUAD) is a malignant disease with an extremely poor

prognosis, and there is currently a lack of clinical methods for early diagnosis

and precise treatment and management. With the deepening of tumor

research, more and more attention has been paid to the role of immune

checkpoints (ICP) and long non-coding RNAs (lncRNAs) regulation in tumor

development. Therefore, this study downloaded LUAD patient data from the

TCGA database, and finally screened 14 key ICP-related lncRNAs based on ICP-

related genes using univariate/multivariate COX regression analysis and LASSO

regression analysis to construct a risk prediction model and corresponding

nomogram. After multi-dimensional testing of the model, the model showed

good prognostic prediction ability. In addition, to further elucidate how ICP

plays a role in LUAD, we jointly analyzed the immune microenvironmental

changes in LAUD patients and performed a functional enrichment analysis.

Furthermore, to enhance the clinical significance of this study, we performed a

sensitivity analysis of common antitumor drugs. All the aboveworks aim to point

to new directions for the treatment of LUAD.
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Introduction

Lung cancer, as one of the most common types of cancer all

over the world, has gained much attention in recent years (Cao

et al., 2020; Ferlay et al., 2018). It was estimated that 2.09 million

new cases were newly diagnosed, and 1.76 million patients died

in 2018 (Bray et al., 2018). According to histological types, lung

cancer could be classified as non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC) roughly, and lung

adenocarcinoma (LUAD) was the major subtype that

accounted for over one million worldwide deaths annually

(Zhang et al., 2020a). Smoking has become the most common

risk factor for LUAD (Gould et al., 2007). Several approaches

have been used in the clinical treatment of LUAD patients,

mainly including radiotherapy, chemotherapy, and surgical

resection according to the TNM system (Nasim et al., 2019).

When progressed to advanced stages, survival decreased monthly

sharply, so it is of great need for early diagnosis and intervention

(Steven et al., 2016). Along with the rapid growth of large-scale

genomic studies in recent decades, some somatic mutations

associated with LUAD have been noticed like TP53, KRAS,

EGFR, et al., which emphasized the importance of

immunotherapies (Campbell et al., 2016). Meanwhile, for

advanced LUAD, the effect of chemotherapy was greatly

limited by its malignant nature, and immunotherapy seed to

be the most effective approach to provide early diagnosis and

improve survival status (Zheng et al., 2021). So, more immune

therapeutic targets are needed for better and more precise clinical

diagnosis and prognosis.

With the growing development in immunotherapy, several

types with different mechanisms of action have been applied in

clinical treatment, like vaccinations, monoclonal antibodies, and

checkpoint inhibitors (Abbott and Ustoyev, 2019). Oncolytic

vaccines were created in the 1920s and shelved until 1976 due to

lake of understanding of the specific mechanism.

As an effective method for non-Hodgkin’s lymphoma,

rituximab has gradually been used in many types of cancer as

an important monoclonal antibody (Ribatti, 2014). The latest

immune checkpoint (ICP) proteins, like programmed cell death

protein 1 (PD-1) and antibodies against cytotoxic T lymphocyte

antigen-4 (CTLA-4) also have been fully investigated

(Thompson, 2018). The former is a cell-surface receptor

expressed on immune cell types, while the latter mainly

reduces interleukin 2 (IL-2) production and T-cell

proliferation (Kennedy and Salama, 2020). As for a novel T

cell-target method, chimeric antigen receptor (CAR) T cell

therapies have been developed and approved for clinical use

mainly in hematological cancers owing to the delivery barriers

faced by solid tumors (Fesnak et al., 2016). Therefore, it is of great

importance to explore novel targets for solid tumors,

especially LUAD.

Long non-coding RNAs (lncRNAs) represent a major class

of regulatory non-coding RNAs larger than 200 nt in length

(Peng et al., 2017). Altered immune infiltration is a hallmark

of the tumor, and it is well recognized that lncRNAs regulate

the immune response in cancer progression (Zhang et al.,

2020b). Some studies demonstrated that the ectopic

expression of lncRNA-cell division cycle six promoted

proliferation and metastasis of breast cancer cells via

regulation of the G1 phase checkpoint, demonstrating a

critical effect in tumor development (Kong et al., 2019).

Meanwhile, much emphasis has been put on the tumor

microenvironment (TME) to further elucidate the immune

alteration which influences tumor development apart from

tumor cells. In solid tumors, TME consists of several types of

immune cells and stromal cells, like cancer-associated

fibroblasts (CAFs), regulatory T cells (Tregs), myeloid-

derived macrophages (MDSCs), etc. (Mu and Najafi, 2021).

While the correlation between lncRNAs and TME remains a

mystery.

Thus, we conducted an overall immune checkpoint-

related lncRNAs risk and prognostic model in patients

with LUAD, trying to explore risk factors for cancer

clinical care through bioinformatics technique and survival

analysis, and provide potential therapeutic targets for clinical

treatment.

Materials and methods

Data acquisition and processing

All relevant LUAD patients’ information and data in this

study were downloaded from the TCGA database (Blum et al.,

2018). After excluding samples with missing prognostic

information or survival time of fewer than 30 days, finally,

490 LUAD samples were included in this study. These

samples are randomly divided into the training set and testing

set. A total of 246 samples in the training set were used to develop

a predictive risk model. The testing set included 244 samples used

to validate the established risk model. The 47 ICP genes were

derived from the latest research results of Liu et al. (2022)

(Supplementary Table S1). ICP-related lncRNAs were

obtained by Pearson’s correlation test (Pearson correlation

coefficient >0.4, p < 0.001), and 2,061 ICP-related lncRNAs

were identified.

Differential RNA screening

The expression levels of lncRNAs and mRNA were extracted

from the transcriptome data of LUAD and normal samples,

respectively, and lncRNA expression and differential analysis

were performed using the “limma” package, where genes with

FDR < 0.05 and |logFC| > 1 were considered to have significant

differences.
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Construction of risk models

Combined with the prognostic information of patients,

univariate regression analysis was used to screen the

differential ICP-related lncRNAs associated with prognosis.

Afterward, we used LASSO regression (R package “glmnet”,

version 4.1-3) to run 1,000 cycles of 10-fold cross-validation

with p < 0.05. Finally, through multivariate regression analysis, a

14 ICP-related lncRNAs risk model was constructed.

We calculated the risk score with the following formula:

Risk score � ∑n

k�1Coef(ln cRNA)pexpr(ln cRNAk)

where Coef (lncRNA) represents the correlation coefficient between

lncRNAs and survival, and expr (lncRNAK) represents the

expression of lncRNAs. All selected LUAD samples were divided

into high-risk and low-risk groups based on the mean risk scores.

Risk model testing and evaluation

Through univariate/multivariate regression analysis, ROC

curves were performed (“glment,” “survminer,” and “survival”

R packages) to test whether the risk model could be used as an

independent predictor of prognosis in LUAD patients. In total,

we calculated and plotted 1-, 3-, and 5-years ROC curves.

Survival analysis and principal component
analysis

Kaplan–Meier (K-M) survival analysis was used to determine

the overall survival (OS) of LUAD patients between two groups

by the “survival” package. Principal component analysis (PCA) is

used for efficient dimensionality reduction, model identification,

and group visualization of high-dimensional data.

Nomogram construction

To better guide the clinical diagnosis and treatment of

LUAD, we combined the risk scores, and other clinical

features to construct a nomogram by “rms” package.

Tumor microenvironment and
immunotherapy analysis

Using the “maftools” R package, tumor mutational burdens

(TMBs) in LUAD patients were assessed. Furthermore, the

CIBERSORT (Newman et al., 2015) and ssGSEA algorithm,

as well as TIMER (http://timer.comp-genomics.org) {Li,

2017 #21} were performed to evaluate the immune cell

infiltration status in different risk groups. To predict the

efficacy of clinical immunotherapy in LUAD patients, we

used Tumor Immune Dysfunction and Exclusion (TIDE)

prediction.

Drug sensitivity analysis

IC50 of each LUAD patient relative to a common

antineoplastic drug was determined as the patient’s sensitivity

to this drug using the Genomics of Drug Sensitivity in Cancer

(GDSC) platform (Yang et al., 2013) and used R package

pRRophetic (version 0.5) for calculation and visualization.

Functional analysis

GSEA analysis was done using gene set enrichment analyses

software (https://www.gsea-msigdb.org/gsea/login.jsp)

(Subramanian et al., 2005). GO and KEGG enrichment

analyses based on the differential genes between high and

low-risk groups were performed using DAVID online site

(version 6.8), where relevant annotations with p < 0.05 and

FDR < 0.05 were considered significantly different.

Additionally, competitive endogenous RNA (ceRNA)

networks were constructed and visualized using Cytoscape

(version 3.6.1).

Statistical analysis

All statistical analyses were performed in R software (version

4.1.1). Differences between groups were compared using the

Wilcoxon rank-sum test. K-W tests were used to compare

differences between three or more groups. Statistical

significance was defined as a p < 0.05 if the above methods

were not specifically stated.

Results

Expression and copy number variation of
immune checkpoints-related genes in
LUAD

The workflow is shown in Figure 1. Forty-seven ICP-related

genes were obtained for further analysis (Supplementary Table

S1) as well as LUAD patients’ clinical features can be found in

Supplementary Table S2. Differences in the expression of ICP-

related genes between 535 tumor tissues and 59 normal tissue

samples are shown in Figure 2A. Additionally, somatic copy

number variation (CNV) among 47 ICP genes was studied

(Figure 2C). The ICP-related lncRNAs interaction network is

shown in the form of the Sankey diagram (Figure 2B, r > 0.4, p <
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FIGURE 1
Workflow chart.

FIGURE 2
Genetic and expression variation of the MRDEGs in LUAD patients. (A) ICP-related gene expression profile. (B) Sankey relation diagram for ICP-
related genes and lncRNAs. (C) The CNV frequency of 47 ICP genes in the LUAD cohort. (D) Heatmap for the correlations between randomly ICP-
related genes and lncRNAs.
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0.001), and the correlation between ICP-related genes and

lncRNAs is shown in Figure 2D.

Risk model construction and validation

In this study, 248 ICP-related lncRNAs were screened by

using univariate Cox regression analysis (Supplementary Table

S3). To prevent overfitting prognostic features, we further

performed LASSO Cox analysis and 32 lncRNAs that were

highly correlated with LUAD prognosis (Figures 3A,B).

Finally, 14 ICP-related lncRNAs with the strongest prognostic

predictive ability were identified by multivariate COX regression

analysis (Supplementary Table S4) for risk model construction.

The formula for the risk score is:

Risk scores = AL355472.3p(1.7297898132188) + SLC16A1-

AS1p (2.02045359749171) + AC104971.3p(−0.861884680221223) +

AL021026.1p(−1.92527800701289) +

AC018529.1p(−1.41451695188048) +

AL606489.1p(0.484465069923853) +

AC090517.2p(−0.67755983967278) +

AP000346.1p(−1.34031276829931) +

AC024075.1p(−0.456581688150894) +

AC008840.1p(−1.67186147401095) +

AL589743.3p(1.01756516292608) +

AC026355.2p(−0.383441820151563) +

AC090825.1p(−0.894102424172019) +

AC068792.1p(−0.778661427765015).

With the above signatures, the patient’s prognostic risk score

was calculated. For each patient, the relative expression levels of 14

ICP-related lncRNAs are presented in Figure 3C. Based on themean

risk scores, we divided all LUAD patient samples into high-risk and

low-risk groups, where the patient distribution in the high-risk and

low-risk groups of the training set is shown in Figure 3D. Figure 3E

demonstrates the survival status and survival time of patients in the

high-risk and low-risk groups in the training set. Figure 3F shows

FIGURE 3
Risk model construction and validation. (A,B) Result of LASSO regression analysis. (C) Heatmap to show the expression of 14 lncRNAs between
high- and low-risk groups in the training set. (D) Expression differences of 14 ICP-related lncRNAs in different risk groups in the training set. (E)
Distribution of sample risk score and different patterns of survival status/time between the high-risk and low-risk groups in the training set. (F)
Kaplan-Meier curve of high-risk and low-risk patients in the training set.
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the prognosis and survival of patients in different risk groups in the

training set (based on K-M survival analysis). It can be seen that the

prognosis of patients can be clearly distinguished in the training set

after changing the risk model (p < 0.001).

To validate the predictive capability of the constructed model,

we calculated the risk scores of LUAD patients by using a uniform

formula. We examined the expression of ICP-related lncRNAs,

survival status scores, and risk scores in LUADpatients in the testing

set (Figures 4A–D) and the entire set (Figures 4E–H). In addition,

the K-M analysis of the two sets also showed that patients in the low-

risk group had a longer OS time than those in the high-risk group

(Figures 4D,H p = 0.009 and p < 0.001).

Nomogram and independent prognostic
factor analysis

To explore the independent predictive power of risk models

and various clinical characteristics for patient outcomes, we

performed univariate and all-factor Cox regression analyses,

respectively. Univariate Cox regression analysis suggested that

age, T/N grade, clinical stage, and risk score were prognostic

factors for LUAD patients (Figure 5A, p < 0.001), and further

multivariate Cox regression analysis showed that the risk score

was an independent predictor of prognosis in LUAD patients, the

prediction results were reliable, and the confidence level was

FIGURE 4
Risk model construction and validation in testing and entire sets. (A–D) The expression of 14 key prognostic lncRNAs in the testing set, the
survival status of LUAD patients, the risk score, and the results of K-M analysis of survival analysis. (E–H) The expression of 14 key prognostic lncRNAs
in the entire set, the survival status of LUAD patients, the risk score, and the results of K-M analysis of survival analysis.
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higher than that of other clinical characteristics (Figure 5B, p <
0.001). Therefore, it is reasonable to believe that a risk model

based on 14 ICP-related lncRNAs has a significant impact on the

survival and prognosis of LUAD patients and were independent

prognostic factors. The nomogram (Figure 5C) was constructed

with a risk score, survival rate, and other clinical features. Then

the calibration curve analysis in Figures 5E–G shows the accuracy

of the nomogram in predicting the 1-, 3-, and 5-years prognosis

of LUAD patients. Furthermore, DCA also indicated that a

nomogram has a higher prediction accuracy than a risk model

alone (Figure 5D).

Otherwise, ROC curve analysis and PCA verify the efficacy

of the risk model. The AUC values of the 1-, 3-, and 5-years of

OS were 0.729, 0.753, and 0.735, respectively (Figure 6A),

which were much higher than other clinical features

(Figure 6B). This suggests that these 14 ICP-related

lncRNAs are relatively reliable in the prognostic risk model

of LUAD. Besides, we applied principal component analysis

(PCA) to test the differences between the high-risk and low-

risk groups (Figures 6C,D) to further assess the group ability

of ICP-related lncRNA models. At the same time, we used

PCA to verify the authenticity of the risk model constructed

based on the entire gene expression profiles, ICP genes, ICP-

related lncRNAs, and risk model according to the 14 hub

lncRNAs (Figures 6E–H). The results confirmed that the

distributional patterns of the high-risk and low-risk groups

were significantly different, which elucidated that the risk

model was competent to distinguish the two groups with high

accuracy.

Somatic mutation landscape

We further analyzed the somatic mutation landscape of

LUAD patients. As shown in Figures 7A,B, compared with the

low-risk group, the high-risk group showed a higher rate of

somatic mutation (92.92% vs. 83.75%), and also had a higher

tumor mutational burden (TMB, Figure 7C, p = 0.054, with

FIGURE 5
Nomogram and independent prognostic factor analysis. (A,B) Result of univariate/multivariate Cox regression analyses. (C)Nomogram predicts
the probability of the 1-, 3-, and 5-years OS. (D) Result of DCA. (E–G) 1-, 3-, and 5-years predicted prognosis.
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marginal statistical significance). As a classic indicator for

evaluating tumor behavior, TMB has been considered reliable

in evaluating the prognosis of tumor patients in the past.

However, in the survival analysis, we were pleasantly

surprised to find that TMB alone could not predict the

prognosis of LUAD patients in the high and low TMB

groups (Figure 7D, p = 0.082), but the combination of the

TMB and risk score model can effectively distinguish the

prognosis of patients with different risk levels (Figure 7E,

p < 0.0001).

Immune signature analysis based on ICP-
related lncRNAs

Figures 8A,B shows the proportion of 22 immune cells in

different risk groups in the LUAD samples (Supplementary

Table S5). Further ssGSEA immunoassays revealed that a

variety of immune cells, including CD8+ T cells, and

B cells, were less infiltrated in the high-risk group samples,

and more diverse in the high-risk group. The immune process

activity was also lower than that of the low-risk group (Figures

8C,D). In addition, we found that all three immune scores

(stromal score, immune score, and ESTIMATE score) were

significantly higher in the low-risk group of LUAD patients,

indicating that the TME was different from the high-risk

group (Figures 8E–G). The above results suggest that

patients at high risk of LUAD were in a more severe

immunosuppressed state.

Interestingly, we found that monocytes and plasma cells

could well predict the prognosis of patients in different risk

groups (Figures 8H,I). Meanwhile, we also found that combined

with risk scores, all LUAD samples could be classified into

different immune subtypes (Figure 8J), which means that

FIGURE 6
Assessment of the predictive risk model and Principal component analysis. (A) The entire set’s 1-, 3-, and 5-years ROC curves. (B) ROC curves of
the clinical characteristics and risk score. (C,D) PCA results of testing and training sets. (E–H) The PCA result of entire gene expression profiles,
ICPDEGs, ICP-related lncRNAs, and risk model according to the 14 hub lncRNAs, respectively.
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more precise treatment strategies may be adopted for different

subtypes in clinical practice.

Clinical immunotherapy analysis

For a better clinical therapeutic strategy in LUAD, a drug

sensitivity analysis was conducted. The result showed that LUAD

patients in the high-risk group had higher IC50s for AS601245,

ATRA, ABT.888, and AP.24534, which indicated that these drugs

may be clinically less effective for patients in the high-risk

group. On the contrary, AG.014699, AUY922, AZD.0530, and

A.443654 showed higher IC50 in the low-risk group (Figure 9A).

Furthermore, we found that patients in the high-risk group had

lower TIDE scores (Figure 9B), whichmay explain the differences

in susceptibility to these drugs.

Functional enrichment analysis

To deeply explore how ICP-related lncRNAs produce

biological effects, functional enrichment analysis based on

differential genes between high and low-risk groups with

multi-dimension was performed. The results of the GO

analysis suggested that the changes of LAUD involved

changes in a variety of immune processes, including

humoral immunity and immune complex production

(Figure 10A), and the KEGG results also suggested that the

FIGURE 7
TMB analysis. (A,B) The waterfall plot of somatic mutation features established with high- and low-risk groups. (C) Tumor mutation burden in
the high-risk and low-risk groups. (D,E) Kaplan-Meier curve of the OS among the high- and low- TMB groups.
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disease was highly correlated with humoral immune

pathways (Figure 10B). In addition, through GSEA

analysis, we found that the B cell receptor pathway and

cell adhesion pathway were highly enriched in the low-risk

group, while those in the high-risk group were highly

correlated with cell cycle and metabolic cycle (Figures

10C,D). These potential mechanisms may point to new

directions for the future treatment of LUAD.

Discussion

Immunotherapy was defined as the use of materials to

moderate the function of the immune system to prevent and

fight disease (Lizée et al., 2013). It has been widely applied in

clinical treatment for cancer like metastatic urothelial

carcinoma (Sharma et al., 2016), advanced renal cell

carcinoma (Motzer et al., 2015), and other types of cancer.

FIGURE 8
Immune infiltration discrepancy in different risk groups. (A)Heatmap of 22 tumor-infiltrating immune cell types in low-risk and high-risk groups.
(B) Bar chart of the proportions for 22 immune cell types. (C) The ssGSEA scores of immune functions in low-risk and high-risk groups. (D) Immune
cells in low-risk and high-risk groups. (E–G) The TME scores between high-risk and low-risk groups. (H,I) Survival analysis of combined immune
cells. (J) Immune subtype.
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With the growing investigation into immune infiltration,

there was gradually reaching a consensus that long non-

coding RNAs (lncRNAs) have been associated with cancer

immunity regulation and the tumor microenvironment

(TME) (Zhou et al., 2021a). Some researchers suggested

that immune-related lncRNAs could predict immune cell

infiltration and immunotherapy response in patients with

liver cancer (Zhou et al., 2021b; Huang et al., 2021), and

bladder cancer (Wu et al., 2020), while the association in

patients with LUAD is still not understood. At the same time,

TME, as a novel hotpot in cancer research, has gained much

attention in recent years. Unlike tumor cells, stromal cells also

a participant in the initiation, progression, and metastasis of

cancer, inducing both beneficial and adverse consequences for

tumorigenesis (Stepaniak et al., 1986). Current most advanced

TME-directed therapies including antiangiogenic drugs and

treatment directed against cancer-associated fibroblasts and

the extracellular matrix were already approved or evaluated in

trials (Bejarano et al., 2021). Therefore, it is of great

importance to investigate the correlation between lncRNAs

and immune response in patients with LUAD.

Based on the above characteristics, we conducted a

prognostic model aimed at evaluating the association

between ICP-related lncRNAs and TMB in patients with

LUAD through bioinformatics techniques and survival

analysis, providing potential treatment targets for clinical

therapy and prognosis.

In this study, we found that 14 ICP-related lncRNAs were

significantly associated with LUAD by Cox analysis. Of course,

most of them were rarely studied and there were already several

investigations about some lncRNAs. Firstly, lncRNA SLC16A1-

AS1 has been identified to play a vital role in the metabolic

reprogramming as targeting and co-activating of E2F1 in patients

with bladder cancer (Logotheti et al., 2020). A study by Tian and

Hu (2021) also demonstrated that SLC16A1-AS1 was

upregulated in hepatocellular carcinoma and might

downregulate miR-141 through methylation to promote

cancer cell proliferation. Similarly, in patients with

glioblastoma, SLC16A1-AS1 might promote cancer cell

proliferation by regulating miR-149 methylation and could be

considered a potential diagnostic marker in glioblastoma (Long

et al., 2021). Also, there were several studies about the function of

FIGURE 9
Clinical immunotherapy analysis. (A) Results of drug sensitivity analysis. (B) Result of TIDE.
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SLC16A1-AS1 in oral squamous cell carcinoma (Feng et al., 2020;

Li et al., 2022), and triple-negative breast cancer (Jiang et al.,

2022). As for lung cancer, Liu et al. (2020) have proved that the

expression of SLC16A1-AS1 was significantly lower in NSCLC

tissue than that in adjacent tissue, and SLC16A1-AS1 over-

expression could block the cell cycle and promote cell

apoptosis in vitro, suggesting that it might act as a potential

biomarker for patients with NSCLC. Then, when it comes to

lncRNAAL606489.1, some investigations have proved that it was

associated with ferroptosis in LUAD (Guo et al., 2021; Song et al.,

2021;Wu et al., 2021) as well as oncosis (Chen et al., 2022), which

all demonstrating a relationship between non-apoptotic cell

death and LUAD and provide important predictive value for

the prognosis of LUAD as well as potential clinical therapeutic

targets. Similarly, AC026355.2, a vital immune-associated

lncRNA, also showed its prognostic value for identifying

immune and necroptosis characteristics in LUAD patients (He

et al., 2021; Lu et al., 2022). As for lncRNA AC068792.1, a study

by Zhou et al. (2022) proved that this TME-related lncRNA could

be acted as a biomarker of clear cell renal carcinoma prognosis

and immunotherapy response, while the effect in LUAD still

warrants further exploration.

The GO and KEGG enrichment analysis showed that the

ICP-related genes were mainly enriched in humoral immune

response, immunoglobulin production, and production of the

molecular immune response, emphasizing the significance of

immune response in cancer development. Then the bioplot

showed that the expression of immune cells in the high- and

low-risk subgroups mainly focused on plasma cells, monocytes,

T cells gamma delta, T cells CD4 memory resting, dendritic cells,

and mast cells resting. Subsequent K-M survival analysis

demonstrated that the survival probability in plasma cells

high-expression subgroup was much higher than that in a

low-expression subgroup, illustrating a potential protective

value for patients with LUAD. Actually, in a study about the

role of tumor-infiltrating B cells and intratumorally-produced

antibodies in cancer-immunity interactions, Isaeva et al. (2019)

found that plasma cells produced a great number of clonal IgG1,

which was not much effective on prognosis, suggesting that

IgG1+ tumor-infiltrating B cells might exert a beneficial effect

in KRAS mutation cases. While, for the subgroup with higher

expression of monocytes, the survival probability also showed the

same result as that of plasma cells. As an important component in

TME, monocytes were tightly connected with cancer initiation

FIGURE 10
Functional enrichment analysis. (A) Result of GO enrichment. (B) Result of KEGG enrichment. (C,D) Result of GSEA.
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and development. However, an investigation aiming at

constructing an immune-related lncRNAs signature in

patients with LUAD showed that this signature corrected

negatively with B cells, CD4+ T cells, and monocytes immune

infiltration, and patients with low-risk scores had a higher

abundance of immune cells and stromal cells around the

tumor (Chen et al., 2021). This contrary result mainly could

be explained that the function of tumor-associated monocyte/

macrophage lineage cells (MMLCs) might be different in human

tumors, especially in the early stages of the disease (Singhal et al.,

2019). Classical “inflammatory” monocytes promote tumor

growth and metastasis, however, nonclassical “patrolling”

monocytes contribute to cancer immunosurveillance and may

be targeted for cancer immunotherapy (Qian et al., 2011; Hanna

et al., 2015). Thus, further studies are warranted to explore

specific mechanisms in patients with LUAD.

Then we analyzed the immune score between high-risk and

low-risk subgroups and found that significant differences were

shown in tumor-infiltrating lymphocyte (TIL), cytolytic activity,

and major histocompatibility complex. Indeed, the efficacy of

clinical immunotherapy varies and depends on the amount and

properties of TILs, and in general, TILs represent a favorable

prognostic factor in NSCLC (Guo et al., 2018; Gueguen et al.,

2021). Federico et al. (2022) demonstrated that though the

number of infiltrating T cells was not associated with patient

survival, the nature of the infiltrating T cells could have a

prognostic value in NSCLC and became potential therapeutic

approaches for clinical care. As for HLA, Datar et al. (2021)

claimed that patients with cancer cell-selective HLA-B, HL-C or

HLA class-II downregulation displayed decreased T cells and

NK-cell infiltration, then associated with shorter overall survival,

which broaden a novel insight into clinical therapeutic targets.

While, for advanced NSCLC treated with immune checkpoint

blockade, HLA class-I genotype was not correlated with survival,

which emphasizes the correlation between immune checkpoints

and HLA (Negrao et al., 2019). Further studies are needed to

claim deeper relationships and provide novel insights.

In addition, there are still some limitations in our study. First,

our current study was limited to the bioinformatics level and no

external experiments were conducted to validate the results.

Second, although we validated the model by constructing a

valid prediction model, the model construction relied only on

the TCGA database, which could potentially lead to less credible

study results.

In conclusion, to explore the connection between lncRNAs

and immune infiltration in patients with LUAD, we conduct a

relatively overall and comprehensive prognostic model to

evaluate the expression of various immune cells and survival

probability through bioinformatics techniques, confirming that

immune response played a vital role in the progression of cancer

and the crosslink between immune infiltration and lncRNAs,

which could provide potential therapeutic targets for

clinical care.
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