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Introduction
γ-Secretase catalyzes the fi nal cleavage of the amyloid precur-

sor protein (APP), liberating the amyloid β (Aβ) peptide 

(Annaert and De Strooper, 2002) probably causing Alzheimer’s 

disease (Hardy and Selkoe, 2002; Walsh and Selkoe, 2004). 

Besides APP, γ-secretase cleaves other biologically important 

substrates like Notch and many more type I membrane proteins 

and is involved in that way in development, neurogenesis, and 

cancer (Brown et al., 2000; Selkoe and Kopan, 2003; Kopan and 

Ilagan, 2004). γ-Secretase is a multisubunit complex consisting 

of presenilin (PS), nicastrin (NCT), PS enhancer-2 (PEN-2), 

and anterior pharynx defective-1 (APH-1; De Strooper, 2003). 

These proteins are minimally required to generate a functional 

active complex. It is far from fully understood where in the 

cell the complex is assembled and activated and what the se-

quence of events are leading to full assembly. Nevertheless, 

given its complexity and indispensable role in intramembrane 

proteolysis, mechanisms must be present to tightly control 

and regulate this assembly. The prevailing hypothesis suggests 

that assembly is initiated by the NCT–APH-1 subcomplex 

and is followed by the sequential incorporation of PS and 

PEN-2 or, alternatively, the PS–PEN-2 subcomplex (Hu and 

Fortini, 2003; LaVoie et al., 2003; Fraering et al., 2004; 

Capell et al., 2005). Because all four hydrophobic components 

are synthesized and translocated in the ER, this is the earliest 

membrane compartment where assembly can theoretically be 

initiated, but whether the complex is already activated in this 

organelle remains a question. This has been formulated origi-

nally as the spatial paradox (Annaert and De Strooper, 1999): 

although most of the endogenous PS1 resides in the ER and in 

the intermediate compartment (IC; Annaert et al., 1999) in coat 

protein complex I (COPI)–coated areas, (Rechards et al., 2003), 
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T
 he γ-secretase complex, consisting of presenilin, 

nicastrin, presenilin enhancer-2 (PEN-2), and ante-

rior pharynx defective-1 (APH-1) cleaves type I inte-

gral membrane proteins like amyloid precursor protein 

and Notch in a process of regulated intramembrane pro-

teolysis. The regulatory mechanisms governing the multi-

step assembly of this “proteasome of the membrane” are 

unknown. We characterize a new interaction partner of 

nicastrin, the retrieval receptor Rer1p. Rer1p binds prefer-

entially immature nicastrin via polar residues within its 

transmembrane domain that are also critical for interac-

tion with APH-1. Absence of APH-1 substantially increased 

binding of nicastrin to Rer1p, demonstrating the com-

petitive nature of these interactions. Moreover, Rer1p 

expression levels control the formation of γ-secretase 

subcomplexes and, concomitantly, total cellular γ-secretase 

activity. We identify Rer1p as a novel limiting factor that 

negatively regulates γ-secretase complex assembly by 

competing with APH-1 during active recycling between 

the endoplasmic reticulum (ER) and Golgi. We conclude 

that total cellular γ-secretase activity is restrained by a 

secondary ER control system that provides a potential 

therapeutic value.
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activity seems mainly to occur at the cell surface or close to the 

cell surface in endosomal compartments (Kaether et al., 2006; 

Rajendran et al., 2006). The slow maturation of NCT in the 

Golgi (Yang et al., 2002; Herreman et al., 2003) and the relative 

long turnover of this and other γ-secretase complex partners 

once they are incorporated in the complex indicate that these 

components are actively retrieved from Golgi compartments or 

retained in the ER. In support of this, Kaether et al. (2004) sug-

gested that a hydrophobic stretch in the C terminus of PS1 con-

stitutes a retention signal for unassembled PS1 in the ER, the 

basis of which remains to be investigated. Moreover, absence of 

one component results in destabilization or reduced expression 

of other components and impaired maturation (NCT) or PS en-

doproteolysis (Li et al., 2003; Nyabi et al., 2003; Zhang et al., 

2005), predicting a substantial role of early biosynthetic com-

partments in complex assembly.

The intriguing question, therefore, is what the molecular 

mechanism is that governs active recycling of γ-secretase com-

ponents. This knowledge is of utmost importance, as it may 

converge with the regulation of the stepwise assembly of the 

complex in early compartments (Capell et al., 2005). Some pro-

teinous components have been identifi ed recently that modulate 

γ-secretase activities, including CD147 (Zhou et al., 2005), 

TMP21 (Chen et al., 2006), and phospholipase D1 (Cai et al., 

2006). However, they emerged as binding partners of mature 

complexes, acting likely in later trans-Golgi network and endo-

somal compartments. On the contrary, not a single binding 

 partner or factor has been identifi ed that mediates through its 

interaction early steps of complex assembly.

In this paper, we show the interaction of NCT with Rer1p 

(retrieval to ER 1 protein), a membrane receptor operating in 

Golgi retrieval. Binding to Rer1p requires critical residues in 

the transmembrane domain (TMD) of NCT also used by APH-1, 

thereby lifting a fi rst important corner of the veil in the molecu-

lar regulation of complex assembly in early compartments. This 

interaction highlights the requirement of secondary ER quality 

control in complex assembly.

Results
Rer1p preferentially interacts with 
uncomplexed immature NCT
Several signal motifs in membrane proteins mediate retrieval 

from IC or Golgi compartments, including dilysine and -arginine 

motifs in intracellular or the KDEL motif in luminal domains 

(Lee et al., 2004; Michelsen et al., 2005). However, none of 

these “classical” motifs are identifi ed in individual γ-secretase 

components. We therefore hypothesized that individual compo-

nents are retrieved through interaction with membrane proteins 

bearing such motifs. Candidate retrieval proteins were tested for 

their interaction with NCT in HeLa cells by coimmunoprecipi-

tation using anti-NCT mAb 9C3 or affi nity-purifi ed pAb B59.4. 

Because CHAPS extraction preserves the integrity of the com-

plex, mAb 9C3 pulled down NCT with all γ-secretase complex 

Figure 1. Endogenous and overexpressed 
NCT and hRer1p coimmunoprecipitate. 
(A) mAb 9C3 and affi nity-purifi ed pAb B59.4 
against NCT coimmunoprecipitate preferentially 
γ-secretase complex components (PS1-NTF, 
PEN-2, APH-1a, and PS1-CTF) from CHAPS-
extracted HeLa cells (right lane; bound fraction), 
as this detergent preserves the integrity of the 
complex. Although hRer1p was also recov-
ered in very small amounts, levels of coimmu-
noprecipitating hRer1p increased strongly 
when Triton X-100 was used for cell extraction 
(left lane; bound fraction). Other membrane 
proteins involved in ER-Golgi traffi cking, like 
KDELr and BAP31, were not pulled down by 
NCT antibodies. Immunoprecipitations in the 
absence of extract, primary antibodies, or 
both were used as additional controls. (B–D) 
pAb against Rer1p coimmunoprecipitates 
small amounts of immature NCT from HeLa (B) 
and MEF (C) Triton X-100 extracts. DTBP cross-
linking (0.75, 1.5, and 3 mM) before extrac-
tion slightly increased the coimmunoprecipitated 
immature NCT. In CHO that bears higher lev-
els of immature NCT, the selective interaction 
with immature NCT was even more obvious 
(D). No PEN-2 (or other components; not de-
picted) coimmunoprecipitated with Rer1p. (E) 
Endogenous hRer1p interacts with overex-
pressed NCT but not PEN-2. Immunoprecipita-
tion was performed with anti-hRer1p antibody 
upon transient overexpression of mouse NCT 
or PEN-2 in HeLa cells. When DTBP cross-linker was applied at two different concentrations (0.5 and 3 mM) before coimmunoprecipitation (right), the 
amount of NCT bound to hRer1p was increasing in a dose-dependent manner. Transiently overexpressed PEN-2 protein was used as a control and showed 
no interaction with hRer1p. When co-overexpressed, only NCT, not PEN-2, coimmunoprecipitated with anti-Rer1p (rightmost panel), again  underscoring 
the specifi city of the interaction. Black lines (D and E) indicate that total/unbound and bound lanes are from the same experiment/blot but  different 
exposure times.
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members (Fig. 1 A). Although only little hRer1p coimmuno-

precipitated from CHAPS extracts, these levels increased dra-

matically in Triton X-100 extracts, i.e., under conditions that 

disrupt the interaction between γ-secretase components. Other 

retrieval proteins like BAP31 (Annaert et al., 1997) and the 

KDEL receptor did not interact with NCT, underscoring the 

specifi city of the pull down. In a reciprocal experiment, anti-

hRer1p pAb pulled down small amounts of endogenous imma-

ture NCT from Triton X-100 HeLa and mouse embryonic 

fi broblast (MEF) extracts (Fig. 1, B and C). Adding the chemi-

cal cross-linker dimethyl 3,3′-dithiobispropionimidate (DTBP) 

before solubilization and coimmunoprecipitation even slightly 

increased NCT levels in the precipitate. The specifi c interaction 

with immature NCT is even more apparent from CHO extracts 

that express higher levels of endogenous immature NCT (Fig. 1 D). 

Other γ-secretase complex components like PS1 C-terminal 

fragment (CTF; unpublished data) and PEN-2 did not bind, un-

derscoring the selectivity of the interaction. Similar coimmuno-

precipitations were performed upon overexpression of either 

NCT or PEN-2 in HeLa cells (Fig. 1 E). Although overexpres-

sion levels were similar for both proteins, anti-hRer1p pAb 

pulled down NCT but not PEN-2. The amount of immature NCT 

bound to hRer1p increased dose dependently with increasing 

concentrations of DTBP (0.5–3 mM; Fig. 1 E). Collectively, we 

can conclude that hRer1p specifi cally interacts with immature 

NCT, most likely in its uncomplexed status.

Rer1p is an integral membrane protein of �23 kD, includ-

ing four TMDs with both termini facing the cytosol. The Rer1 

gene emerged originally from a yeast screen for mutants defective 

in retention of Sec12, a protein involved in COPII-coated vesicle 

formation (Boehm et al., 1994; Sato et al., 1995). Since then, sev-

eral yeast proteins have been identifi ed next to Sec12p (Sato et al., 

1996) that use the Rer1p-dependent retrieval system, including 

subunits of the translocation machinery, like Sec63p and Sec71p 

(Sato et al., 2003), and the iron transporter subunit Fet3p (Sato 

et al., 2004). The latter is of particular interest for the current 

study, as yRer1p only binds Fet3p in its unassembled state.

Like in yeast, epitope-tagged hRer1p localized to the 

Golgi in HeLa cells (Fullekrug et al., 1997). However, at the en-

dogenous level, hRer1p only partially colocalized with the 

cis-Golgi marker GM130, as demonstrated by high-resolution 

confocal microscopy (Fig. 2). Instead, a far better colocaliza-

tion was observed with ERGIC-53, indicating that, at steady 

state, hRer1p essentially localizes in the vesicular tubular ele-

ments of the IC. This was confi rmed by subcellular fraction-

ation (unpublished data) and by incubating cells at 15°C, a 

condition that blocks transport from the IC. Under this condi-

tion, hRer1p remained entirely colocalized with ERGIC-53–

positive structures (Fig. 2). Interestingly, highly overexpressed 

hRer1p accumulates in the ER (Fullekrug et al., 1997; unpub-

lished data), indicating that hRer1p requires other (limiting) 

sorting determinants enabling it to cycle rapidly between ER 

and Golgi. In conclusion, the localization of hRer1p in the IC 

predicts a functional role for the hRer1p–NCT interaction in the 

transport of NCT between early biosynthetic compartments. To 

better understand the physiological relevance of this interaction, 

we fi rst decided to analyze in detail the binding characteristics.

hRer1p interacts with NCT via its TMD
As the Rer1p interactions in yeast are mediated through the 

TMD of the reported binding proteins, we generated a series of 

NCT deletion constructs to delineate possible interaction sites, 

focusing on the TMD of NCT (Fig. 3 A). We transiently co-

expressed these constructs with hRer1p in HeLa cells followed by 

coimmunoprecipitation using anti-hRer1 pAb (Fig. 3 B). Delet-

ing the intracellular domain (NCT∆IC) considerably reduced 

binding compared with full-length (FL) NCT. Removing the 

TMD in addition (NCT∆[TMD + IC]) further interfered with 

Figure 2. Endogenous hRer1p resides mainly in the IC. Fixed HeLa cells 
were processed for indirect double immunofl uorescence labeling using 
 antibodies against hRer1p and GM130 (A) or ERGIC-53 (B). Detection 
was done with Alexa 488 and 568 conjugated secondary antibodies fol-
lowed by confocal laser-scanning microscopy. Immunostaining for GM130, 
a cis-Golgi matrix protein, and hRer1p were intimately but not identically 
distributed. Almost a complete overlap was found with anti–ERGIC-53, 
which marks the vesiculotubular elements of the IC. Colocalization was 
even more obvious when cells were preincubated at 15°C for 3 h (a condi-
tion that blocks transport from the IC; Saraste and Svensson, 1991) before 
fi xation (A and B, bottom). Bars, 5 μm.



JCB • VOLUME 176 • NUMBER 5 • 2007 632

binding (Fig. 3, B–E), whereas interaction with hRer1p was 

completely abolished when an additional short hydrophobic 

stretch before the putative TMD region was deleted (NCT∆[long 

TMD + IC]; Fig. 3, C–E). On the other hand, NCT∆EC, a 

construct lacking the entire ectodomain, displayed a relatively 

increased interaction compared with wild-type (WT) NCT, 

indicating that the ectodomain is dispensable for Rer1p interac-

tion (Fig. 3, D and E). We next swapped the TMD of NCT and 

from another unrelated type I transmembrane protein, namely, 

telencephalin (TLN; Annaert et al., 2001), which does not bind 

hRer1p (Fig. 3 F) and coexpressed the two chimeric proteins 

each with hRer1p. hRer1p interacted with TLN harboring the 

TMD of NCT (TLN/TMDNCT) but not with NCT containing the 

TMD of TLN (Fig. 3, F and G). However, in the latter, some 

binding was still observed, further confi rming the contribution 

of regions adjacent to the NCT TMD to hRer1p interaction. In 

conclusion, this experiment demonstrates that the NCT TMD is 

required and suffi cient for effi cient binding to hRer1p.

hRer1p binding is mediated through polar 
residues in the NCT TMD
In yeast it has been shown that interaction with yRer1p (e.g., 

Sec71p) critically depends on precisely spaced polar residues 

within the TMD. We identifi ed in the NCT TMD several polar 

residues that generate a charged patch on one side in an α-helical 

wheel model (Fig. 4 A, left, orange residues). When aligned, it 

becomes clear that the spacing of polar residues in the NCT 

TMD is similar to that seen in other Rer1p binding partners, in-

cluding Sec12p and Sec71p (Fig. 4 A, right, red boxed resi-

dues). Polar residues can also be found in the TMD of the other 

γ-secretase components, e.g., in the second TMD of PEN-2; 

however, these lack the critical spacing. This striking structural 

resemblance of the NCT TMD with the TMD of other Rer1p 

binding partners urged us to investigate the polar residues 

of NCT in more detail. Therefore, polar residues were mutated 

individually or together to leucine residues using site-directed 

mutagenesis (Fig. 4 B). All mutants were coexpressed with 

hRer1p in HeLa cells and tested for their ability to coimmuno-

precipitate with anti-Rer1p pAb. To determine the extent to 

which each mutation affects binding to Rer1p, FL-NCT and 

NCT/TMDTLN were used as positive and negative controls for 

binding, respectively (Fig. 4 C).

Single (S681/L) or double mutations (T685Y686/LL and 

S681T685/LL) already substantially interfered with hRer1p bind-

ing, indicating that hRer1p may use mechanisms similar to 

yeast Rer1p in the recognition of binding partners. Excitingly, 

Figure 3. hRer1p interacts with NCT through 
its TMD. (A) Schematic overview of the different 
NCT deletion constructs as well as chimeric TLN 
and NCT with swapped TMD. (B–D) Western 
blot analysis of coimmunoprecipitations with 
anti-hRer1p pAb from Triton X-100 extracts 
of HeLa cells transiently co-overexpressing 
hRer1p and different NCT deletion constructs. 
As a control, incubations without extract or ex-
tracts from mock-transfected cells were used. 
Total inputs are compared with bound frac-
tions. Deletion of the IC slightly decreases 
binding, whereas ablation of IC and TMD al-
most completely abrogated interaction (B). Ad-
ditional deletion of a short hydrophobic stretch 
upstream of the TMD abolished interaction 
completely (C). The interaction of hRer1p with 
a construct lacking the coding region for the 
entire ectodomain (NCT∆EC) demonstrates 
that the ectodomain is dispensable for the inter-
action with hRer1p. (E) Densitometric scanning 
and semiquantifi cation of the hRer1p binding 
effi ciencies toward the different NCT con-
structs, normalized to the binding of FL-NCT. 
Notice that NCT∆EC displays increased bind-
ing compared with intact NCT (mean ± SEM 
of three to four independent experiments). 
(F) The NCT TMD is suffi cient for binding to 
hRer1p. Co-overexpression of the chimeric 
TLN construct, bearing only the TMD of NCT, 
with hRer1p followed by coimmunoprecipita-
tion. TLN/TMDNCT but not FL-TLN coimmuno-
precipitates with hRer1p using anti-hRer1p 
pAb. (G) Reciprocal experiment using chimeric 
NCT/TMDTLN (NCT bearing the TMD of TLN) 
co-overexpressed with hRer1p. Coimmunopre-
cipitation using anti-hRer1p pAb shows a 
greatly diminished interaction between NCT/
TMDTLN and hRer1p compared with FL-NCT 
(semiquantifi ed in E).
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the same polar residues, S681, T685, and Y686, but also T670 and 

G674, have been shown to be critical for the interaction of NCT 

with APH-1 (Capell et al., 2003). We reasoned that a competi-

tion at the level of this binding motif between APH-1 and Rer1p 

could provide a molecular mechanism that couples ER-Golgi 

traffi cking of NCT (through its interaction with Rer1p) to sub-

complex assembly with its cognate APH-1 partner. As such, this 

would constitute a secondary ER quality control for the multi-

subunit assembly of the γ-secretase complex. To test the re-

quirement of these residues, we generated NCT TMD mutants 

with three to all fi ve residues mutated to leucine (T670G674S681/3L, 

T670G674S681T685/4L, and T670G674S681T685Y686/5L). In our co-

immunoprecipitation assay, these mutants displayed a gradual 

decrease of interaction with hRer1p (Fig. 4 C), indicating that 

these fi ve amino acids are required for hRer1p binding.

Rer1p binding to NCT is increased in APH 
knockout (KO) MEFs
Our data demonstrate that Rer1p and APH-1 require the same 

structural features (or the same residues) in the TMD that medi-

ate binding to NCT and that both proteins would be in competi-

tion for binding to this motif. If this holds true, binding of Rer1p 

Figure 4. Polar residues in the NCT TMD are critical for the interaction with Rer1p. (A, left) α-Helical wheel projection (using DNASTAR) of the TMD of NCT 
and Sec71p reveals a similar distribution of polar amino acid residues on one side of the helix (orange residues). These residues in Sec71p (but also 
Sec12p) have been shown to be critical for Rer1p binding. (right) Amino acid sequence of the TMDs of Rer1p interacting proteins as well as those of PEN-2, 
secretases, and TLN. The critical spacing of polar residues is only found in Rer1p interacting proteins (red boxed residues) and is not present in other TMDs 
(yellow boxed residues). The single Gly (green box) in NCT has been related to the binding of Aph-1 (Capell et al., 2003). (B) Sequence alignment of the 
extended TMD of NCT from different species (black/gray indicates identical/conserved residues). The indicated conserved polar amino acid residues, 
including Gly and Tyr within the NCT TMD (T670, G674, S681, T685, and Y686), are mutated to leucine. (C) Co-overexpression of FL-NCT and NCT bearing one 
or more point mutations within the TMD with hRer1p in HeLa cells, followed by coimmunoprecipitation using anti-hRer1p pAb. FL-NCT and NCT/TMDTLN 
are used as positive and negative control, respectively. Mutating individual polar residues extensively interferes with binding to hRer1p. Changing four or 
all indicated residues brings binding levels down to those of the chimeric NCT/TLNTMD. (D) Densitometric scanning and semiquantifi cation of the Western 
blots from C. hRer1p binding for the different mutants is normalized to FL-NCT.
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to NCT should increase in the absence of APH-1. We therefore 

used MEFs defi cient for PS, NCT, APH-1a, or APH-1a,b,c 

(Fig. 5) to check this intriguing possibility. As shown in Fig. 5, 

a substantial increase of mRer1p coimmunoprecipitating with 

NCT is observed in single APH-1a and triple APH-1 KO MEFs, 

respectively, strongly arguing in favor of our interpretation that 

APH-1 and Rer1p compete for binding to the same site in NCT. 

The absence of any effect in PS1 and -2 KO MEFs moreover 

underscores the specifi c interaction of Rer1p with NCT and not 

with any other γ-secretase component. These fi ndings extend 

our previous conclusion that Rer1p not only mediates the re-

trieval of NCT from Golgi compartments but also may couple 

this retrieval of NCT with the assembly of the γ-secretase com-

plex in early biosynthetic compartments. To test this, we inves-

tigated the effect of changing Rer1p expression levels on the 

traffi cking of NCT and γ-secretase complex formation.

hRer1p down-regulation affects the 
glycosylation and localization of NCT
The functional relevance of the interaction between NCT and 

Rer1p becomes apparent after knock down of hRer1p in HeLa 

cells. Specifi c RNAi duplexes effi ciently suppressed hRer1p 

levels up to 80–90% at 48 h after transfection (Fig. 6 A). Inter-

estingly, we noticed a slight shift in the mobility of mature gly-

cosylated (endoglycosidase H [endoH] resistant) NCT. This 

hypoglycosylation suggests that Rer1p knockdown affects the 

residence time of NCT in early compartments. To test this, we 

performed metabolic pulse-chase experiments that confi rmed 

the higher mobility of newly synthesized mature NCT after 

Rer1p down-regulation (Fig. 6 B). Moreover, quantifi cation of 

the ratio of mature over total NCT at different time points re-

vealed that Rer1p knockdown considerably delayed mature gly-

cosylation. This is opposite from what is expected if Rer1p 

mediates retrieval of NCT from cis-Golgi or IC. After all, abla-

tion of such a retrieval mechanism would result in higher 

kinetics of NCT passaging to post-Golgi compartments. Our 

results, therefore, suggest that NCT is controlled by additional 

sorting mechanisms that become apparent after scaling down 

the Rer1p-dependent retrieval. This is confi rmed in NCT−/− 

MEFs stably expressing NCT/TMDTLN, i.e., an NCT variant 

bearing the TMD of TLN (see also Fig. 3). In contrast to NCT, 

NCT/TMDTLN failed to become mature glycosylated, indicating 

that it is fully retained in the ER. Moreover, NCT lacking its 

TMD fails to restore any aspect of γ-secretase, including PS1 

endoproteolysis, APH-1 and PEN-2 stabilization, complex for-

mation, and activity (Fig. 6 C). On the other hand, introducing 

the NCT TMD into TLN (TLN/TMDNCT) sharply decreased 

mature glycosylation, suggesting that Golgi passage of TLN/

TMDNCT was substantially delayed as compared with TLN (Fig. 

6 D). Excitingly, Rer1p knockdown (72 h) partially restored 

mature glycosylation, demonstrating that the decrease in TLN/

TMDNCT glycosylation is directly mediated through interaction 

of Rer1p with the NCT TMD. Hence, although the NCT TMD 

mediates an Rer1p-dependent retrieval of NCT in early com-

partments, other yet-to-be-determined domains in NCT confer 

more ER retention independently of Rer1p.

Finally, we explored the effect of Rer1p knockdown on 

the post-Golgi localization of NCT applying cell surface bioti-

nylation. Surprisingly, Rer1p down-regulation resulted in sub-

stantially more mature (though hypoglycosylated) NCT, but not 

the transferrin receptor, at the cell surface (Fig. 6 E). This raises 

the question of how a longer residence time and slower kinetics 

in pre-Golgi compartments still results in increased surface 

expression. Interestingly, the co-increase of other γ-secretase 

components, like PS1 N-terminal fragment (NTF) and APH-1a, 

fosters the idea that Rer1p-dependent and -independent traffi ck-

ing of NCT in early compartments may be directly linked to the 

degree of γ-secretase complex assembly.

Modulating Rer1p expression levels affects 
𝛄-secretase complex assembly
To explore this, we applied blue native PAGE (BN-PAGE) to 

study the effect of Rer1p expression on complex formation. 

Rer1p was down-regulated using RNAi (48 h) in HeLa, WT, 

and PS1 and -2 KO MEFs or, alternatively, up-regulated by 

transient overexpression (36 h) in HeLa cells (Fig. 7, A and B). 

In mock-transfected cells, NCT immunostaining typically re-

veals four bands on BN-PAGE. The �140-kD band is stained 

with only anti-NCT antibody, whereas the other two bands 

between 150 and 440 are subcomplexes of NCT–APH-1 and 

NCT–APH-1–PS1-CTF, respectively, and the �440-kD band is 

the mature complex. When Rer1p is down-regulated, the rela-

tive amount of mature γ-secretase complex is clearly increased 

both in HeLa cells and in WT MEFs, in line with the cell surface 

biotinylation data discussed in the previous paragraph. In addi-

tion, we observe a decrease of the NCT–APH-1 subcomplex 

and an increase of the NCT–APH-1–PS1-CTF subcomplex. 

This suggests that in the absence of Rer1p, the NCT–APH-1 

subcomplex is more rapidly converted to more complete com-

plexes. This was confi rmed in an overexpression experiment 

showing that high expression of Rer1p in HeLa cells resulted in 

relatively lower levels of mature complexes and an increase of 

subcomplexes (Fig. 7 B). Because altering the levels of Rer1p 

affects the NCT–APH-1 subcomplexes, we hypothesized that 

Rer1p interacts with NCT at a very early stage in γ-secretase 

Figure 5. Rer1p competes with APH-1 for binding to NCT. Triton X-100 
extracts of WT MEFs and MEFs defi cient in PS1 and -2, APH-1a, 
APH-1a,b,c, and NCT were used for coimmunoprecipitation experiments with 
mAb 9C3 against NCT to test whether Rer1p interacts with NCT in the ab-
sence of other γ-secretase complex components. In WT and PS1 and -2 KO 
MEFs, equal levels of endogenous Rer1p coimmunoprecipitated, and these 
levels clearly increased in APH-1a single and even more in APH-1a,b,c KO 
MEFs (arrow). As expected, no binding is observed in NCT−/− MEFs. This 
suggests that APH-1 isoforms compete with Rer1p for binding to NCT. The 
asterisk indicates a nonspecifi c band.
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complex assembly. The simplest interpretation of our data is 

that the Rer1p–NCT interaction titrates the amount of NCT 

available for binding to APH-1. Further support for this idea 

comes from an experiment in PS1 and -2 KO MEFs, in which no 

mature complex is generated. Because Rer1p down-regulation 

results in a sharp decrease of remaining NCT–APH-1 subcom-

plexes, and no PS and almost no PEN-2 is present in these cells, 

Rer1p must interfere at the level of the NCT–APH-1 subcom-

plex. In conclusion, the longer residence time in early compart-

ments as a result of Rer1p knockdown (Fig. 6 B) appears to also 

promote complex assembly (Fig. 7). Hence, we provide strong 

evidence that the regulation of full complex assembly is tightly 

linked with ER-Golgi recycling. Consequently, complex assembly 

may ultimately mask Rer1p-dependent and -independent 

retrieval/retention motifs, enabling complexed NCT to escape 

quality control in early compartments. Hence, increased com-

plex formation due to Rer1p knockdown may therefore also ex-

plain the increased surface expression of γ-secretase components, 

as these are stable and long-lived components (Fig. 6 E).

hRer1p expression levels also modulate 
𝛄-secretase activity
If hRer1p is rate limiting for the assembly of the complex, it 

 becomes important to know whether it is also rate limiting for 

γ-secretase activity. To test this, APP-C99, a direct γ-secretase 

substrate, was overexpressed in HeLa cells together with hRer1p 

or in conjunction with down-regulation of hRer1p, followed by 

metabolic labeling and immunoprecipitation of newly produced 

Aβ (Fig. 7 C). Signifi cantly more Aβ was secreted from hRer1p 

down-regulated cells, whereas the reverse effect could be  observed 

Figure 6. Rer1p functions in NCT recycling 
between ER and Golgi. (A) hRer1p down-
 regulation affects NCT glycosylation. Western 
blot analysis of extracts from control and RNAi-
treated HeLa cells pretreated without (NT) or 
with endoH (H) before SDS-PAGE. Knock down 
of hRer1p by >80% revealed an increased 
mobility of endoH-resistant (mature glycosyl-
ated) NCT (48 and 72 h, RNAi, H lane). (B) 
Representative metabolic pulse-chase experi-
ment showing that Rer1p knockdown results in 
a higher mobility of the mature endoH-resistant 
NCT (arrowhead). Quantifi cation of the en-
doH-resistant/total NCT over time (mean ± 
SEM) shows that the maturation of newly syn-
thetized NCT is considerably delayed upon 
Rer1p knockdown, suggesting a longer resi-
dence time in early biosynthetic compartments. 
(C) NCT/TMDTLN is retained in the ER. Western 
blot of MEF WT, NCT−/− stably transduced 
with NCT, or NCT/TMDTLN (Fig. 3 A). In con-
trast to NCT, NCT/TMDTLN remains fully imma-
ture and fails to rescue PS1 endoproteolysis, 
PEN-2 and APH-1 stability, and APP-CTF process-
ing. BN-PAGE clearly demonstrates that the 
TMD of NCT is required for interaction and 
γ-secretase complex formation. The black line 
indicates that the NCT−/− lanes were run on 
remote slots of the same gel. (D) The NCT TMD 
mediates an Rer1p-dependent ER-Golgi re-
trieval when introduced in a TLN reporter. 
TLN/TMDNCT, when stably transduced in 
NCT−/− MEF, presents with a sharp decrease 
in the levels of mature glycosylated chimeric 
TLN as compared with WT TLN. Subsequent 
down-regulation of endogenous Rer1p rescues 
mature glycosylation of TLN/TMDNCT (indicated 
by asterisk), demonstrating that Rer1p mediates 
its recycling/retrieval in early compartments 
through TMD interactions. (E) Western blot anal-
ysis of cell surface biotinylated proteins after 
48 h of hRer1p knockdown. Down-regulation 
of hRer1p substantially increased the cell 
 surface levels of mature NCT, PS1-NTF, and 
APH-1 in comparison to control treated cells, 
whereas transferrin receptor (Tfr) levels were 
unaffected. Equal inputs were used for all con-
ditions, as shown by the total extracts.
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when hRer1p was overexpressed. However, the possibility that 

these changes in Aβ production are indirectly caused by an altered 

traffi cking of APP-C99 due to a change in hRer1p levels cannot 

be excluded. Therefore, direct γ-secretase activity was tested in 

a cell-free assay (Fig. 7 D). Here, cell extracts were mixed with 

recombinant fl ag-tagged APP-C99 (Kakuda et al., 2006). More 

APP intracellular domain (AICD; Fig. 7 D) was produced from 

membranes generated from cells that were down-regulated for 

hRer1p, arguing for a higher total γ-secretase activity in these 

cells. In conclusion, the change in mature γ-secretase complex 

levels caused by altering the expression of hRer1p as observed 

by BN-PAGE correlated well with the changes in γ-secretase 

activity, indicating that hRer1p regulates γ-secretase activity.

Discussion
In this study, we identify Rer1p as a novel limiting factor in the 

stepwise assembly of the γ-secretase complex. Rer1p binds 

NCT in a region that also involves the binding with other 

γ-secretase components, notably, PS1 and APH-1. We also 

show that Rer1p is a resident protein of the IC/cis-Golgi, indicating 

that Rer1p acts as a retrieval receptor for ER-Golgi recycling of 

NCT. We propose that it negatively regulates the availability of 

NCT for assembly in the NCT–APH-1 subcomplex. By inter-

fering with the initial steps of complex assembly, Rer1p expres-

sion controls total levels of γ-secretase complexes and, hence, 

activity in the cell.

The evidence that Rer1p plays a key role in complex as-

sembly is, in the fi rst place, based on the identifi cation of impor-

tant binding requirements in the TMD of NCT. Although short 

regions adjacent to the TMD contribute to binding, especially 

the polar residues within the NCT TMD are crucial, and mutat-

ing one or more of them affects binding to Rer1p to a large extent. 

These residues are also important for the interaction of NCT 

with APH-1 (Capell et al., 2003) and indicate that both proteins 

compete for binding to NCT. This is strongly supported by our 

fi ndings that Rer1p binding to NCT is substantially increased in 

APH-1 KO MEFs.

Figure 7. Changing the expression levels of Rer1p affects 
𝛄-secretase complex assembly and activity. (A and B) MEF WT, 
PS1 and -2 KO, and HeLa cells with normal and down-regulated 
Rer1p (48 h) and HeLa cells with transiently overexpressed 
 hRer1p (36 h) were extracted in 0.5% dodecylmaltoside and 
processed for BN-PAGE. Control cells were transfected with 
empty vector (mock) or nonspecifi c duplex oligonucleotides 
(control). Western blot analysis for the different γ-secretase compo-
nents indicates that down-regulation results in relatively increased 
levels of mature complexes (indicated by black box) in both 
HeLa (A; RNAi vs. control lane) and MEF WT cells (B). In contrast, 
overexpression of Rer1p in HeLa cells resulted in relatively less of 
the mature complex and more of the intermediate complexes. 
Suppression of hRer1p in MEF PS1 and -2 KO cells affects the sta-
bility of the NCT–APH-1a subcomplex (A). Identifi cation of differ-
ent dissociated complexes was done according to Fraering et al. 
(2004). Routinely, extract samples were tested on SDS-PAGE 
followed by Western blotting to verify the effi ciency of Rer1p 
overexpression or down-regulation in HeLa and MEFs (bottom left). 
(C and D) hRer1p levels inversely correlate with cellular 
γ-secretase activity. (C) After 24 h of overexpression or 48 h of 
down-regulation (RNAi, specifi c duplex; NS, nonspecifi c control) 
of hRer1p in combination with overexpression of APP-C99, HeLa 
cells were metabolically labeled for 4 h as described previously 
(Annaert et al., 1999). Total secreted Aβ and APP-C99 were, 
respectively, immunoprecipitated from media and extracts and 
quantifi ed by phosphorimaging. The ratio of Aβ to APP-C99 is 
signifi cantly decreased or increased when hRer1p levels are up- 
or down-regulated (mean ± SEM; n = 5; t test *, P < 0.03; **, 
P < 0.05). (D) Cell-free γ-secretase assay. Extracts from control 
and hRer1p knockdown HeLa cells were mixed with affi nity-puri-
fi ed recombinant APP-C99-FLAG (from transfected γ-secretase–
 defi cient MEFs) and incubated at 37°C. Newly produced 
AICD-FLAG is clearly increased after hRer1p knockdown, indicat-
ing enhanced levels of γ-secretase activity.
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The presence of polar residues alone, however, is not suf-

fi cient for interaction, as the second TMD of PEN-2 bears three 

polar residues but fails to interact with Rer1p (Fig. 1). The addi-

tional structural feature becomes apparent when we project the 

TMD of NCT in a helical wheel. Now the critical residues form 

a hydrophilic patch on one side of the α-helix, implying that 

their spacing in the TMD is critical for binding. When aligned, 

the polar residues within the TMD of NCT fl ank a highly hydro-

phobic core domain, and this spaced distribution is also encoun-

tered in the TMD of other Rer1p-binding proteins, like Sec12p, 

Sec71p, and Fet3p. Moreover, in the case of Sec71p-Rer1p, the 

length of this hydrophobic core is indeed essential for binding 

(Sato et al., 2003). Collectively, it can be easily envisaged, also 

in our study, that mutating any of the fl anking polar residues ex-

pands the length of the hydrophobic core as well as decreases 

the size of the hydrophilic patch, both accounting for a decreased 

interaction with Rer1p (Fig. 4). Our study not only extends the 

fi ndings in yeast but also proves that the mechanism Rer1p uses 

to target TMDs is conserved from yeast to mammals.

Mechanistically, the binding of Rer1p to NCT may de-

crease its availability to bind APH-1 and form the initial NCT–

APH-1 subcomplex. Conversely, the binding of APH-1 can 

sterically mask Rer1p interaction, allowing the NCT–APH-1 

subcomplex to escape the Rer1p-dependent retrieval mecha-

nism. However, to get a full complex assembled, mechanisms 

must exist that secure the NCT–APH-1 binding, preventing it 

from shifting back to Rer1p interaction. Because the NCT–

APH-1 subcomplex likely constitutes the earliest step in assem-

bly, it may act as a scaffold for the sequential association of PS1 

and PEN-2 (Capell et al., 2005; Niimura et al., 2005). PEN-2, 

eventually in coordination with APH-1 (Luo et al., 2003), acts 

to stabilize and promote PS1 endoproteolysis. Here, the binding 

of the C terminus of PS1 to the TMD of NCT (Kaether et al., 

2004) could provide a molecular mechanism to “lock” the 

NCT–APH-1 interaction into a maturing complex. The incorpo-

ration of PS1 could defi nitively prevent Rer1p from binding to 

NCT and reversing the interaction with APH-1. This idea is sup-

ported by the effects of modulating Rer1p expression on com-

plex formation. Overexpression of Rer1p predicts a more active 

deprivation of NCT for APH-1 binding and a slowing down of 

complex formation, as indicated by a decrease in mature com-

plexes. On the other hand, Rer1p knockdown may facilitate the 

binding of APH-1 to NCT, thereby shifting the equilibrium and 

promoting a transition to more complex formation (Fig. 7). The 

fact that we do not see the NCT–APH-1 subcomplex accumu-

lating in these cells is in agreement with the very rapid association 

of PS1 (and PEN-2) with NCT–APH-1 and fast transition to 

mature complexes.

Furthermore, we demonstrate that Rer1p knockdown in 

PS1 and -2 KO MEFs results in substantially lower levels of the 

NCT–APH-1 subcomplexes. Apparently, the combined absence 

of active recycling by hRer1p and the stabilizing PS1–PEN-2 

interactions cause rapid degradation of both NCT and APH-1 

under those conditions. Although we have no proof, we fi nd it 

probable that NCT and APH-1 in these cells are degraded, not 

unlike what is observed in yeast defi cient for Rer1p (∆rer1) and 

Ftr1p (∆ftr1; Sato et al., 2004). Here, unassembled Fet3p, 

a bona fi de target of Rer1p, is more rapidly transported to the 

vacuole for degradation.

We show that endogenous Rer1p resides at steady state in 

the IC/early cis-Golgi, indicating that Rer1p contributes in com-

plex assembly during ER-Golgi recycling. This localization is, 

however, dynamic, as Rer1p readily exits the ER in COPII vesi-

cles in a cell-free ER-budding assay (unpublished data). This is 

in agreement with its rapid recycling and function as a retrieval 

receptor in yeast and mammals (Boehm et al., 1994; Sato et al., 

2001). Interestingly, in γ-secretase–defi cient MEFs (PS1 and -2 

or APH-1 KO), NCT still exits the ER (unpublished data), and 

the fact that it remains fully immature can only be explained 

by an active retrieval mechanism preventing it from passing 

through the Golgi. That Rer1p is involved herein is indicated 

by its effects on complex formation outlined in the Results 

section. Moreover, the observed slow maturation of NCT 

(Herreman et al., 2003) indicates that NCT retrieval is a repeti-

tive process, increasing or even titrating its chance to bind the 

cognate APH-1. Also, PS1 has a long half-life and is concentrated 

over COPI-coated areas of the IC, indicating that it is actively 

retrieved (Rechards et al., 2003). Except for an ER-retention 

sequence in the C terminus (Kaether et al., 2004), no retrieval 

motifs are recognized in PS1, suggesting that PS1, like NCT, 

also depends on retrieval receptors. If so, Rer1p is most likely 

not involved here because we did not coimmunoprecipitate PS1 

(and also PEN-2) with Rer1p antibodies. A potential candidate 

is TMP21, a member of the p24 family of retrieval receptors 

that was found to interact with PS1 (Chen et al., 2006). Surpris-

ingly, the functional relevance of this interaction was apparently 

not related to the established role of TMP21 in protein transport 

in the early secretory pathway.

Nevertheless, at this stage, our study unequivocally dem-

onstrates that γ-secretase complex assembly extends from ER 

to IC and cis-Golgi compartments and is at least under the 

active control of a Rer1p-dependent recycling mechanism. Our 

fi ndings may, therefore, explain the existing controversy on the 

subcellular location of γ-secretase assembly ranging from the 

ER (Capell et al., 2005) to Golgi/trans-Golgi network compart-

ments (Baulac et al., 2003).

Although the yeast homologue Rer1p has been known for 

quite some time (Nishikawa and Nakano, 1993; Boehm et al., 

1994; Sato et al., 1996, 1997, 2003), NCT is the fi rst mammalian 

membrane protein identifi ed that utilizes this Rer1p-dependent 

recycling. Irrespective of the topology, Rer1p binds to similar 

structural motifs within the TMD of identifi ed targets (Sato et al., 

1996, 2003, 2004), except for Mns1p (Massaad and Herscovics, 

2001). A surprising observation, however, is that depending on 

the ligand the Rer1p retrieval mechanism serves different pur-

poses. Rer1p functions in the retrieval of escaped ER-resident 

proteins, such as Sec12p, Sec71p, and Sec63p or can recycle 

components of the vesicle fusion machinery, like Sed4p. Strik-

ingly, Rer1p also interacts with proteins that are not yet assem-

bled in their corresponding multisubunit complexes, for example, 

Fet3p (Sato et al., 2004) and NCT (this study).

Fet3p, a subunit of the yeast iron transporter, is only re-

trieved by Rer1p as long as it is not assembled with its cognate 

subunit Ftr1p (Sato et al., 2004). These authors proposed that 
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interaction with Ftr1p conceals Rer1p from binding to Fet3p, 

thereby triggering escape from the retrieval mechanism. This 

mechanism constitutes a secondary ER quality-control system 

(Ellgaard and Helenius, 2003) that couples the assembly stage 

of multimeric protein complexes to forward transport. Control 

at the stage of complex assembly has also been demonstrated for 

other multisubunit complexes, including major histocompatibil-

ity complex class II, KATP channels, and cystic fi brosis trans-

membrane conductance regulator (Heusser and Schwappach, 

2005). In addition to detecting the TMDs of unassembled sub-

units, a common alternative mechanism is based on masking of 

Arg-based ER-sorting motifs. However, these motifs are local-

ized in cytosolically exposed regions of individual subunits 

(Michelsen et al., 2005). In any case, the quality-control sys-

tems ensure that only correctly assembled complexes could 

leave their place of synthesis and reach the compartments where 

their action is required. Although the Rer1p-dependent retrieval 

of NCT is most reminiscent of that of unassembled Fet3p, it 

appears to be more complicated. Indeed, and aside from the 

Rer1p-dependent retrieval, we show that NCT traffi cking is 

counterbalanced by an Rer1p-independent ER retention–based 

mechanism mediated through its ecto- or intracellular domain 

(Fig. 6). Therefore, NCT recycling in early compartments is 

subject to at least a dual ER quality-control system that serves 

to control the residence time for NCT in early compartments. 

This time window defi nes the chance to interact with properly 

folded APH-1 and, thus, the amount of initial NCT–APH-1 sub-

complex formation. Excitingly, our fi ndings clearly demonstrate 

that these secondary ER quality controls provide the cell with 

a mechanism to tightly control the quantitative levels of the 

γ-secretase complex and, hence, activity in distal compart-

ments, such as the cell surface and endosomes (Kaether et al., 

2006; Rajendran et al., 2006).

In conclusion, our data establish Rer1p as a limiting factor 

and transport regulator in initial complex assembly through 

binding to NCT. Moreover, we demonstrate the feasibility to in-

terfere with complex assembly and activity by altering Rer1p 

expression levels. Controlling Aβ production via modulation of 

γ-secretase is an important therapeutic strategy in Alzheimer’s 

disease. Herein, PS1 has caught most of the focus partly be-

cause it harbors the catalytic site of the complex. Additionally, 

the fact that proteolysis and binding/docking occurs in spatially 

distinct domains has increased at least the chance to develop 

specifi c inhibitors (Annaert et al., 2001). Our fi ndings, together 

with the role of NCT as a substrate receptor (Shah et al., 2005), 

defi nitely augment the critical role of NCT in the complex. The 

identifi cation of the binding motif for Rer1p in NCT and the 

competition with APH-1 may open opportunities for drug 

development yet to be explored.

Materials and methods
Antibodies and cell lines
Rabbit pAb against human PS1-NTF (B14.5), mouse PS1-NTF and -CTF 
(B19.2 and B32.1, respectively; Annaert et al., 1999), NCT (pAb B59.4; 
Herreman et al., 2003), APH-1aL (B80.2; Nyabi et al., 2003), PEN-2 
(B95.1), APP (B63.3; Esselens et al., 2004), Aβ (B104.1; Spasic et al., 
2006), TLN (B36.1 and biotinylated B36.1; Annaert et al., 2001), and 

mAb 9C3 against NCT (Esselens et al., 2004) have been characterized 
before. pAbs SB129 (anti-PS1), anti-KDELr (erd2), and -BAP31 were pro-
vided by C. Van Broeckhoven (University of Antwerp, Antwerp, Belgium), 
H.-D. Schmitt (Max Planck Institute for Biophysical Chemistry, Göttingen, 
Germany), and M. Reth (Max Planck Institute for Immunology, Freiburg, 
Germany). mAbs 5.2 against PS1 and Ergic-53 were obtained from 
B. Cordell (Scios, Fremont, California) and H.-P. Hauri (University of Basel, 
Basel, Switzerland), respectively. Polyclonal anti-murine Rer1p was gener-
ated in New Zealand white rabbits using the C-terminal sequence C K R R Y K-
G K E D V G K T F A S  coupled to KLH (Pierce Chemical Co.) as the antigen 
(PickCell Laboratories). Additional antibodies used follow: mAb against 
NCT ectodomain (amino acids 168–289; BD Biosciences), the transferrin 
receptor (Tfr; cl H68.4; Zymed Laboratories), GM130 (BD Biosciences), 
and actin (cl AC-15; Sigma-Aldrich). Studies were performed in HeLa cells, 
WT MEFs, and MEFs defi cient for PS (PS1 and -2 KO; Nyabi et al., 2003), 
APH-1a, APH-1a,b,c (Serneels et al., 2005), or NCT (a gift from P. Wong, 
Johns Hopkins University, Baltimore, MD; Li et al., 2003). All cell lines 
were routinely grown and maintained in DME/F12 supplemented with 
10% FCS.

Confocal laser-scanning microscopy and immunofl uorescence
After HeLa cells were incubated at 37 or 15°C for 3 h, they were fi xed in 
4% paraformaldehyde and processed for double immunofl uorescent label-
ing as described before using Alexa 488 and 568 conjugated secondary 
antibodies (Invitrogen) and TOPRO-3 to label nuclei (Esselens et al., 2004). 
Images were captured on a confocal microscope (Radiance 2100; Carl 
Zeiss MicroImaging, Inc.) connected to an upright microscope (Eclipse 
E800; Nikon) and using an oil-immersion plan Apo 60× A/1.40 NA 
objective lens. Final processing was done using Lasersharp 2000 (Carl 
Zeiss MicroImaging, Inc.) and Photoshop (Adobe) and restricted to limited 
linear color balance adjustments to interpret merged pictures.

Cloning
To obtain NCT without intracellular domain (NCT∆IC) and NCT without 
both intracellular and transmembrane domains (NCT∆[TMD + IC]), FL 
mouse NCT, subcloned in pGEM-T (Promega), was used as a template in 
PCR reactions with the same sense primer (including a SalI restriction site) 
and two different antisense primers, including a stop codon, a fl ag-tag 
sequence, and NcoI restriction site. In NCT∆IC, 16 C-terminal amino acids 
are missing, and in NCT∆(TMD + IC), an additional 24 amino acids are 
omitted. PCR products were cloned fi rst in pGEM-T to generate SalI ends 
and then further into the XhoI restriction site of pSG5** (pSG5 with ex-
tended multiple cloning site). The NCT construct lacking the ectodomain, 
except the signal peptide (NCT∆EC), was generated using gene splicing 
by overlap extension reaction PCR (SOE-PCR; Horton et al., 1993). Restric-
tion enzymes SalI and NcoI were used for subcloning the fi nal PCR product 
from SOE reaction into pMSCV (CLONTECH Laboratories, Inc.); using BglII 
and BamHI restriction enzymes, the NCT∆EC construct was further sub-
cloned from pMSCV into the BamHI restriction site of pSG5**. NCT∆EC 
contains the last 43 amino acids of NCT. The NCT∆(long TMD + IC) con-
struct was made by introducing a stop codon at position 656 of mouse 
NCT (subcloned in pSG5**) using site-directed mutagenesis (Stratagene).

cDNAs encoding mouse NCT and TLN, subcloned in pSG5**, 
were used for introducing restriction sites MluI and AgeI by site-directed 
mutagenesis at codon positions 660 and 690 of NCT and at codon posi-
tions 828 and 858 of TLN, respectively. These codon positions correspond 
to the fl anking residues of the NCT and TLN TMDs. The introduced restric-
tion sites were used to swap the coding sequence of the TMDs of the two 
proteins (NCT/TMDTLN and TLN/TMDNCT).

Amino acids T670, G674, S681, T685, and Y686 were mutated to 
L by site-directed mutagenesis using NCT subcloned in pSG5** as a tem-
plate. Human Rer1 is subcloned in pCB6 using HindIII and XbaI. All con-
structs were transiently overexpressed in HeLa cells for interaction studies. 
The cDNAs encoding TLN, NCT, NCT/TMDTLN, and TLN/TMDNCT were 
cloned in the retroviral vector pMSCV and packaged in retroviruses, which 
were used to transduce MEF NCT−/− cells, all according to established pro-
cedures of virus production and puromycin selection (Spasic et al., 2006).

Coimmunoprecipitation
For coimmunoprecipitation experiments, cells were harvested in PBS, centri-
fuged (800 g for 10 min), and lysed in 125 mM NaCl, 50 mM Hepes, pH 
7.4 (supplemented with 1% Triton X-100 or CHAPS and Complete protease 
inhibitors [Roche]) for 30 min at 4°C. After centrifugation (16,000 g for 15 
min), cleared cell extracts were incubated overnight at 4°C with protein 
A beads and specifi c antibodies (anti-NCT mAb 9C3 or affi nity- purifi ed 
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pAb B59.4) or with anti-rabbit IgG beads (Rabbit IgG TrueBlot set) and 
anti-hRer1 pAb. In the case of biotinylated B36.1 pAb, streptavidin-
Sepharose beads (GE Healthcare) were used (Esselens et al., 2004). Immuno-
precipitates were solubilized in NuPAGE sample buffer (Invitrogen) under 
reducing (for anti-hRer1 and biotinylated B36.1) or nonreducing condi-
tions (for anti-NCT), electrophoresed on 4–12% NuPAGE Bis-Tris gels in 
MES running buffer (Invitrogen) and processed for Western blotting and 
immunodetection using ECL (PerkinElmer). When mature glycosylation was 
studied, fractions were treated with endoH (10 mU for 18 h at 37°C) as 
described previously (Spasic et al., 2006) before SDS-PAGE.

Protein cross-linking
Cells were harvested in PBS, centrifuged (800 g for 10 min), and homoge-
nized in 250 mM sucrose, 10 mM Hepes, and 1 mM EDTA, pH 7.4, 
supplemented with protease inhibitors using a ball-bearing cell cracker 
(10 passages; clearance 10 μm; Isobiotec). After low-speed centrifugation 
(400 g for 10 min), the postnuclear supernatant was ultracentrifuged 
(100.000 g for 1 h). Microsomal membranes resuspended in 125 mM 
NaCl and 50 mM Hepes, pH 7.4, were used for reaction with DTBP 
(Pierce Chemical Co.) at room temperature for 30 min. DTBP is thiol-
cleavable, water-soluble cross-linker. The reaction was quenched with 50 
mM Tris, pH 7.5, at room temperature for 15 min. Proteins were extracted 
by adding Triton X-100 to a fi nal concentration of 1%, followed by a 30-
min incubation at 4°C. After centrifugation (16,000 g for 15 min), cleared 
cell extracts were used for coimmunoprecipitation as indicated in the previ-
ous paragraph. To cleave DTBP, immunoprecipitates were solubilized in 
NuPAGE sample buffer with 4% β-mercaptoethanol and incubated at 
100°C for 10 min before electrophoresis.

RNAi
For RNAi, the target sequence 5′-A A T A T C A G T C C T G G C T A G A C A -3′ was 
used in human Rer1 cDNA and 5′-C C T G G T G A T G T A C T T C A T C A T G C T T -3′ 
in mouse Rer1 cDNA. The GL2 luciferase RNAi duplex was used as a non-
specifi c control. Oligonucleotides (human Rer1 and Stealth [Dharmacon 
Research, Inc.] and mouse Rer1 [Invitrogen]) were annealed and trans-
fected using Lipofectamine (MEF) or Oligofectamine (Invitrogen; HeLa) as 
described previously. The cells were analyzed 48 or 72 h after transfec-
tion or further processed for metabolic labeling. In this case, control and 
RNAi down-regulated HeLa cells were pulse labeled with [S35]methionine/
cystein (Translabel; MP Biomedicals) for 30 min, washed, and chased in 
DME supplemented with 1% FCS for 0, 3, and 6 h. Cleared 1% Triton 
X-100 extracts were subjected to immunoprecipitation with 9C3 mAb 
(anti-NCT). Bound fractions were denaturated (10 min at 70°C) and 
incubated with endoH (1 U/50 μl for 18 h at 37°C). Labeled 
proteins were separated by SDS-PAGE on 7% Tris-Acetate gels (Invitrogen) 
and quantifi ed using phosphorimaging (Typhoon; Molecular Dynamics) 
and ImageQuant software.

BN-PAGE
Microsomal membranes were resuspended in buffer containing 0.5% dodec-
ylmaltoside, 20% glycerol, 25 mM Bis-Tris/HCl, pH 7.0, and protease inhibi-
tors and solubilized for 1 h on ice. After ultracentrifugation (100,000 g 
at 4°C for 30 and 15 min), the cleared supernatant was collected. For 
each sample, the same amount was mixed with 5× BN sample buffer 
(2.5% Coomassie brillant blue G-250, 50 mM BisTris-HCl, 250 mM 
6-amino-caproic acid, pH 7.0, and 15% sucrose) and stored overnight at 
4°C. BN-PAGE was performed as described previously (Herreman et al., 
2003) with some modifi cations. Samples were loaded on a 5–16% poly-
acrylamide gel and electrophoresed (100 V for 30 min followed by 1 h at 
200 V). For the fi nal run (1 h 50 min), the Coomassie brilliant blue G-250 
was omitted from the cathode buffer.

Cell surface biotinylation
For cell surface biotinylation, 0.5 mg/ml NHS-SS-biotin (Pierce Chemical 
Co.) was used as described previously (Spasic et al., 2006), and biotinyl-
ated proteins were isolated overnight (4°C) using streptavidin-Sepharose 
beads (GE Healthcare). Bound material was processed for Western blot-
ting as described.

𝛄-Secretase activity assays
Subconfl uent (70–80%) HeLa cells were cotransfected with pcDNA3.1-APP-
C99 and either a control empty pSG5 vector, pCB6-hRer1 using GeneJuice 
(VWR), or RNAi duplex oligonucleotides for hRer1p (see RNAi section) 
 using Lipofectamine 2000 according to the manufacturer’s instructions. After 
24 h of hRer1p overexpression and 48 h of hRer1p down-regulation, cells 

were metabolically labeled (100 μCi 35S-Translabel/dish in Met/Cys-free 
DME) for 3–4 h in a CO2 incubator. Next, conditioned media were col-
lected while cell layers were scraped and extracted in TBS containing 1% 
Triton X-100. Both cleared media and cell extracts were subjected to immuno-
precipitation using 20 μl protein G–Sepharose beads, including anti-Aβ 
pAb B104.1 (Spasic et al., 2006) or anti-APP B63.3 (1:200), respectively, 
and bound material was separated on 10% NuPAGE gels in MES buffer 
(Invitrogen), dried, and analyzed by phosphorimaging (Typhoon) and 
 ImageQuant software (Molecular Dynamics).

For the cell-free γ-secretase assay, CHAPS-extracted microsomal 
fractions derived from HeLa cells either overexpressing hRer1p or with 
down-regulated hRer1 levels (see RNAi section) were mixed with recombi-
nant APP-C99-FLAG affi nity purifi ed from transiently transfected APH-
1a,b,c−/− MEFs exactly as described previously (Kakuda et al., 2006). 
After incubation, newly produced AICD was separated on 10% NuPAGE 
gels in MES buffer and processed for Western blotting and ECL.
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