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Temporal trends in insect numbers vary across studies and habitats, but
drivers are poorly understood. Suitable long-term data are scant and
biased, and interpretations of trends remain controversial. By contrast,
there is substantial quantitative evidence for drivers of spatial variation.
From observational and experimental studies, we have gained a profound
understanding of where insect abundance and diversity is higher—and
identified underlying environmental conditions, resource change and dis-
turbances. We thus propose an increased consideration of spatial evidence
in studying the causes of insect decline. This is because for most time
series available today, the number of sites and thus statistical power strongly
exceed the number of years studied. Comparisons across sites allow quanti-
fying insect population risks, impacts of land use, habitat destruction,
restoration or management, and stressors such as chemical and light pol-
lution, pesticides, mowing or harvesting, climatic extremes or biological
invasions. Notably, drivers may not have to change in intensity to have
long-term effects on populations, e.g. annually repeated disturbances or
mortality risks such as those arising from agricultural practices. Space-
for-time substitution has been controversially debated. However, evidence
from well-replicated spatial data can inform on urgent actions required to
halt or reverse declines—to be implemented in space.
1. How spatial evidence can help
The term ‘insect decline’ typically refers to a temporal pattern, namely a signifi-
cant downward trend of insect abundance or diversity over multiple years at a
given location, or consistent negative interannual trends across locations. Vari-
ation in temporal trends is typically based on comparison in more than one
location, making it also a spatial pattern. Can analyses across sites or regions,
thus, reveal drivers of declines or increases? Might comparisons across locations
alone suffice to draw inference about causes and to suggest mitigation strategies,
even without long-term time series? Hence, does space-for-time substitution
help to understand insect declines?

Here, we argue that analyses of potential drivers of declines and hazards, as
well as mitigation strategies and conservation measures [1,2], should addition-
ally make use of the substantial body of literature and evidence from studies
across space, i.e. relationships with environmental conditions or land use
across sites. The existing (and growing) knowledge on effects in space exceeds
the potential for detectable drivers of temporal trends within reasonable time
(figure 1). With some exceptions (e.g. [3]), the number of sites is usually
higher than the number of years (e.g. [4,5]), hence spatial analyses hold a
high statistical power. Observational, comparative studies across sites and
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Figure 1. Schematic representation of two trends of insect abundance in two
locations. Generally, environmental variation in space (across locations) can
help to unravel the drivers of the temporal decline. The main argument in
this paper is that spatial comparisons during a single year (t1) alone can
already hold valuable information for drivers of declines when insights
from long-term time series of insects and drivers are limited. This hypothesis
assumes that populations were continuously affected by the environmental
gradient over time (before t1) and had similar starting conditions or carrying
capacity.
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gradients are an important approach in ecology, and a useful
source of evidence for environmental drivers of variation in
insect abundance and diversity. Moreover, controlled exper-
imental treatments in situ or uncontrolled ‘natural
experiments’ such as different land-use practices by farmers
or other gradients in habitat disturbance, management and
restoration [6,7] can be particularly informative for the
impact of drivers. From these previous works, we know mul-
tiple environmental hazards and land-use impacts on insect
communities, and it seems likely that such drivers of spatial
trends are also relevant for temporal declines despite theore-
tical concerns for space-for-time substitution (see below).
2. Limitations of time series
Evidence about long-term trends of insects over several
decades is scarce and poorly replicated [8], as it requires
long-term monitoring with standardized methodology.
Some historical, regional records of species occurrences are
available [9–11], partly involving community scientists
[4,12], but are strongly biased towards Europe and North
America [13–15].

In order to search for drivers of the decline, we typically
focus on the interaction term between time and environment
(T × E) or compare different independent scenarios, e.g. habi-
tats or regions (figure 1). However, until the temporal
resolution improves in the future, we could also focus on E
alone to assess the relative contribution of different drivers,
irrespective of their contribution to T × E. An evaluation of
potential drivers and actions to promote favourable environ-
mental conditions in space may also prove useful regardless
of whether it is a major driver of the temporal decline (T × E).

Stimulated by the debate on—and relevance of—insect
declines, many monitoring campaigns have started recently
and will reveal important insights into insect trends in the
decades to come. By contrast, short time series lack the stat-
istical power to detect real temporal trends ([16], see also
[17] versus [18]). Similarly, a recent controversy about appro-
priate measures for diversity losses such as the ‘Living Planet
Index’ highlights the sensitivity of limited time-series trends
to outliers, bias and inclusion criteria (e.g. [19,20]). Sparked
by such concerns, several studies have even challenged the
existence of insect declines. For example, a prominent study
[21] has questioned declines in monitoring data across several
Long Term Ecological Research Network (LTER) sites in the
United States, but suffered from statistical flaws [22] and
ignored a concomitant increase of sampling intensity, which
led to spurious conclusions [23]. Appropriate interpretations
of temporal trends require a sound knowledge of environ-
mental co-variables—in both space and time. Agricultural
intensification, for example, goes along with larger field sizes,
fewer buffer strips and hedges, reduced crop diversity and
increased application of pesticides and fertilizers [15]. These
and several other covarying environmental factors may be
plausible drivers, but have not been commonly quantified
over time with existing insect monitoring schemes. Scientific
debates on trends and their causes are therefore ongoing
[24,25]. When the evidence for declines is mixed or weak, a
search for underlying mechanisms and recommendations for
action remains even more challenging [15,26]. Critically, consid-
ering that insect communities have been studied intensively,
one question arises: do we really understand so little?

Irrespective of the lengths of time series, variation of
trends (slopes) across space is pronounced and partly
obscures the detection of regional average or even global
trends. This variation likely corresponds to variation in the
multiple drivers that act in parallel or interact in complex
ways. In a global meta-analysis, negative trends prevailed
in terrestrial ecosystems while positive trends were found in
freshwater ecosystems [14]. Like other meta-analyses (see
[16]), this study needed to compare trends of different quality
and time length; hence data inclusion criteria and conclusions
were subject to controversies [27,28]. Despite such challenges,
it is key to understand the drivers of variation in trends in
space to unravel the multifactorial causes of a decline in
time. Importantly, spatial variation is meaningful—and has
the potential to shift the focus on mere statistical detectability
of insect declines to an improved understanding of the dri-
vers underlying the evident losses in individual ecosystems
and locations [16].
3. Evidence for spatial drivers
In general terms, negative population growth can occur
through low birth rates (e.g. mediated through resource limit-
ation or changes in environmental conditions) or through
high mortality rates (e.g. due to disturbances and hazards
such as pesticides, mowing, ploughing, pollution, pathogens
and predation), or both. Many disturbances, including agri-
cultural practices, are continuous, repeated annually and
have additive effects. While disturbance rates may change
over time (e.g. by increasing mowing frequency or pesticide
application), it is important to note that their repetition (or
continuation) alone at the same level may qualify as a
driver of insect declines. Even immediate but discontinued
impacts may contribute to more long-lasting declines by
‘lag effects’ of reduced population sizes or genetic disadvan-
tages of small populations. For the future, it will be important
to disentangle and understand resource- versus disturbance-
mediated effects, immediate or lag effects, reversible and
long-term drivers on insect populations and communities
(see electronic supplementary material, Distinguishing con-
tinuous drivers and single events, immediate and lag
responses).
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Figure 2. Example for a driver in space that mirrors a driver in time, illustrated with data on arthropod species richness of 150 German grasslands sampled annually
from 2008 to 2017. (a) Sites surrounded by more agricultural land had over all years a lower number of species (marginal prediction of a Poisson mixed-effects
model: orange line with 95% CI as shaded polygon); in space, the relationship between cover of agricultural land and species richness was negative in every
individual year (grey lines). (b) Arthropod species numbers are lower in sites that are mown more often per year and this relationship was prevalent in all
but two individual years (grey lines). Details on data and analyses are available in the electronic supplementary material.
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Several potential drivers of temporal declines are clearly
detectable in data across space, e.g. when comparing different
land-use categories or intensity levels. For example, along a
gradient of land-use intensity in the 150 grasslands within
the ‘Biodiversity Exploratories’ project [29], a recent study
with a 10-year time series showed that the proportion of
area used as agricultural land around the sampling sites
was a strong predictor (time × agricultural land interaction)
of temporal declines in arthropod biomass, abundance and
species richness [5]. Grasslands surrounded by more agricul-
tural land had stronger declines over time. Note that the
amount of agricultural land in a Central European landscape
is a static, not a dynamic variable within the considered time
frame of one decade. The corresponding relationship is also
evident in space (E), with a negative relationship between
the proportion of agricultural land and insect species richness
in each year of the time series (figure 2a). Thus, in this case,
we can identify important risks and potential drivers from
focusing on space alone within few years or a single year
only, without the need of compiling long-term data.

In the same 150 grasslands, we also found significant
spatial declines with land-use intensity in 52% of the grass-
hopper [30], 34% of the cicada [31], 28% of the moth [32]
and 19% of the bee and wasp species [33]. Rather than over
time, these trends were analysed in a single year by compar-
ing species’ abundances along the land-use gradient.
Variation in abundance across sites was strongly related to
mowing intensity; individual grasslands were mown from
zero (pastures) to five times per year. Grazing by cows,
sheep or horses had comparably little or no negative effect;
hence meadows had fewer insects than (unmown, but
grazed) pastures. The 10-year time series confirms the nega-
tive effects of mowing intensity reported for grasshoppers,
cicadas, moths and hymenopterans: there was an overall
negative relationship between mowing and arthropod species
richness. The negative spatial trend occurred across almost all
years (figure 2b); hence, it can be often concluded from com-
parisons within a single year. Such strong impacts of mowing
are expected: mowing represents a disturbance with immedi-
ate changes in the structure and microclimate of the
vegetation layer, and particularly a severe mortality risk for
animals. Most insects and spiders face very high losses
during mowing and subsequent processing, with mortality
rates typically over 50–80% resulting from modern machinery
and low cutting height applied in meadows [34,35] or along
road verges [36]. Mowing is repeated every year and can thus
represent a driver of long-term declines irrespective of tem-
poral trends in land-use intensity. Mortalities are,
furthermore, additive with every mowing event within a
year [30]. Mowing by modern machinery—much more than
grazing—thus represents a substantial sink for insect popu-
lations that live in cultivated grasslands and lawns, or in
huge areas provided by road or field margins, either perma-
nently or at least as part of their life cycle [36]. Moreover, it
exerts an extrinsic density-independent mortality risk,
unlike bottom-up regulation by resource limitation or top-
down regulation through predation or pathogens. The high
mortalities in a mown area are often masked by subsequent
recolonization by insects from (unmown) surroundings [30],
but a mere redistribution of surviving individuals does not
compensate for overall losses in populations.

Both mowing and grazing prevent the growth of shrubs
and trees, and increase the habitat suitability for grassland
plants and also for insects that require particular conditions
including warmer microclimates [37]. However, grazing
clearly represents a preferable option to avoid the immediate
large-scale mortality of insects. Similar to losses through
mowing, other drivers of insect decline (e.g. pollution, pesti-
cides, fragmentation) can be systematically studied across
space (table 1).
4. Caveats against space-for-time substitution
We have argued that drivers of spatial variation in insect
abundance, diversity and composition can be similar to



Table 1. Analysing potential drivers of insect decline using time series (left column) or variation across sites (spatial approach, right column). Drivers may cause
immediate responses of insect populations and/or lag effects and may vary in quantity or quality, e.g. pesticide application may become more frequent, more
effective or both. Note that many drivers represent continuous or regular disturbances and are repeated annually, e.g. those related to agricultural practice, so
they do not necessarily have to increase to trigger long-term declines. The list is just exemplary rather than complete, and only a single reference is given as
an example for each driver.

time series spatial approach

(1) local, site-specific drivers

habitat change and land-use intensification

long-term variation in habitat quality or land-use intensification gradients of habitat quality or land-use intensity [30]

change in habitat area and isolation

long-term trajectories of changes in habitat composition comparing habitat islands of varying sizes, shapes

and degrees of isolation [38]

urbanization, sealing

trajectories starting before urbanization comparisons along urbanization gradients [39]

mowing (frequency, timing, speed, machine impact and cutting height)

time series between years or short term before/after mowing [34] variation in mowing regime across meadows [30]

pesticides

change in application frequency or toxicity [40] different farms or application treatments [41], controlled experiments

veterinary medicine (parasiticides, antibiotics)

change in application practice over time [42] comparing different farms [42]

chemical pollution

change in pollution level or quality comparing pollution levels, e.g. heavy metal gradient [43]

light pollution

change in light pollution over time [44] comparing illuminated versus dark sites [45]

eutrophication and fertilization

long-term change in nutrient stocks nutrient variation, e.g. soil N gradient [46]

availability of resources, hosts or mutualistic partners

temporal trends of resources or host plants spatial variation in resource or host plant abundance [47]

fire impacts

increase in fire impacts, trajectories before and after fire events [48] comparing control with burning treatments [49]

traffic, car strikes

change in traffic or car strikes comparing roads with low traffic versus high traffic [50]

restoration

long-term changes with restoration practice comparing restored and unrestored sites [51]

(2) regional, landscape or global drivers

fragmentation, expansion of agricultural areas at the cost of (semi-)natural areas

long-term trajectories of fragmentation fragmentation gradients across the landscape [52]

temperature or drought

long-term trends along with climatic data [40] climatic gradients, e.g. elevation [53]

biological invasions

trajectories before and after invasions [54] variation in invader abundance [55]

4

royalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20210666
those expected for temporal changes (figure 1). However, at
least in theory, space is only an imperfect substitute for
time for predictions of population or community responses,
a concern that has also been raised for insect declines [8].
Fundamental assumptions of space-for-time substitution
have been controversially debated, particularly in the context
of diversity–climate relationships uncovered in fossil pollen
profiles [56,57], current trajectories of vegetation succession
[58,59] and predictions of climate envelope models [60].
Evidence for the validity of the underlying assumptions
was mixed, ranging from conceptual [60,61] and empirical
support [56,58,62,63] to strong reservations and critique
[57,64,65]. For instance, re-population responses of a fish
species to drought events were even better predicted by
spatial than by temporal analyses [62], whereas spatial and
temporal relationships between bird communities and land-
scape composition [64] and annual temperature [66] were
not congruent.

Species communities are dynamic and undergo intrinsic
and extrinsic variation, e.g. species co-occurrences and
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competition at different sites vary owing to random environ-
mental events or legacies. Assuming static processes, and thus
ignoring the legacy or dynamics at the site level, may thus
bias the conclusions drawn from space-for-time substitution
[58,65]. On the other hand, time scales of recognizable biodiver-
sity loss, particularly insect declines, in the Anthropocene are
relatively short. Relevant trends occur in one or few decades
(e.g. [4,5]). Hence, methodological concerns about space-for-
time substitution from the viewpoint of very long-term scales
may be less severe [65] and local adaptations negligible [62].
Moreover, many insects are highly mobile and relatively good
dispersers; hence they may rapidly respond to environmental
variation in space, display compensatory dynamics and could
be less affected byunknownvariation in site history than organ-
isms with poor dispersal. High dispersal capabilities and inter-
site connectivity, and thus low beta diversity, represent feasible
conditions for space-for-time substitution [62,63].

As a note of caution, spatial comparisons suffer from the
fact that many potential drivers of insect decline are
correlated and cannot be easily disentangled. Several
confounding factors, e.g. different species pools,mayaddition-
ally hamper a straightforward interpretation of spatial drivers.
Uncontrolled confounding factors may, however, also affect
time-series analyses, e.g. when some sites but not others
include post-disturbance recovery [16]. Correlation is not cau-
sation, thus both spatial and temporal analyses should ideally
account for covariates or even experimental treatments in situ
at a relevant (spatial) scale. Nevertheless, there is substantial
potential to detect relevant drivers across space [67], and the
statistical power for tests across independent sites—including
appropriate covariates—can be larger than for a limited
number of time series. Spatial comparisons thus offer a prom-
ising, fast and often underestimated tool to understand drivers
of biodiversity change.
5. Plea for monitoring and solutions in space
Sparked by the debate on insect decline, ecological research
now intensifies its activities towards time-series data—and
there are many good scientific reasons for doing so. It may
appear that concurrent funding and publication models
often doom spatial ‘monitoring’ of communities or basic
comparisons across different types of habitats as unexciting
‘descriptive’ science. For successfully transferring relevant
ecological knowledge into applications, however, we should
overcome our attitude towards seemingly less ‘novel’ or
‘interesting’ science.

It should be emphasized that both temporal and spatial
attempts can represent relevant contributions to understand
and mitigate diversity losses. Ideally, sparse time-series data
are complemented with spatial analyses and in situ
experiments, which would be a promising combination of
approaches [58,63,65]. Evaluations of different environmental
effects on species communities, or simple experiments under
field conditions, even when replicated from just a different
region compared with previous work, can be highly relevant
for conservation.More generally, the environmental and biodi-
versity crisis will require solution-based research, not only
debates on scientific problems or statistical evidence. Global
or regional temporal trends may or may not be reversible,
which requires a more solid understanding of the drivers
and their long-term effects. However, practical solutions at
short-time horizons require action in specific areas, e.g. in pre-
serving or restoring important habitats, improving corridors or
changing land-use regimes. Hence, while the problem may be
temporal, solutions are often inherently spatial.
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