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Abstract: This paper studies an efficient computing resource offloading mechanism for UAV-enabled
edge computing. According to the interests of three different roles: base station, UAV, and user,
we comprehensively consider the factors such as time delay, operation, and transmission energy
consumption in a multi-layer game to improve the overall system performance. Firstly, we construct
a Stackelberg multi-layer game model to get the appropriate resource pricing and computing offload
allocation strategies through iterations. Base stations and UAVs are the leaders, and users are the
followers. Then, we analyze the equilibrium states of the Stackelberg game and prove that the
equilibrium state of the game exists and is unique. Finally, the algorithm’s feasibility is verified by
simulation, and compared with the benchmark strategy, the Stackelberg game algorithm (SGA) has
certain superiority and robustness.

Keywords: mobile edge computing; unmanned aerial vehicles; computation offloading; Stackelberg
game

1. Introduction

With the rapid development of network communication technology, the data interac-
tion efficiency of the mobile Internet is constantly improving. Meanwhile, the transmission
bandwidth and data scale have become increasingly large. 5G communication and cloud
computing have spawned new applications such as driverless, automatic navigation, face
recognition, and augmented reality [1]. Meanwhile, these applications are computationally
intensive and time-sensitive. However, mobile devices at the terminal cannot provide suffi-
ciently high-performance computing services, and the battery capacity is limited, so it is
inefficient in handling these tasks and may not meet the quality of services requirements [2].
In the network architecture of cloud computing, computing resources concentrate in the
cloud, and there is a certain distance between the computing resources and terminal de-
vices. Therefore, the service response has an inevitable delay [3], and when dealing with
computationally intensive tasks; it is prone to access congestion.

Mobile edge computing (MEC) is a new computing architecture for providing comput-
ing services [4,5] that can push the service resources of cloud computing to the edge to meet
the requirements of intensive computing and low latency. Compared with cloud computing,
edge computing is more in line with the concept of a smart city, which is proposed to realize
green and sustainable development [6]. Traditional terrestrial networks face challenges
in scenarios such as complex terrain and equipment failure. Unmanned aerial vehicles
(UAV) can help to enhance the flexibility and robustness of mobile edge computing network
deployment [7], and reduce the complexity and cost of resource management. For example,
Verizon and AWS work together to combine UAVs with mobile edge computing to reduce
connection latency and reduce UAV costs by about 10% [8]. However, with the increasing
number of UAVs in use, resource management of networks faces challenges such as power
control, spectrum allocation, interference management, and task allocation [9].
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In terms of task allocation, different devices in the MEC network differ in various
aspects, such as onboard battery capacity and computational performance. Tasks that
require high performance can be offloaded to devices with large battery capacity and high
computing performance. In MEC networks, the offloading forms of computation include
partial offloading (complex computation tasks can be divided into several sub-computation
tasks.) and full offloading (tasks are inseparable) [10]. The computation task offload
strategy should consider determining the proportion of the offloading task and choosing
the offloading computation content [11]. Moreover, the balance between throughput and
fairness also needs to be considered [12]. Artificial intelligence (AI) could also help to
allocate resources dynamically. Combined with AI, the learning capacity of edge devices
could be enhanced [13]. As shown in Figure 1, the UAV in the MEC network can act as a
user at the terminal to access the MEC service or a server to receive the tasks from users; it
can also act as a relay node to forward tasks offloaded from nearby users to the base station
servers. Roles are changed according to the scenarios.

user1

user2
server

relay

(a)

server
user2

user3

user1

(b)

user2

user1
user3

server

(c)

Figure 1. The roles of UAVs in computing resource allocation for MEC networks. (a) uav as relay.
(b) uav as user. (c) uav as server.

1.1. Related Works

To improve the performance of the computational tasks’ allocation strategy, it is neces-
sary to set the optimization goal first. On the one hand, some studies considered a single
performance metric. Long et al. [14] aimed to minimize the computation latency and obtain
the optimal offloading computation task strategy. However, it is necessary to consider in-
troducing a UAV-enabled MEC network to improve the performance of computing offload
further. Luan et al. [15] aimed to minimize the energy consumption and solve the problem
of distributed task allocation of UAVs based on a coalitional game. On the other hand, some
studies have integrated multiple performance metrics, which could improve the system
computing performance more comprehensively. Chen et al. [16] integrated computing
latency and energy consumption, and then introduced the pricing of computing resources
to differentiate the servers on base stations and UAVs, but it is also necessary to analyze
the allocation scheme of the optimal offloading proportion. Ren et al. [17] considered
to minimize the global computation latency and energy consumption and divided the
computation task into several subtasks, then worked out the optimal offloading proportion
by KKT-condition. In addition, in that study, the optimal offloading strategy and minimum
computing latency were obtained by a non-cooperative game. However, due to the limited
endurance of UAVs, a single UAV cannot provide services for ground users efficiently, so
the performance of multiple UAVs should also be considered.

In addition, some studies have considered the resource allocation in the more complex
network environment. Alioua. et al. [18] comprehensively considered latency, energy con-
sumption, link quality, and other factors in a multi-UAV-enabled road traffic monitoring
scenario, and obtained a computation resource allocation strategy with better overall perfor-
mance based on the sequential game. EI N.N et al. [19] considered device association, task
assignment, and computational resource allocation problems comprehensively, and pro-
posed an iterative algorithm based on block coordinate descent to minimize the energy
consumption of mobile devices and UAVs. Yan et al. [20] considered the MEC network of
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a multi-UAV and multi-ground user scenario and constructed a Stackelberg game model:
The UAV, as the vice-leader, maximizes the income by optimizing the location and pricing
of computing resources. In addition, the user, as the follower, reduces the overhead by
optimizing the offload allocation strategy. Dong et al. [21] points out that most studies
focus on simple application scenarios, and the research on multi-UAV cooperative resource
management in complex environments needs to be further deepened and improved.

1.2. Contributions

According to related works above and [22–26], game theory has a good application
prospect in solving resource management of the MEC network recently. In addition, we
found that multiple UAV applications should be considered in MEC resource management,
and energy consumption, delay, and other aspects should be considered comprehensively
in performance indexes to improve system performance comprehensively. In Stackelberg
game, the player can decide the strategy at different layers. The followers respond to the
leader’s strategic actions and choose the best strategy. Therefore, players at all levels can
consider their own interests and set different utility functions. Previous studies [27,28]
have used the Stackelberg game to solve the problem of computing unloading in MEC, we
extend it to the UAV-enabled application scenario, and it is different that we divide players
into three layers based on the supply of computation. The contributions of this study are
as follows:

1. In the multi-UAV cooperative MEC network, we construct a multi-layer Stackelberg
game model according to the different characteristics of base stations, UAVs, and
users. And the equilibrium state is reached through several iterations to meet the
maximum interests of players in each layer.

2. Players at each layer of the Stackelberg game set the utility function according to their
own interests and demands, and select the optimal computational offloading strategy
to maximize the total utility of the system.

3. Performance metrics such as computation latency and energy consumption are
weighted to improve the performance of the system more comprehensively.

4. The proposed SGA has a certain superiority and robustness. Compared with the
benchmark scheme of random pricing strategy, it can achieve higher total system
benefits in multiple different scenarios.

2. Model of Stackelberg Game

The main symbols in the model are given in Nomenclature.

2.1. Leader Sub-Game

In the MEC network, the ground base station has strong computing ability and contin-
uous power supply, so the base stations act as the leader and the UAV as the vice-leader
in the Stackelberg game. For each leader station g, the onboard edge server can receive
computing tasks directly from the user or employ the UAVs as relay nodes to forward
computing tasks from the users. The leader needs to set a different price Mg

i for each
computing resource requested by user i, a corresponding price Mg

j for the employed relay
UAV j. The computing resource Fg of the leader is limited, and the computing resource
allocated to the user i is Fg

i . Then we can obtain the profit Pg that the base station by
providing computing services to the user and the cost Cg of employing the UAV as follows:

Pg = ∑
i∈I

Mg
i Fg

i Needg
i (1)

Cg = ∑
i∈I

∑
j∈J

Mg
j Di Needj

iγ
r
i (2)
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where Di represents the computation task quantity of user i, Needg
i = 1 indicates that

user i needs to offload the computing task to base station g, Needj
i = 0 indicates that the

computing task of user i needs the assistance of UAV j, and γr
i indicates the proportion that

user i chooses to forward the computing task to the base station through relay.
Then, the net income of the leader base station g can be expressed as Ug = Pg − Cg,

and the game of the leader layer can be formulated as:

max Ug(Mg
i , Mg

j , Fg
i ), ∀i ∈ I , j ∈ J (3)

s.t.


∑i∈I Fg

i ≤ Fg Fg
i ≤ Di

Mg
i ∈ [min Mg

i , max Mg
i ]

Mg
j ∈ [min Mg

j , max Mg
j ]

jg
⋂

jg′ = ∅ ∀g, g′ ∈ G

(4)

where Mg
i is the pricing set of all base stations for user i, Mg

j is the base station’s pricing set

for hiring UAVs, Fg
i is the resource set allocated to the user by the base station, I ,J ,G are

respectively the set of users, UAVs, and base stations. The first constraint indicates that
the computing resources of the base station are limited, the second and third constraints
indicate that the pricing for user services and hiring UAVs should fall within a certain
range, and the fourth constraint indicates that each UAV can only be employed by one base
station.

2.2. Vice-Leader Sub-Game

In the MEC network, the UAV can act as a server to receive computing service requests
from users or as a relay node to forward service requests from users to the base station.
Rolej

i = 1 represents that the UAV j acts as a server, and Rolej
i = 0 represents a relay node

when processing the computing tasks of user i. The benefits of these two roles are denoted
as Pcompute

j and Prelay
j , respectively. When acting as a server, the UAV sets a price mj

i for
the computing resources accessed by different users. As with the BS in the leader layer,
the service resource Fj of the UAV is also limited, and the resource allocated to user i is

denoted as f j
i . Then the profit Pcompute

j and Prelay
j of the vice-leader can be expressed as:

Pcompute
j = ∑

i∈I
mj

i f j
i Rolej

i (5)

Prelay
j = ∑

i∈I
∑
j∈J

Mg
j Di Needj

i

(
1− Rolej

i

)
(6)

When UAV j acts as an edge server, there is overhead Ccompute
j in processing computa-

tion tasks, and when acting as a relay, there is the communication cost Ctrans
j in transmitting

the tasks:

Ccompute
j = ∑

i∈I

ϕi

f j
i

ηi Needj
i Rolej

i (7)

Ctrans
j = ∑

i∈I
∑
j∈I

pj
Di

ratej,g
i

Needj
i

(
1− Rolej

i

)
(8)

Therefore, the profit of the vice-leader UAV j can be expressed as Uj = Pcompute
j +

Prelay
j − Ccompote

j − Ctrans
j , and the game of the vice-leader can be formulated as:

max Uj(m
j
i , f j

i ), ∀i ∈ I (9)
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s.t.


Rolej

i ∈ {0; 1}
mj

i ∈ [min mj
i , max mj

i ]

∑i∈I f j
i ≤ Fj, f j

i ≤ Di

(10)

2.3. Follower Sub-Game

As a follower, user i taking the fees Cpay
i paid for computation services and the

processing cost Ccompute
i (including the computation latency and communication cost in

transmission) into account and decides the offloading object and proportion based on the
pricing strategy given in the leader layer and the allocated computing resources.

Cpay
i =


0, γl

i ≥ 0
α

pay
g,i Mg

i Fg
i , γ

g
i ≥ 0

α
pay
j,i mj

i f j
i , γ

j
i ≥ 0

α
pay
relay,i M

g
i Fg

i , γr
i ≥ 0

(11)

Ccompute
i =



αtrans
local,i

ϕi
fi
+ αexe

local,i
ϕi
fi

ηi, γl
i ≥ 0

αtime
g,i

(
Di

Rateg
i
+ ϕi

Fg
i

)
+ α

energy
g,i pi

Di
Fg

i
, γ

g
i ≥ 0

αtime
j,i

(
Di

Ratej
i

+ ϕi

f j
i

)
+ α

energy
j,i pi

Di

f j
i

, γ
j
i ≥ 0

αtime
relay,i

(
Di

Ratej
i

+ ϕi

Fj
i

+ Di

Ratej,g
i

)
+ α

energy
relay,i pi

Di

Ratej
i

, γr
i ≥ 0

(12)

where pi denotes the user’s transmission power, and γl
i , γ

g
i , γ

j
i and γr

i denote the allocation
ratios for local computing, offloading to the base station, offloading to the UAV and
forwarding to the base station via relay, respectively. Then, the utility function of user i can
be expressed as: Ui = −Ccompute

i − Cpay
i , and the game of the follower can be defined as:

max Ui

(
γl

i , γ
g
i , γ

j
i , γr

i

)
(13)

s.t.

{
γl

i , γ
g
i , γ

j
i , γr

i ∈ [0, 1]

γl
i + γ

g
i + γ

j
i + γr

i = 1
(14)

2.4. Computation Offload Model Based on Stackelberg Game

The game of base station, UAV, and user from the first three sections can form a
three-layer heterogeneous Stackelberg game model, which can be expressed as:

G =
{
(G,J , I), (G, J, I),

(
Ug, Uj, Ui

)}
(15)

whereG, J, I are the sets of strategy space, respectively. For this Stackelberg game model, to get
the state of Stackelberg Equilibrium(SE), the set

(
Mg∗

i , Mg∗
j , mj∗

i , Fg∗
i , f j∗

i , γl∗
i , γ

g∗
i , γ

j∗
i , γr∗

i

)
should satisfied the conditions as follow:

Ug

(
Mg∗

i , Mg∗
j , Fg∗

i , J∗, I∗
)
≥ Ug

(
Mg

i , Mg
j , Fg

i , J∗, I∗
)

(16)

Uj

(
G∗, mj∗

i , f j∗
i , I∗

)
≥ Uj

(
G∗, mj

i , f j
i , I∗

)
(17)

Ui

(
G∗, J∗, γl∗

i , γ
g∗
i , γ

j∗
i , γr∗

i

)
≥ Ui

(
G∗, J∗, γl

i , γ
g
i , γ

j
i , γr

i

)
(18)
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3. Equilibrium Analysis of Stackelberg Game
3.1. Existence Analysis of the Equilibrium Solution

Theorem 1. Stackelberg Equilibrium point exists in the Stackelberg multi-layer game G.

Proof. As the leader, the utility of base station G is:

Ug

(
Mg

i , Mg
j , Fg

i , J∗, I∗
)
= Pg − Cg

= ∑
i∈I

Mg
i Fg

i Needg
i −∑

i∈I
∑
j∈J

Mg
j Di Needj

iγ
r
i

(19)

get the partial derivatives respectively, there are:

∂Ug

∂Mg
i
= Fg

i Needg
i ≥ 0

∂Ug

∂Fg
i

= Mg
i Needg

i ≥ 0

∂Ug

∂Mg
j
= −Di Needj

iγ
r
i ≤ 0

(20)

therefore, Ug is monotonous to Mg
i , Mg

j , Fg
i , then Mg

i , Mg
j , Fg

i are bounded could be de-
duced according to the constraint condition (4). The condition (16) is satisfied when
Mg∗

i = max Mg
i , Mg∗

j = min Mg
j and Fg∗

i = max Fg
i .

As the vice-leader, the utility of UAV J is:

Uj

(
G∗, mj

i , f j
i , I∗

)
= Pcompute

j + Prelay
j − Ccompute

j − Ctrans
j

= ∑
i∈I

mj
i f j

i Rolej
i + ∑

i∈I
∑
j∈J

Mg
j Di Needj

i

(
1− Rolej

i

)
−∑

i∈I

ϕi

f j
i

ηi Needj
i Rolej

i −∑
i∈I

∑
j∈J

pj
Di

Ratej
i

Needj
i

(
1− Rolej

i

) (21)

get the partial derivatives respectively, there are:

∂Uj

∂mj
i

= f j
i Rolej

i ≥ 0

∂Uj

∂ f j
i

= mj
i Rolej

i +
ϕi(
f j
i

)2 ηi Needj
i Rolej

i ≥ 0
(22)

therefore, Uj is monotonous to mj
i , f j

i , then mj
i , f j

i are bounded could be deduced accord-

ing to the constraint condition (10). Let mj
i = max mj

i , f j
i = max f j

i , the condition (17)
is satisfied.

As follower, the utility of user I is:

Ui

(
G∗, J∗, γl

i , γ
g
i , γ

j
i , γr

i

)
=
[

γl
i γ

g
i γu

i γr
i
]
·
(
−Ccompute

i − Cpay
i

)
(23)

since Ccompute
i and Cpay

i are constant for γi, Ui could be simplified as:

Ui

(
G∗, J∗, γl

i , γ
g
i , γ

j
i , γr

i

)
= C1γl

i + C2γ
g
i + C3γ

j
i + C4γr

i (24)
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therefore, Ui is linearly related to γi, and the game of this layer is a linear programming
problem. The constraint given by (14) is a convex set, then the objective function Ui obtains
the optimal value at the vertex of the feasible domain [29].

In summary, the Stackelberg Equilibrium point exists in multi-layer game G.

3.2. Equilibrium Uniqueness Analysis of Stackelberg Game

Theorem 2. The stackelberg game equilibrium point is unique.

Proof. For the leader and vice-leader layer, it could be known from (20) and (22) that Ug

and Uj are monotonic to Mg
i , M j

i , Fg
i and mj

i , f j
i . Therefore, the optimal solutions obtained

are unique.
For follower layer, according to the constraint (14), the feasible domain of γl

i , γ
g
i , γ

j
i , γr

i
are convex sets, and the optimal solution is obtained at the vertex. In addition, the feasible
domain formed by constraint (14) is a pyramid, so the vertex is unique, and the optimal
solution of the follower layer is unique [29].

In summary, the Stackelberg Equilibrium point in multi-layer game G is unique.

4. Stackelberg Game Resource Pricing and Computation Allocation Algorithm

1. Parameters initialization, initialize the values of the parameters in the simulation
environment and the strategy for the first round of the game. Get the distances
between each base station, UAV and user. And users will choose to establish a
connection with the nearest base station or UAV in the initial state.

2. Resource pricing and allocation, the players in each layer play a game of resource
allocation and pricing, updating the optimal strategy based on the current round
in the order of leader, vice-leader, and follower, Mg

i , Mg
j , mj

i , Fg
i , f j

i , γl
i , γ

g
i , γ

j
i , γr

i are
involved (as in Algorithm 1).

3. Repeat step (2) for iterations, and eventually converge to equilibrium through multiple
rounds of the game.

Algorithm 1 Stackelberg game resource pricing and allocation algorithm
Input: Location: bs, uav, user; Computation amount: Di; Iteration number: epoch

Output: Price: Mg
i , Mg

j , mj
i ; Resource amount: Fg

i , f j
i ; Offload rate:γl

i , γ
g
i , γ

j
i , γr

i

1: Simulation parameter initialized according to the distance relationships and computa-
tion amount.

2: for episode = 1 to epoch do
3: for b = 1 to bsnum do
4: Fg

i =Di ·
(

γ
g
i + γr

i

)
;

5: if γ
g
i ≥ 0 and Needg

i ==1 then
6: if min Mg

i ≤ 2Mg
i ≤ max Mg

i then
7: Mg

i =2 ·Mg
i ; Mg

i,low=Mg
i ;

8: else

9: Mg
i,high=Mg

i ; Mg
i =

Mg
i,high+Mg

i,low
2 ;

10: if γr
i ≥ 0 and Needg

i == 1 then

11: Mg
j,high=Mg

j ; Mg
j =

Mg
j,high+Mg

j,low
2

12: else
13: if min Mg

j ≤ 2Mg
j ≤ max Mg

j then

14: Mg
j,low=Mg

j ; Mg
j =2 ·Mg

j

15: for u = 1 to uavnum do
16: f j

i =Di · γ
j
i

17: if γ
j
i ≥ 0 and Needj

i==1 then
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18: if min mg
i ≤ 2mg

i ≤ max mg
i then

19: mg
i =2 ·mg

i ; mg
i,low=mg

i ;

20: else

21: mg
i,high=mg

i ; mg
i =

mg
i,high+mg

i,low
2 ;

22: for i = 1 to usernum do
23: update γl

i , γ
g
i , γ

j
i , γr

i by utility function according to Mg
i , Mg

j , mj
i , Fg

i , f j
i ;

24: update Needg
i , Needj

i according to γl
i , γ

g
i , γ

j
i , γr

i .

25: record the utility of each player in this iteration.

26: return Mg
i , Mg

j , mj
i , Fg

i , f j
i , γl

i , γ
g
i , γ

j
i , γr

i and the final utility of each players.

5. Results
5.1. Simulation Parameter Setting

The basic simulation environment is a MEC network composed of two base stations,
6 UAVs, and eight users. The locations of the base stations, UAVs, and users (randomly
generated) are distributed in a Cartesian plane coordinate system as shown in Figure 2.
The computing resources of base stations, UAVs, and users are all 64 GB, 8 GB, and 32 MB,
respectively. In addition, the computation amount of users are random in 10 MB∼1 GB.
Other parameters are shown in Table 1. The program design and result diagram of the
simulation are completed in MATLAB, and the operating system is Windows 10, 64-bit
professional version. The base stations, UAVs, and users in the simulation scene are virtual
devices imitating real device parameters.

0 100 200 300 400 500 600 700 800 900

Abscissa (m)

100

200

300

400

500

600

700

800

900

1000

O
rd

in
a
te

 (
m

)

Location distribution

Base Station

UAV

User

Figure 2. Location distribution in simulation (UAVs’ coordinates are taken from ground projection).

Table 1. Other simulation parameter settings.

Parameter Symbolic Representation Value

Energy consumption per CPU cycle ηi 8
Weights about local computation αtime

local,iα
energy
local,i (0.5, 0.5)

Weights about offload to BS αtime
g,i , α

energy
g,i , α

pay
g,i (0.3, 0.3, 0.4)

Weights about offload to UAV αtime
j,i , α

energy
j,i , α

pay
j,i (0.3, 0.3, 0.4)

Weights about relay αtime
relay,i, α

energy
relay,i , α

pay
relay,i (0.3, 0.3, 0.4)

5.2. Simulation Result and Performance Comparison

Figure 3 shows the iteration of the three roles of the base station, UAV, and user in the
Stackelberg multi-layer game. It can be found that after about 250 iterations, the income
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or overheads of players at each layer finally reached the equilibrium state, indicating that
the algorithm can achieve Stackelberg equilibrium. During the whole process, as shown
in Figure 3a, the incomes of BS1 and BS2 were basically stable, which changed suddenly
at about 150 iterations and returned to equilibrium after about 50 iterations. In Figure 3b,
the overhead of user2 changed dramatically about 150 iterations, indicating that user2
switched the offloading object. And after about 50 iterations, user2 reached the equilibrium
state. The overheads of other users gradually increase in the oscillation and enter the
equilibrium state when they reach the certain values, which indicates that the prices for
computation services had reached the maximum value, and the offloading objects had not
changed during that period. In Figure 3c, the incomes of UAVs fluctuated greatly before
convergence, indicating that the competition of UAVs in the game of resource allocation was
fierce. We can also find that after about 150 iterations, the incomes of UAVs were oscillations
in several points, but as they gradually entered the equilibrium state, there were fewer and
fewer oscillations until they reach the equilibrium and no longer oscillate. The specific
computation offloading situation in Stackelberg equilibrium is shown in Figure 4.

The benchmark algorithm is RANDOM (the users decide the offload objects and
proportions randomly) and LOCAL (all users execute the task locally), and the total profit
of a multi-level game is used as the performance evaluation standard. The total profit of
the system can be expressed as:

Utility = Ug + Uj −Ui (25)

As shown in Figure 5, we compare the total system profits of the Stackelberg game
algorithm (SGA) with RANDOM and LOCAL. Firstly, it can be found that the SGA strategy
reached an equilibrium state after about 250 iterations. Secondly, the total system profit
of SGA in the equilibrium state is about 80% more than that of random strategy, and the
profits of SGA and RANDOM are more than LOCAL.

We also compare the SGA in an equilibrium state with the RANDOM and LOCAL
strategy in five different scenarios, as shown in Figure 6. Figure 6a shows the total sys-
tem profit in the scenarios where the quantity of users is 2, 4, 8, 12, and 16, respectively.
We can see SGA is significantly better than RANDOM and LOCAL in all five scenarios,
and the total profit of the system increases with the quantity of users. Figure 6b is the
performance comparison chart of SGA, LOCAL, and RANDOM in scenarios with different
user positions, and the coordinates of users in the other four scenarios are also randomly
generated. It can be found that the SGA algorithm is superior to RANDOM and LOCAL in
these scenarios. In addition, we can find that the total system profit of RANDOM fluctuates
greatly, and the profits in some scenarios are not as good as the LOCAL. While the total
system profit of SGA is more stable. Figure 6c is the performance comparison chart of
5 scenarios with different quantities of user computation. They are all randomly gener-
ated, with the value of (673,978,768,843,408,616,543,424), (971,609,720,303,460,49,386,362),
(288,817,451,807,791,283,169,255), (638,425,906,418,255,540,938,661), (395,259,848,946,377,468,
482,576) MB, respectively. It can be found that SGA is better than RANDOM and LOCAL.
Since the amount of computation directly affects the overhead, it is normal for the total
system profit to fluctuate.
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Figure 3. Iteration process in each layer. (a) iteration process of base stations. (b) iteration process of
users. (c) iteration process of UAVs.
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Figure 6. Performance comparison in different scenarios. (a) Different number of users. (b) Different
user locations. (c) Different amount of computation.

6. Conclusions

This study aims to solve the problem of computing resource management in a multi-
UAV-enabled edge computing scenario. According to the different interests of base stations,
UAVs and users, we construct a three-layer Stackelberg game model by comprehensively
considering computing latency, energy consumption, and specific profit. The equilibrium
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state is achieved after several iterations and verified by simulation. The Stackelberg game
algorithm has better total system profit in multiple different scenarios and has certain
robustness in the equilibrium state than the random strategy. Therefore, in the future
scenario of multi-UAV-enabled edge computing, Stackelberg game theory has application
prospects in solving complex resource problems.
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Nomenclature

Parameter Explanation

ϕi Required CPU cycles to complete the computation of user i
ηi Energy consumption per unit CPU cycle
Di The computation quantity of user i
Fg

i The amount of resources allocated by the BS g to user i
f j
i The amount of resources allocated by the UAV j to user i

Mg
i Resource pricing of BS g to user i

Mg
j Pricing of UAV j employed by BS g

mj
i Resource pricing of UAV j to user i

Needg
i Whether user i chooses to offload to BS g

Needj
i Whether user i chooses to offload to UAV j

Rolej
i Whether UAV j is a relay when dealing with the task of user i
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