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The promise of pharmacogenomics depends on advancing predictive medicine. To address this need in the area of immunology,
we developed the individualized T cell epitope measure (iTEM) tool to estimate an individual’s T cell response to a protein antigen
based on HLA binding predictions. In this study, we validated prospective iTEM predictions using data from in vitro and in vivo
studies. We used a mathematical formula that converts DRB1∗ allele binding predictions generated by EpiMatrix, an epitope-
mapping tool, into an allele-specific scoring system. We then demonstrated that iTEM can be used to define an HLA binding
threshold above which immune response is likely and below which immune response is likely to be absent. iTEM’s predictive power
was strongest when the immune response is focused, such as in subunit vaccination and administration of protein therapeutics.
iTEM may be a useful tool for clinical trial design and preclinical evaluation of vaccines and protein therapeutics.

1. Introduction

Peptide binding to HLA (MHC) is the critical first step
required for a T cell response. HLA binding enables antigen
presenting cells to engage T cells via the T cell receptor
to initiate a cascade of events that stimulate proinflam-
matory responses [1, 2]. Indeed, one of the most critical
determinants of protein immunogenicity is the strength
of peptide binding to MHC molecules [3]. Binding of
antigenic peptides to HLA is desirable for vaccine design
because immunogenic antigens produce protective T cell and
antibody responses. However, the same interaction is often
undesired in the context of biologic drug therapies, such as
monoclonal antibodies and replacement proteins, because
neutralizing antibodies raised against the therapy lower drug
efficacy. In several cases, immune responses to proteins
administered as drugs or vaccines have been linked to a
particular HLA allele, which is better able to bind peptides
derived from the antigen [4–6]. Consequently, the ability
to predict this relationship might be useful in clinical trial

design; for example, subjects who carry specific HLA alleles
could be excluded from a protein therapeutic trial. We set
out to develop a statistical analysis tool, individualized T cell
Epitope Measure (iTEM), which estimates the likelihood that
a particular antigen will generate an immune response for a
specific subject. As shown in the five case studies reported
here, iTEM can be used as a benchmark to determine
whether or not an individual subject is likely to respond to
a given epitope or subunit protein. We conclude that iTEM
scores can be used as a binary test, with a threshold over
which a peptide or protein is likely to bind an individual’s
HLA and could potentially trigger an immune response, and
below which a response is unlikely.

2. Methods

2.1. iTEM Calculations. To calculate an iTEM score we
first identify putative HLA ligands and T cell epitope
clusters using the EpiMatrix system [7, 8]. Input amino acid
sequences are parsed into overlapping 9-mer frames. Each
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frame is then evaluated for binding potential against a panel
of eight common Class II alleles (DRB1∗0101, DRB1∗0301,
DRB1∗0401, DRB1∗0701, DRB1∗0801, DRB1∗1101,
DRB1∗1301, and DRB1∗1501) [9]. We call each frame-by-
allele evaluation an EpiMatrix “assessment”. EpiMatrix raw
scores are normalized and reported on a “Z” scale. Assess-
ments with a score of at least 1.64, theoretically speaking the
top 5% of any given sample, are considered highly likely to
bind HLA and are called “hits” [10]. The resulting dataset
is then screened for regions containing more hits than we
would expect to find by chance alone. For regions with a
high density of hits an EpiMatrix Cluster Score is calculated.
To calculate an EpiMatrix Cluster Score we sum the scores of
all the hits contained in a given cluster and deduct the sum
of scores we would expect to find in a randomly generated
sequence of similar length. In other words the EpiMatrix
Cluster Score is the deviation between the observed EpiMa-
trix sum of scores and the expected EpiMatrix sum of scores.
The expected sum of scores can be calculated as the number
of 9-mer frames contained in the target sequence times the
number of alleles screened against times .05 (the expected hit
rate) times 2.06 (the expected value of a Z score above 1.64).

T cell epitope clusters are promiscuous but they are not
universal, and human APCs present only two DR alleles.
We have observed that certain peptides stimulate immune
response in some subjects better than others. In order to
explain part of this observed variation we have developed the
iTEM Score. iTEM scores are a special case of the EpiMatrix
Cluster Score. iTEM scores describe the relationship between
a particular patient’s HLA haplotype (considering only two
HLA-DR alleles) and the amino acid sequence of a given
epitope cluster. iTEM scores are used to predict the likelihood
that the amino acid sequence of an antigenic peptide will be
presented by a given subject’s antigen presenting cells and
in turn stimulate that subject’s T cells. To calculate an iTEM
score for a given individual we calculate an EpiMatrix Cluster
Score for each HLA allele in the haplotype. Allele-specific
cluster scores of less than zero are discarded (literally set to
zero), and the two allele specific cluster scores are then added
together to form an iTEM score. Negative allele specific
cluster scores are discarded because the binding relationship
between a given peptide and a given allele is independent
of the relationship between that peptide and another allele.
In other words the failure of one allele to present a given
peptide does not negatively affect the relationship between
that peptide and any other allele, and therefore we felt it
would be wrong to allow negative allele specific cluster scores
to detract from accompanying positive scores. Higher iTEM
scores indicate an increased likelihood of immunogenicity.

An example of an EpiMatrix report from which an iTEM
score can be calculated is shown in Figure 1.

2.2. Experimental Data Sources. The six case studies reported
here are based on immunogenicity measurements made
in enzyme-linked immunospot (ELISpot) assays that mea-
sure interferon-gamma secretion from antigen-stimulated
peripheral blood mononuclear cells (PBMCs) from humans
or splenocytes from mice. Four involve vaccine candidate
studies for Mycobacterium tuberculosis [11], Variola major

[12], and Francisella tularensis [13, 14]; one involves a type 1
diabetes (T1D) autoantigen [15] and finally an angiogenesis
inhibiting protein therapeutic known as FPX [16]. ELISpot
responses were considered positive if the number of spots
detected was greater than 50 spots per one million cells over
background (1 response over background per 20,000 cells).

2.3. Correlation of iTEM Scores and ELISpot Results. Antigens
from each study were grouped into one of four categories
based on overall iTEM score and ELISpot result. True
positives are peptide-HLA pairs with both positive iTEM
scores and ELISpot results. True negatives are peptide-
HLA pairs with both negative iTEM scores and ELISpot
results. False positives have positive iTEM scores and negative
ELISpot results, and false negatives, have negative iTEM
scores and positive ELISpot results. The cutoff for a positive
iTEM score was initially set at 2.06, as described above.

Analyses were rerun with a higher cutoff that we hoped
would adjust for factors of immunogenicity not predicted by
EpiMatrix since peptides that are more likely to bind HLA
would probably be less likely to be affected by other factors
during antigen processing and presentation. We arbitrarily
decided on 2.5 as the higher cutoff. Standard chi-squared
and linear regression analysis between iTEM scores and
ELISpot results were performed by hand or using Microsoft
Excel 2003, respectively. Statistical significance was defined
as P < .05. In linear regression analysis, the intercept was
constrained at zero because peptides that do not bind HLA
cannot stimulate T cells above background levels. Humans
bearing HLA DRB1∗ alleles not predicted by EpiMatrix were
excluded from this study.

3. Results

3.1. Case Study 1: Tuberculosis Vaccine. In the tuberculosis
vaccine study, two groups of six HLA A2/DR1 transgenic
mice were immunized intranasally once with a pool of 25
peptides at 2 μg/peptide and CpG oligodeoxynucleotide 1826
inside liposomes in 50 μL, twice two weeks apart. A third
group received the same set of injections except that there
were only 16 peptides in the pool. Two weeks after the second
immunization, the mice were sacrificed and lymphocytes
were isolated from the spleens. Cells were plated on an
IFN-γ ELISpot plate at 200,000 cells/well and stimulated
with individual peptides in triplicate at 10 μg/mL for two
days. Peptides that induced an average spot count of 50
spots/million cells over background were considered to have
generated a positive response in this assay.

There were 66 peptides tested in the DR1 mice, whose
splenocytes were pooled, and therefore there were 66
peptide-HLA pairs for which we calculated iTEM scores. In
the peptide immunization study, when the iTEM threshold
was 2.06, there were 54 positives and 12 negatives. Of the
54 positives, 38 (70%) were ELISpot positive, and of the
12 negatives, 11 (92%) were ELISpot negative. Using chi-
squared analysis, we found the association between iTEM
score and ELISpot result to be statistically significant (X2 =
16.79, df = 1, P < .001). Although the linear regression
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0701 iTEM = 4.24− (13∗ .0.05∗2.06) = 2.9
1101 iTEM = 4.46− (13∗ .0.05∗2.06) = 3.12

0701/1101 iTEM = 2.9 + 3.12 = 6.02

Figure 1: Calculating an iTEM score. Using the EpiMatrix report for a peptide, the iTEM score is equal to the difference between the sum of
significant scores for an allele (shown in the black boxes above) and the expected score for a peptide of that length. Assessments outside the
top 10% (Z-scores below 1.28) are hidden for ease of viewing the more significant scores, and assessments are shaded with different levels
of darkness to highlight Z-scores that are in the top 5% (1.64–2.32) or top 1% (greater than 2.32). For a subject with two alleles, the iTEM
score for each allele is calculated and then added together, as shown in the three equations within the figure. The peptide constant is equal
to the product of the number of frames (13 in this example), the expected frequency of hits (0.05), and the expected value for a hit (2.06).
For this peptide, an HLA of DRB1∗0701/DRB1∗1101 would be expected to respond (iTEM score: 6.02).

did not predict the number of SFC given the iTEM score
(R2 = 0.39), the analysis yielded a statistically significant
positive slope of 39.35 ± 6.12 (P < .001).

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

3.2. Case Study 2: Smallpox Vaccine. In the smallpox vaccine
study, HLA-DR1 or DR3 transgenic mice were immu-
nized using a DNA-prime/peptide-boost strategy. Mice were
injected intramuscularly, twice, two weeks apart, with 100 μg
of a plasmid DNA vaccine bearing a multiepitope gene. Two
weeks following the second DNA injection, mice received
50 μg of peptides corresponding to the epitopes contained
in the DNA vaccine via a subcutaneous injection of peptides
in liposomes delivered intranasally, twice, two weeks apart.
Two weeks after the final immunization, mice were sacrificed
and spleens removed for splenocyte preparation. Cells were
transferred to an IFN-γ ELISpot plate at 200,000 cells/well
and stimulated with individual peptides in triplicate at
10 μg/mL for two days. Peptides that induced an average
spot count of 50 spots/million cells over background were
considered positive.

DR1 mice were immunized with 32 different peptides
while DR3 mice were immunized with 41 different peptides;
therefore, there were 73 peptide-HLA pairs for which we
calculated iTEM scores. When the iTEM threshold was set
to 2.5, 42 positives and 31 negatives were calculated. Of the
42 positives, 16 (38%) had positive ELISpot results and of
the 31 negatives, 26 (84%) had negative ELISpot results.
Using chi-squared analysis, we found the association between

iTEM score and ELISpot result to be statistically significant
(X2 = 4.20, df = 1, P < .05). Again, there was no association
between the SFC and iTEM score (R2 = 0.20), but the linear
regression analysis yielded a statistically significant positive
slope of 23.92 ± 5.58 (P < .001).

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

3.3. Case Study 3: Tularemia Antigenicity. The Tularemia
antigenicity study involved 23 F. tularensis survivors. PBMCs
were isolated from whole blood and cultured for 5–20 days
with 10 μg/mL of pooled putative T cell epitope peptides
with IL-2 and IL-7 added every other day until 3 days before
IFN-γ ELISpot assay. Cells were then transferred to ELISpots
plates at 200,000 cells/well and stimulated with individual
peptides or pools at 10 μg/mL in triplicate. Peptides that
induced average spot counts greater than 50/million cells and
more than double the negative control wells were considered
positive responses.

Due to varying cell yields, PMBCs from all 23 subjects
were not exposed to all 27 peptides, and only 510 peptide-
HLA pairs were tested via ELISpot. Since EpiMatrix only
predicts for certain HLA alleles, there were only 232 peptide-
HLA pairs for which an iTEM score could be calculated.
Because the study consisted of human subjects who had
been naturally infected with tularemia, there was no cutoff to
generate a statistically significant association between iTEM
score and ELISpot result due to a very large number of
false positives. Using the 2.5 iTEM cutoff, there were 181
positives and 51 negatives. Of the 181 positives, 34 (19%) had
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Table 1: Design of six different studies used to validate the iTEM predictions. In three cases, inbred HLA transgenic mice were used for
measurements of vaccine immunogenicity. In the other three, human subjects were recruited for evaluations of immune responses to protein
antigens.

Study Subject Immunization Boost

Tularemia HLA Transgenic Mice DNA vector IN Peptides IN

Smallpox HLA Transgenic Mice DNA vector IM Peptides SC

Tuberculosis HLA Transgenic Mice Peptide IN Peptides

T1D Humans Natural Autoimmunity Peptides ex vivo

FPX Humans Protein IV or SC None

Tularemia Humans Natural Infection None

Table 2: A summary of the results using the threshold model for iTEM’s association with immunogenicity listed in descending NPV for an
iTEM threshold of 2.06.

iTEM Threshold = 2.06 iTEM Threshold = 2.5

Study n P-value PPV (%) NPV (%) P-value PPV (%) NPV (%)

Human Tularemia 232 <.02 19 95 <.10 19 92

Tuberculosis 66 <.001 70 92 <.001 71 80

Smallpox 73 <.10 36 85 <.05 38 84

FPX 30 <.001 94 71 <.001 94 71

Mouse Tularemia 78 <.10 61 63 <.10 61 63

T1D 56 <.01 84 54 <.05 83 44

positive ELISpot results and of the 51 negatives, 47 (95%)
had negative ELISpot results (X2 = 3.48, df = 1, P < .10).
We could not perform linear regression analysis because the
values of the negative spot counts were not reported.

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

3.4. Case Study 4: Tularemia Vaccine. In the tularemia vac-
cine study, six HLA-DR1 transgenic mice were immunized
three times, at two-week intervals, with 25 μg in 50 μL
intratracheally with a plasmid DNA vaccine encoding a
multiepitope gene. Two weeks after the final DNA immu-
nization, mice were immunized intratracheally, twice, two
weeks apart, with 50 μg of peptides, corresponding to the
epitopes contained in the vaccine construct, formulated in
liposomes together with CpG oligodeoxynucleotide. Two
weeks following the final immunization, mice were sacrificed
and their spleens removed for splenocyte isolation. Cells were
transferred to an IFN-γ ELISpot plate at 200,000 cells/well,
and stimulated with individual peptides in triplicate at
10 μg/mL for two days. Peptides that induced an average
spot count of 50 spots/million cells over background were
considered positive.

The DNA plasmid administered to the DR1 mice con-
tained 78 different peptide sequences; therefore, 78 peptide-
HLA pairs were tested via ELISpot. There were 18 positives
and 60 negatives using an iTEM score cutoff of 2.5. Of the 18
positives, 11 (61%) had positive ELISpot results and of the 60
negatives, 38 (63%) had negative ELISpot results. The large
number of false negatives yielded a statistically insignificant
association between iTEM score and ELISpot results (X2 =
3.39, df = 1, P < 0.10). Even though the regression did not

predict the number of SFC given the iTEM score (R2 = 0.41),
a linear regression analysis yielded a statistically significant
positive slope of 163.43 ± 22.35 (P < .001).

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

3.5. Case Study 5: Immunogenicity of an Autoantigen. We
investigated the autoantigenicity of glutamic acid decarboxy-
lase (GAD65) T cell epitopes in diabetic patients. PBMCs,
isolated from whole blood samples of six human subjects,
were cultured for seven days with a pool of 14 GAD65
peptides, with IL-2 and IL-7 added to the growth medium
every two days. Cells were transferred to an IFN-γ ELISpot
plate at 200,000 cells/well, and stimulated with individual
peptides in triplicate at 10 μg/mL for two days. Peptides that
induced an average spot count of 50 spots/million cells over
background were considered positive.

Due to varying cell yields, PMBC from all six subjects
were not exposed to all 14 peptides, and only 67 peptide-HLA
pairs were tested via ELISpot; however, since EpiMatrix only
predicts for certain HLA alleles, there were only 56 peptide-
HLA pairs for which an iTEM score could be calculated.
While this may seem different from the immunogenicity
studies carried out above, in T1D, which is mechanically
similar to a peptide immunization, a single autoantigen
is considered to be the target of autoreactive T cells and
therefore an iTEM score of 2.06 had the most predictive
power, with 43 positives and 13 negatives. Of the 43
positives, 36 (84%) had positive ELISpot results, and of
the 13 negatives, 7 (54%) had negative ELISpot results.
Using chi-squared analysis, we found the association between
iTEM score and ELISpot result was statistically significant
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(X2 = 7.51, df = 1, P < .01). Again, performing a regression
did not yield a clear link between the number of SFC and
iTEM score (R2 = 0.38), linear regression analysis yielded
a statistically significant positive slope of 25.57 ± 4.42 (P <
.001).

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

3.6. Case Study 6: Immunogenicity of Protein Therapeutic. In
the FPX immunogenicity study, 36 human subjects received
FPX peptides intravenously and 40 others received FPX
subcutaneously. PBMCs from 15 subjects were isolated from
whole blood samples on day 1 before dosing and then again
on days 42 and 180. Cells were cultured for 7 days with
10 μg/mL of individual FPX T cell epitope peptides (three
different peptides) and then transferred to ELISpot plates
to detect levels of IFN-γ and IL-4 upon restimulation with
10 μg/mL of test peptide at 200,000 cells/well. Peptides that
induced an average spot count of 50 spots/million cells over
background were considered positive.

45 peptide-HLA pairs were tested via ELISpot; however,
since EpiMatrix only predicts for certain HLA alleles, there
were only 30 peptide-HLA pairs for which an iTEM score
could be calculated. Since this was a peptide immunization
study, an iTEM threshold of 2.06 was used. There were 16
positives and 14 negatives according to iTEM scores. Of
the 16 positives, 15 (94%) had positive ELISpot responses,
and of the 14 negatives, 10 (71%) had negative ELISpot
results. Using chi-squared analysis, we found the association
between iTEM score and ELISpot result was statistically
significant (X2 = 13.66, df = 1, P < .001). Linear regression
analysis yielded a statistically significant positive slope of
70.37 ± 11.17 (P < .001); however, the regression could not
accurately predict the number of SFC given the iTEM score
(R2 = 0.57).

Characteristics of this study are summarized in Table 1,
and the results are summarized in Table 2.

4. Discussion

In this study, we developed an immunoinformatic tool
to predict the outcomes of experimental measurements of
vaccination and immunogenicity analysis. Two methods
for predicting the association between iTEM and ELISpot
response gave significant correlations. These were the linear
model and the threshold model.

Of the studies that could be fit to a linear model, the
linear slopes derived were rather varied. The average of
the five slopes was 64.51 ± 58.34. While the linear model
did reach statistical significance in most of the data, its
accuracy was moderate at best. The average R2 value, which
is a measurement of the accuracy of the linear model, was
0.39. The low R2 values as well as the different slopes for
each study lead us to reject the use of a linear equation to
predict experimental results from in silico analysis. Given
that the average negative predictive value (NPV) and positive
predictive value (PPV) of all the data when a cutoff of 2.06
was used were 77% and 61%, respectively, we believe that the
relationship between iTEM scores and experimental results

is more accurately described by the threshold model where
the magnitude of an immune response cannot be predicted
beyond “positive” or “negative”. In the future, it is possible
that when iTEM may be able to account for more complex
issues (e.g., the likelihood that an epitope will be processed)
that a more linear correlation between iTEM scores and
experimental results will exist.

iTEM scores correlated best with immunogenicity for
studies in which a protein or small peptide was administered,
but the correlation did not reach statistical significance with
studies of immune responses to peptides following exposure
to a pathogen. The strongest correlations were observed for
the TB, T1D and FPX studies. In these studies, the average
negative predictive value (NPV) was 72% and the average
positive predictive value (PPV) was 83%, when the iTEM
threshold was set at 2.06. Thus it appears that processing and
antigen presentation do not introduce significant variation
unaccounted for by EpiMatrix predictions. Since iTEM
scores are generated only by examining specific peptide-
HLA interactions, when these variables are minimized by
using protein or peptide prime and boosts, the iTEM was
a more accurate predictor of immune responses. While
HLA presentation is necessary for immunogenicity, it is not
sufficient. A number of factors related to the expression and
processing of the antigen also influence immunogenicity. If
the protein is not expressed or secreted by the pathogen
during infection or not properly cleaved or transported by
the host, it will not be immunogenic. Even with proper
presentation, the peptide may be homologous to self, and
therefore either the corresponding T cell has been deleted
during thymic selection or T cells that respond to the peptide
have been anergized in the periphery.

Adding a second step between immunization and expo-
sure to the protein immunogen and antigen presentation
lowered the predictive accuracy of iTEM for a data set. For
example, in those studies where DNA vaccination was used,
such as smallpox, the predictive accuracy of iTEM was not
significant if the cutoff of 2.06 was used, but was improved
by increasing the threshold to 2.5. This suggests that T cell
responses to those peptides that are very likely to bind HLA as
indicated by higher iTEM scores were more likely following
DNA vaccination. Perhaps the addition of steps beyond HLA
binding (such as protein processing following expression of
the pseudoprotein from the DNA vaccine) can accidentally
remove peptides otherwise capable of activating the immune
system. Thus, in the smallpox vaccine study, iTEM only had
a PPV of 38%; on the other hand, its NPV was 84%.

The relationship between immune response and T cell
epitope is more complicated in studies where exposure
of T cells to the antigen (natural infection studies) is
affected by many factors including gene expression, protein
processing, dose and route. Thus, for subjects exposed to F.
tularensis, iTEM was not an accurate predictor of immune
response to tularemia peptide in vitro. In this case, for
example, the proteins from which the peptide epitopes were
derived might not have been expressed during infection
or the bacteria generated factors that downregulated HLA
expression, thereby lowering the repertoire of HLA ligands
[17].
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iTEM’s accuracy is greatest when used as a negative
predictor of immune response, a feature which may be
very useful for the interpretation of failed vaccine efficacy
studies and for clinical trials of protein therapeutics. Using
a threshold of 2.06, iTEM had an average NPV across the six
case studies of nearly 80%, but a PPV of only 61%. A high
NPV may be due to the fact that peptides that are unable to
bind to HLA (as described by a low iTEM score) have a very
small chance of being immunogenic. In contrast, a low PPV
can be explained by factors affecting the protein’s processing
and presentation, despite its constituent epitopes, capacity to
bind HLA.

4.1. Uses of iTEM in Vaccine Efficacy Studies. iTEM’s ability
to predict the absence of a T cell response suggests useful
applications in vaccine design. iTEM analysis might be
useful for vaccine studies to explain both interpeptide and
intersubject variability in T cell assays and clinical trials. In
theory, iTEM analysis could be used to predict whether or
not a subject would fall into the 5%–20% of the population
that does not respond to commonly used vaccines. If a lack of
response is predicted, a patient could be exempt, thus sparing
him/her from unnecessary vaccinations.

4.2. Application of iTEM to Studies of Autoimmune Diseases.
Others have examined the role that an individual’s HLA DR
genotype plays in regulating immune responses [18]. Several
autoimmune disorders have demonstrated an association
with specific HLA types. T1D is associated with DR4-DQ8
and DR3-DQ2 [19], multiple sclerosis with DR15 [6], and
ankylosing spondylitis and the other spondyloarthropathies
are associated with B27 [20]. It would be interesting to con-
sider whether the antigenic targets of certain autoimmune
diseases, such as the acetylcholine receptor in myasthenia
gravis, contain T cell epitopes that are more likely to be
presented in the context of the HLA alleles that are associated
with manifestation of autoimmunity, and less likely to
be presented on alleles that have an inverse association
with autoimmunity. Such a correlation would be evidence
supporting the use of iTEM to identify auto-antigens.

4.3. Application of iTEM to Clinical Studies of Protein
Therapeutics. In the context of protein therapeutics, drug
developers generally agree that T cell response, which is
associated with the development of antidrug antibodies, is
undesirable. The ability to predict that an immune response
in a particular subject is likely would be useful for identifying
individuals at higher risk of developing antidrug antibodies.
These individuals could be excluded from clinical trials
and/or advised to avoid the use of the protein therapeutic,
increasing the safety of protein therapeutics for human use.

For example, in a prospective study, Koren et al identified
selected HLA types that were associated with a stronger
immune response against a novel antitumor therapeutic.
These HLA alleles were associated with higher iTEM scores,
higher T cell responses, and higher antibody responses in the
Phase I trial [16]. The same HLA restriction effect can be seen
in the response to IFN-β treatment in human subjects with

MS, where DRB1∗0701 was overrepresented in subjects with
anti-IFN-β antibodies [6].

5. Conclusion

In summary, the iTEM tool appears to be a useful method for
predicting the absence of T cell response to a given vaccine
or protein therapeutic. While this study has only examined
CD4 epitopes, we expect that a similar, and possibly stronger
correlation may exist for CD8 epitopes given that the
constraints imposed by the closed-end HLA Class I binding
groove [21] make class I predictions inherently much more
accurate than the class II predictions [22]. Further studies
of immune response using the iTEM tool will be needed
before it will be able to be adapted for use by drug developers.
Tools such as iTEM are likely to play an important role in the
development of safer vaccines and therapeutics in the future.
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