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Purpose: To determine the precision and accuracy of an
automated method for segmenting white matter hyperin-
tensities (WMH) on fast fluid-attenuated inversion-recov-
ery (FLAIR) images in elderly brains at 3T.

Materials and Methods: FLAIR images from 18 individu-
als (60-82 years, 9 females) with WMH burdens ranging
from 1-80 cm® were used. The protocol included the re-
moval of clearly hyperintense voxels; two-class fuzzy C-
means clustering (FCM); and thresholding to segment
probable WMH. Two false-positive minimization (FPM)
methods using white matter templates were tested. Preci-
sion was assessed by adding synthetic hyperintense vox-
els to brain slices. Accuracy was validated by comparing
automatic and manual segmentations. Whole-brain,
voxel-wise metrics of similarity, under- and overestima-
tion were used to evaluate both precision and accuracy.

Results: Precision was high, as the lowest accuracy in the
synthetic datasets was 93%. Both FPM strategies success-
fully improved overall accuracy. Whole-brain accuracy for
the FCM segmentation alone ranged from 45%-81%, which
improved to 75%-85% using the FPM strategies.

Conclusion: The method was accurate across the range
of WMH burden typically seen in the elderly. Accuracy
levels achieved or exceeded those of other approaches
using multispectral and/or more sophisticated pattern
recognition methods.
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WHITE MATTER HYPERINTENSITIES (WMH) on Ts-
weighted images are common in many central nervous
system disorders, including cerebrovascular disease
and dementia. WMH are typically seen as diffuse sig-
nal increases in periventricular watershed regions,
and as more focal “lesions” in deep white matter. His-
tologically, WMHs have been associated with a variety
of pathological processes including edema, inflamma-
tion, demyelination, axonal loss, and gliosis (1-3), all
of which result in increased T, relaxation times.
Although WMHSs are often present in elderly persons
who exhibit normal cognition, impaired cognition in
both typical aging and dementia may be related to
WMH burden (4,5). The possibility that WMHs have
consequences for cognition in the elderly has moti-
vated the development of segmentation methods to
better assess this relationship.

Fast fluid-attenuated inversion-recovery (FLAIR)
imaging offers advantages over conventional Ts-
weighted imaging for WMH detection because of the
increased contrast between WMH and other brain tis-
sues arising from the nulling of signal from cerebro-
spinal fluid (CSF). Several automated WMH detection
methods have been proposed using FLAIR. Previous
methods have been designed and validated at 1.5T
using patients with arterial vascular disease (6), mul-
tiple sclerosis (7,8), Alzheimer’'s disease (9), and el-
derly patients (10-13). The majority of these WMH
detection methods are multispectral, incorporating
Te-weighted, and in some cases, proton density-
weighted (PD), T;-weighted, and/or inversion recovery
(IR) images together with the FLAIR image. Often, seg-
mentation accuracy can be improved by increasing
the separation between the different tissue types by
incorporating higher-dimensional feature spaces (6)
or support-vector machine approaches (13). However,
the high contrast between WMH and healthy tissue
on FLAIR images allows for the possibility of segment-
ing WMH using only FLAIR images. For example, Jack
et al (9) developed a single-channel WMH segmenta-
tion method that used the histogram of the FLAIR
image and a regression model to determine the appro-
priate intensity threshold for WMH, and more
recently, Khayati et al (8) used a Bayesian classifier to
segment MS lesions on FLAIR images at 1.5T.
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One of the main challenges in developing an auto-
mated WMH segmentation using FLAIR is the minimi-
zation of false-positive classifications. False positives
occur because the signal intensity in WMHs typically
overlaps with that of normal tissue, even in the case
of high-dimensional, multispectral segmentations.
Two different approaches are commonly used to
address this challenge. In one, false positives are
minimized by identifying seed voxels with very high
signal intensities on FLAIR or PD/T,-weighted ratio
images (11,14). Segmentation is accomplished by
using these seed voxels as input to a fuzzy-connectiv-
ity algorithm, which assesses the degree of fuzzy affin-
ity between spatially connected elements. This
approach successfully eliminates many false-positive
classifications, especially those that occur at tissue
interfaces. Unfortunately, this approach is often asso-
ciated with increased false-negative classifications,
such that there is a tendency to miss small focal
WMH, as well as voxels well within larger WMHs. Re-
sidual false-positive classifications can also remain,
particularly for artifacts resulting from CSF inflow
(15). An alternative fuzzy-inference approach uses
spatial priors from templates derived from segmented
T,-weighted images (10). The primary errors with this
approach are that hyperintensities outside of probable
white matter are not included. However, the advan-
tage of this approach is that false negatives in white
matter are minimized.

The primary objectives of the present work were 1)
to develop a robust automated method for segmenting
WMH on FLAIR images at 3T, 2) to determine the pre-
cision of the method using synthetic data, and 3) to
validate the accuracy of the method by comparing
automatic and manual segmentations. A secondary
objective was to determine the degree to which the
automated results could be improved with a small
amount of manual editing of the final segmentation
results.

MATERIALS AND METHODS
Subjects

Images from 18 elderly individuals (nine males and
nine females) with previously diagnosed white matter
disease, and who were participating in research stud-
ies at Sunnybrook Health Sciences Centre, were
included in this study. Participants were between the
ages of 60 and 82 years (mean = 73.8, SD = 8.0).
Informed consent was obtained in accordance with
the Research Ethics Board.

Magnetic Resonance Imaging (MRI)

FLAIR images were acquired at 3T (General Electric,
Milwaukee, WI, software v. 12.4 and 12.5) using a
quadrature head coil. Images were oriented parallel to
the plane passing through the anterior and posterior
commissure (2D T2FLAIR: TE = 140 msec, TR = 9300
msec, TI = 2200 msec, slice thickness = 3 mm
matrix = 256 x 192, field of view [FOV] = 22 cm,
phase FOV = 0.75). Two additional datasets, acquired
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in the same scanning session, were used for algorithm
validation: a T;-weighted (3D, IR-prepped fast SPGR,
TE ~ 3.1 msec, TI = 300 msec, TR ~ 7 msec, flip
angle = 15°, slice thickness = 1.4 mm, NEX = 2); and
a PD/Ty-weighted sequence (dual-echo fast-spin echo,
TEs = 20, 103 msec, TR = 2900 msec, echo-train
length = 12, slice thickness = 3 mm, NEX = 2).

Image Preprocessing

The WMH segmentation algorithm requires the re-
moval of nonbrain tissues from the FLAIR image and
the correction of intensity inhomogeneities. These two
requirements can be achieved using any number of
freely available software packages. We did not attempt
to build these steps into the processing pipeline, espe-
cially as the efficacy of signal intensity corrections
applied during image reconstruction are platform-de-
pendent. For our FLAIR data the preprocessing
requirements were achieved using N3 (16) (http://
www.bic.mni.mcgill.ca/software/N3/; iterations =
150, stop threshold = 0.0001, distance = 55 mm) and
FSL’'s bias correction procedures (17) (http://www.
fmrib.ox.ac.uk/fsl/; “mfast” with default parameters)
to correct intensity inhomogeneities, and FSL’s Brain
Extraction Tool (18) to generate a “brain mask” to
remove nonbrain tissues.

The tests of the algorithm’s precision required a seg-
mented T;-weighted image (see below), so both man-
ual and automatic WMH segmentations were per-
formed on FLAIR images coregistered to the subject’s
T,-weighted image. For the segmentation protocol out-
lined below, the only required input was the masked,
bias-corrected FLAIR image.

Automated WMH Segmentation

The WMH segmentation protocol is fully automatic
and has four steps: 1) noise-reduction filtering, 2) re-
moval of clearly hyperintense voxels, 3) two-class
fuzzy C-means clustering (FCM), and 4) thresholding
to segment probable WMH. WMH segmentation is fol-
lowed by an optional automatic false-positive minimi-
zation (FPM) step. The procedure requires =~2.5
minutes on a Xeon Eb5440 processor with a clock-
speed of 2.85 GHz. Full details are outlined in Fig. 1
and are described below.

Filtering

An edge-preserving anisotropic diffusion filter (19)
(five iterations, time step = 0.0625, conduction =
1.95) was applied to the bias-corrected, skull-stripped
FLAIR image. Only minimal smoothing was performed
using the recommended time step and conduction
parameters for 3D images (http://www.itk.org/
ITKSoftwareGuide.pdf).

Removal of Unambiguously Hyperintense Voxels

This step was implemented to facilitate more accurate
classifications at higher WMH loads. The FCM algo-
rithm, in its standard form, requires that the datasets
contain clusters that are roughly equivalent in size,
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which is the case for brain and background in most
slices. Since these compartments both greatly out-
number hyperintense voxels, the two-class FCM gen-
erally works well. In our preliminary studies, when
the slice WMH load was large (>~6% of total brain
slice volume), WMH volume was severely underesti-
mated. It completely failed when the slice load was
very large (ie, when WMH voxels outnumbered normal
WM voxels). Removing unambiguously hyperintense
voxels prior to applying the two-class FCM algorithm
maintains the expected balance between brain, back-
ground-CSF, and hyperintense voxels on all slices.

The filtered FLAIR image was intensity-normalized
to have a mean of zero and a variance of one. Exami-
nation of the normalized images from two subjects
indicated that voxels with a normalized intensity
greater than 4.25 were obviously hyperintense,
regardless of slice location. This threshold was fixed,
and all voxels above this threshold were removed
automatically from the filtered FLAIR images, as
shown in Fig. 2. To assess whether this manipulation
reduced the size of the “hyperintensity” class to less
than 6% of slice volume, the percent WMH load for
each slice was calculated using manually traced WMH
(see below), before and after removal of clearly hyper-
intense voxels.

Fuzzy Clustering

A two-class FCM algorithm was applied to the remain-
ing voxels on a slice-by-slice basis. The FCM algo-
rithm (20) is an unsupervised data clustering tech-
nique to partition datasets into “C” different clusters.

Each data point is assigned a “fuzzy” membership
grade that indicates the degree to which each data
point belongs to each of the different clusters. It is a
simple iterative procedure that works by minimizing
an objective function representing the distance from
each data point to the cluster means and weighted by
the data point’s membership grade. Voxels were
assigned a membership grade in each of two classes:
brain and background-CSF (range, 0.0-1.0). The FCM
clustering algorithm was applied twice to each voxel,
in the axial and coronal planes, and the consensus of
the two segmentations defined the final segmentation.
This processing step increased the robustness of the
final segmentation results by removing voxels

Figure 2. First-pass removal of voxels of obviously hyperin-
tense voxels. A: Bias-corrected, skull stripped FLAIR image.
B: Hyperintense voxels (signal intensity >4.25 on the inten-
sity normalized FLAIR image) were removed from the original
FLAIR image before applying the FCM algorithm.
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Figure 3. Segmentation of WMHs. A: Unmasked FLAIR image. B: FLAIR histogram. C: Pseudocolored image of FCM results
for background-CSF class. Hyperintense voxels are assigned a membership grade greater than zero in this class. To isolate
hyperintensities, a threshold was applied and the result was used to mask the FLAIR. Colorbar indicates membership grade.
D: Masked FLAIR image. E: FLAIR histogram after removal of voxels below threshold. WMH voxels are now clearly separated
from background-CSF voxels (arrows). For each slice, masked and unmasked histograms were compared, and the break in
the histogram was used as the threshold for segmenting the WMHs. F: Final segmentation results overlaid onto the input

FLAIR.

incorrectly classified as hyperintense on slices with
small numbers of voxels.

Identification of Hyperintensities

Hyperintense voxels are outliers in both classes and
are assigned a membership grade greater than zero in
each (Fig. 3C). The first step in the segmentation
applies a threshold to the FCM results for the back-
ground-CSF class. The FCM results for two datasets
with varying WMH load were used to define a mem-
bership grade above which voxels were visually hyper-
intense. The selected threshold was fixed and applied
to all test datasets. The FLAIR data were masked,
retaining only voxels with membership grades above
threshold (Fig. 3D).

This masking step did not directly segment WMH,
but did clearly separate background/CSF and WMH
voxels based on FLAIR intensities (Fig. 3E). To obtain
the final segmentation, two histograms were com-
puted (bin width = 1 signal intensity unit). The first
used all values in the filtered FLAIR image (Fig. 3B)
and the second used only those voxels in the masked
dataset (Fig. 3E). Starting from the right-hand tail of
each histogram, the first bin found to contain unequal
numbers of voxels was set as the intensity threshold
for hyperintensities for the slice (right arrow, Fig. 3E).
Only voxels classified as hyperintense in both axial
and coronal planes were segmented as hyperintense
(Fig. 3F).

FPM

The algorithm as presented above produced accepta-
ble results in many cases, but in all cases manual
intervention (selecting and removal of false positives)
would have improved the results. Our primary goal
was to develop a fully automatic WMH segmentation
that included minimal false positives. To remove the
most common false positives, we used a white matter
mask created from a thresholded probabilistic white
matter template (Montreal Neurological Institute [MNI]
“152,” available in the SPM software package; http://
www.fil.ion.ucl.ac.uk/spm/) that had been registered
to the FLAIR image. The template registration was
accomplished by registering the MNI template T;-
weighted image to the skull-stripped, bias-corrected,
unfiltered FLAIR image (affine, FSL) and the resulting
transformation matrix was used to move the white
matter template into the subject’s image space.

Two FPM strategies were tested. Both strategies
involved thresholding the white matter template, and
the threshold for each strategy was selected by exam-
ining the results of two subjects with varying degrees
of WMH burden across slices. For the first (FPM1), the
segmentation results were simply masked with the
thresholded template (white matter probability =
0.41). For the second (FPM2), hyperintensities were
removed if they were not connected in 3D to the
thresholded template. As the 3D connectivity rule
made FPM2 more liberal, a higher threshold was used
(white matter probability = 0.63). Any hyperintense
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voxels remaining after the FPM step were classified as
WMH. To assess the impact of the specific threshold
values selected, six additional thresholds were tested,
three above and three below the selected value, in
increments of 0.04 white matter probability.

To determine whether limited manual editing could
further improve the segmentation results, the auto-
mated WMH segmentation masks for FPM2 (WM prob-
ability threshold = 0.63) were subjected to a maxi-
mum of 5 minutes of manual editing per brain using
the Analyze software package (Biomedical Imaging
Resource, Mayo Foundation, Rochester, MN; http://
www.mayo.edu/bir/Software/Analyze /Analyze.html).
The following actions were allowed for the manual
editing step: removal of false positives (eg, flow arti-
fact) by relabeling them as background; adding back
in portions of WMH truncated by the template by
relabeling them as WMH class.

Assessment of Segmentation Precision: Synthetic
Data

The precision of the method was assessed by intro-
ducing synthetic “hyperintensities” into the image
data. The synthetic data were created by adding
known numbers of hyperintense voxels to brain slices
that had no hyperintensities. Segmentation accuracy
was assessed by comparing the results of the auto-
matic protocol with manually traced WMH.

Images from six subjects with varying amounts of
atrophy and low to moderate whole-brain WMH load
were used. For each subject, three to four axial slices
(mean, 3.4 = 0.5) from the filtered FLAIR images were
used. A total of 22 slices were selected across various
levels of the brain, and the proportion of recovered
voxels was used to index the accuracy of the algo-
rithm. Details are described below.

Slice Preparation

A threshold for hyperintense voxels was identified
manually for each selected slice, and any voxel
exceeding this intensity threshold was removed. Slices
were used only if less than 2% of the total slice vol-
ume was removed (mean percentage of removed vox-
els: 0.7% =+ 0.5%).

Adding Synthetic Hyperintense Voxels

The manually identified WMH intensity threshold for
each slice was used as the lower limit of synthetic
data values. To find an appropriate upper limit, a his-
togram of the entire volume was calculated for each
image (bin width = 1 signal intensity unit), and the
value of the rightmost bin in the histogram containing
four or more voxels was set as the upper limit. Thus,
the lower limit was specific to each base slice, while
the upper limit was calculated only once for each
dataset. Synthetic data values were randomly selected
from this range. This procedure ensured that artificial
peaks were not created in the tail of the histogram
and that no voxels were added with intensity values
below what would reasonably be classified as a WMH.
Note that because the segmentation operates strictly
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on the vector of FLAIR intensity values, it was not
necessary to mimic the size or shape characteristics
of typical WMH (eg, Ref. 21).

Finally, the subject’s masked, bias-corrected T;-
weighted image was segmented into gray matter, white
matter, and CSF (22) to identify normal-appearing
white matter (NAWM) voxels. A percentage of these
voxels at the top or bottom of each slice was set to
zero on the FLAIR images and replaced with the syn-
thetic data. Two synthetic slices were created for each
of 10 levels of WMH load (1%-10% of slice volume),
generating 440 synthetic datasets. Figure 4A,B shows
examples of locations to which WMH voxels were
added. To aid in visualization, the voxel values have
been sorted by signal intensity prior to filling. For
comparison, images and histograms from representa-
tive slices from subjects with high and low WMH load
are shown in Fig. 4C.

Assessment of Segmentation Accuracy

An experienced neuroradiologist (F.G.), with specific
expertise in tracing hyperintensities and stroke mar-
gins, manually segmented all WMHs on the bias-cor-
rected FLAIR images using the Analyze software pack-
age. Image contrast was adjusted as needed for
optimal determination of WMH extents. The outer
boundaries of the WMH were defined initially using a
threshold-based segmentation tool in Analyze and
then the boundaries of each WMH were fully manually
edited. Clearly hypointense necrotic or cystic regions
within the hyperintensities were removed, as they
were not included in the FLAIR segmentation. The
subject’s bias-corrected T;, PD, and Ts-weighted
images were used as additional sources of reference,
but were not used explicitly to define the WMH mar-
gins. Based on the manually classified WMH volume,
each subject was assigned to one of three levels of
whole-brain WMH load: small (<10 cc, range 1.3-8.4
cc), medium (10-30 cc, range 12.0-25.2 cc), and large
(>30 cc, range 30.4-80.3 cc).

Algorithm Evaluation

The performance of the automated segmentation
method was evaluated against the manual segmenta-
tion using four complementary similarity measures:
the similarity index (SI), percent correct estimation
(PCE), percent underestimation (PUE), and percent
overestimation (POE), as used previously (6,7). The SI,
defined as SI :MMA%%, measures the spatial
agreement between the automatic and manual seg-
mentations, and takes into account both false-nega-
tive and false-positive classifications. The PCE,
defined as PCE = MANUALOAUTO 5 100, measures the
percentage of correctly classified WMH voxels relative
to the manual segmentation. The PUE, PUE =
MANUALDIAUTO « 100, measures the percentage of missed
voxels, and the POE, POE = MARDALOAUTO 5 100, mea-
sures the percentage of false positives. For the syn-
thetic data, the number of added voxels was used as
the standard.
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Figure 4. Synthetic and subject data at two levels of WMH load: 2% (left) and 10% (right) of total slice volume. Normal-
appearing white matter voxels were identified from the subject’s segmented T,-weighted image. Starting at the top (A) or bot-
tom (B) of the slice, these voxels were replaced by synthetic data. Note that the signal intensities of the added voxels have
been sorted to aid in visualization. C: Correspondence of histograms of subject data at load levels comparable to the syn-

thetic datasets.

For the synthetic data, each similarity measure was
analyzed using a repeated-measures analysis of variance
(ANOVA, SPSS, Chicago, IL, v. 15.0.0, http://www.
spss.com/) as a function of added hyperintensity load.
The subject data were analyzed for one FPM threshold
(see below) using a 3 (WMH burden: small, medium,
large) x 3 (strategy: none, FPM1, FPM2) mixed-model
ANOVA; and 3 (WMH burden) x 2 (strategy) ANOVAs
were used to identify whether the FPM2 strategy with
manual editing produced better results than FPM2
alone. Significant main effects and interactions were
assessed using post-hoc Newman-Keuls analysis. Signif-
icance threshold was set at P < 0.05 for all analyses.

RESULTS
Removal of Clearly Hyperintense Voxels

WMH loads greater than 6% of the total slice vol-
ume were found on 8% of the manually traced sli-

ces. This was reduced to 0.8% of slices following
the first-pass removal procedure, and the results
were consistent across slice WMH load (detailed
results are in tabular form in the online Supple-
mental Material). Note that the manual tracings do
not include artifact voxels and therefore do not
index the entire hyperintense volume for a given
slice. However, because artifact voxels comprise only
a small portion of the total slice volume (typically
<~1%), the results confirm that the two-class FCM
requirement of two dominant tissue classes (brain
and background-CSF) was met. If clearly hyperin-
tense voxels were not removed, the segmentation
underestimated the true WMH volume, as shown in
Fig. 5. The first-pass removal procedure also
improved segmentation accuracy: small WMH were
more likely to be included, and the margins of
larger WMH expanded and were more consistent
with the manual tracing (arrows, Fig. 5E).
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Figure 5. Effect of first-pass removal of clearly hyperintense voxels on WMH segmentation. A: FLAIR slice with high WMH
load. B: Segmentation based on applying the FCM algorithm to the full dataset. C: Voxels above threshold on the intensity
normalized FLAIR image are removed. D: FCM results for the masked dataset. E: True WMH volume can be underestimated
when the two-class FCM algorithm is applied without removing clearly hyperintense voxels (yellow arrows).

FCM Per-formance: Two-Plane Segmentations

Visually, only small differences were observed
between the axial and coronal FCM results for most
slices. False positives were frequently observed on
small, superior slices in the axial plane. This occurred
because an insufficient number of voxels were avail-
able for the two-class FCM algorithm. However,
because voxels were required to be hyperintense in
both planes, these misclassified voxels were elimi-
nated from the final segmentation.

FCM Per-formance: Synthetic Data

The results were consistent irrespective of slice loca-
tion and where on the slice the synthetic data were
added (top/bottom). Across the 10 levels of added
hyperintense voxels, SI ranged from 0.98-0.93 (Fig.
6), with typical results shown in Fig. 7. Both SI and

Table 1
Comparison of Two False-Positive Minimization Strategies

PCE decreased as the percent of synthetic data
increased, while PUE increased (from 3.2% to 12.1%,
Fig. 6, F(9,387) = 73.6 (SI); 86.8 (PUE)). Linear trends
were significant for both measures (F(1,43) = 153.1
(SI); 167.2 (PUE)). Overestimations (POE) were rare
(3% of slices; 1.67 *= 1.1%) and only at the two lowest
levels of added voxels. Thus, the major bias in the
procedure was to underestimate lesion volume, which
increased slightly with WMH load.

FPM: Improving Segmentation Accuracy

The results of the two FPM strategies were assessed
against the manual tracings. Across a range of tem-
plate thresholds, both FPM1 and FPM2 substantially
minimized the number of false positives (Table 1; Fig.
8), which resulted in much improved Sls for all tem-
plate thresholds tested. Both FPM strategies showed a
slight increase in the number of missed WMH voxels

Similarity measure®

FPM White matter template
strategy® (n=16) threshold (WM probability) Sl Min SI PCE POE PUE
0 — 0.65 = 0.19 0.20 859 +7.9 117.9 = 163.8 141 £79
1 0.29 0.80 + 0.08 0.58 84.1x 8.5 27.8 = 23.9 15.9 = 8.5
1 0.33 0.80 = 0.08 0.61 83.4 + 8.7 24.7 = 19.9 16.6 = 8.7
1 0.37 0.81 = 0.07 0.64 82.5 + 9.0 22.4 + 16.6 175 £ 9.0
1 0.41 0.81 = 0.07 0.67 81.4 + 9.4 20.4 = 143 18.6 = 9.4
1 0.45 0.80 + 0.07 0.68 79.8 + 9.7 18.8 = 12.7 20.2 £ 9.7
1 0.49 0.80 = 0.07 0.67 77.8 = 10.3 174 £ 11.6 22.2 = 10.3
1 0.53 0.78 = 0.08 0.64 75.2 = 11.2 16.0 = 10.6 24.8 = 11.2
2 0.51 0.80 = 0.08 0.61 84.9 £ 8.2 29.2 = 20.7 15.1 = 8.2
2 0.55 0.81 £ 0.07 0.67 846 + 8.2 256 £ 17.3 154 £ 82
2 0.59 0.81 = 0.06 0.72 84.4 + 8.2 23.6 = 14.7 15.6 = 8.2
2 0.63 0.81 = 0.06 0.70 83.8 + 8.5 22.3 = 13.6 16.2 = 8.5
2 0.67 0.81 = 0.07 0.71 83.4 £ 9.2 21.7 = 13.1 16.6 = 9.2
2 0.71 0.82 = 0.06 0.70 82.2 + 9.7 19.2 £ 12.0 17.8 £ 9.7
2 0.75 0.81 £ 0.07 0.71 80.9 = 10.5 17.7 £10.8 19.1 £ 10.5

3Compared to manual tracing. Values are mean + standard deviation. Sl: similarity index; Min SI: poorest performance; PCE: percent cor-
rect estimation; POE: percent overestimation; PUE: percent underestimation.

PEPM, false-positive minimization. 0: No minimization strategy. 1: Voxels below white matter template threshold were removed; 2: Voxels
not connected in 3D to the thresholded white matter template were removed. White matter template thresholds used for additional testing

are highlighted in bold.
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Figure 6. Changes in similarity index (SI) and percent
underestimation (PUE) as a function of percentage of syn-
thetic data added. Data are mean * standard error of the
mean.

(PUE increased from 14% with no FPM to 16%-25%
depending on threshold and strategy). No differences
in SI were found between the two FPM strategies. The
overlap of the FPM2 strategy with the manual tracing
results across a range of WMH burden is shown in
Fig. 9.

Using FPM1, FLAIR hyperintensities were routinely
rejected in nonwhite matter structures, such as basal
ganglia and thalamus. Additionally, portions of some
WMHs were rejected when they extended beyond the
thresholded white matter compartment. If the tem-
plate threshold was lowered to incorporate the missed
voxels, the improvement in underestimation was off-
set by a much larger number of false positives (cf.
thresholds of 0.29 vs. 0.41 for FPM1, Table 1). The
largest source of error in the FPM2 data was the
inclusion of ventricular CSF flow artifact, which was
seen in two of the 16 cases.

To further define the differences between the two
FPM strategies, one threshold was selected for each
method and the results were assessed as a function of
WMH load. As whole-brain similarity measures are
most commonly reported in the literature, we focused
our assessment of the current method at this level
(Fig. 10A-C; see online Supplemental Material for
data in tabular form). Similarity measures at the slice
level are also presented to compare with the simulated
data (Fig. 10D-F).

Whole-brain similarity was significantly improved
by both FPM measures for small and medium, but not
large WMH burdens (SI, strategy x burden, F(4,26) =
12.3). The improved SI was largely due to the sub-
stantial reduction in overestimations. Overestimations
were disproportionately large at small lesion loads
with no FPM strategy (Fig. 10B; POE range: 77%-
669%), and both FPM strategies successfully reduced
POE in this case (POE range: 8%-53%). Assessment
excluding the small WMH burden data showed that
both FPM strategies successfully reduced POE at both
medium and large WMH burdens (strategy x burden,
F(2,16) = 8.5). The improvements in SI and POE were
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accompanied by small increases (=4%) in underesti-
mations across all burden levels (Fig. 10,C; F(2,26) =
15.8).

Manual editing was applied only to the FPM2
results, primarily because reclaiming the hyperinten-
sities and partial hyperintensities missed by the
FPM1 procedure would have required more than 5
minutes to accomplish. Most of the manual correc-
tions to the FPM2 segmentations consisted of remov-
ing false positives. Manual editing was most beneficial
when whole-brain WMH load was small, where POE
was reduced from ~32% to ~20% (Fig. 10B; F(2,13) =
4.7).

At the level of individual slices, SI improved at load
levels under 4%, and then stabilized at ~0.90 for
higher loads (Fig. 10D). Similar results were seen for
overestimations, which reduced to ~5% or less at
higher loads (Fig. 10E). Underestimations stabilized
more quickly to ~10%, at WMH load levels >2% (Fig.
10F). The values at which each of these measures sta-
bilized is comparable to the range of the precision of
the method as assessed by the synthetic data at the
highest load tested (Fig. 6).

DISCUSSION

The primary aim of this work was to develop and vali-
date a fully automatic method for segmenting white
matter hyperintensities on 3T FLAIR images in the el-
derly. The current approach had excellent precision
as assessed using synthetic data. It also fared well
against manual tracing, a commonly-used “gold
standard” for validating brain tissue segmentation
algorithms.

The use of synthetic data provided an objective test
of the algorithm’s performance. The primary source of
error derived from the tendency of the algorithm to
underestimate the true hyperintensity volume. The
magnitude of underestimation was linearly related to
the number of added hyperintense voxels, and was re-
stricted to voxels with the lowest intensities. Underes-
timation was also present in the subject data, and

Figure 7. Segmentation of synthetic datasets. Top Row: Syn-
thetic WMH voxels representing 1% (A), 5% (B), 10% (C) of
total slice volume. Bottom Row: Yellow: correctly classified
voxels; Red: missed voxels. For these slices, SI = 0.98, 0.95,
0.91; PCE = 96.5, 90.1, 83.9%; PUE = 3.5, 9.9, 6.1% for
1%, 5%, and 10%, respectively.
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Figure 8. Errors associated
with two FPM strategies. A:
FLAIR image. B: Segmentation
results with no FPM strategy.
C: Segmentation results for
FPM1. The primary source of
error was false negatives
(misses, red arrows). D: Seg-
mentation results for FPM2.
The primary source of error
was false positives (yellow
arrows).

was typically at the margins of WMH, also regions of slice voxels. In fact, both the similarity index and
low signal intensity. However, in contrast to the wunderestimation were quite stable across load levels,
results for the synthetic data, underestimation rela- especially in the presence of the FPM strategies. This
tive to the manually traced hyperintensities was most finding held when the total subject lesion load was
evident when slice WMH burden was less than 1% of wused as the figure of merit. If clearly hyperintense

A

FLAIR AUTOMATIC MANUAL OVERLAP
al - Y71 ) o 4

SRR

Figure 9. Comparison of auto-
matic and manual segmenta-
tion results. False positives
were minimized by accepting
only hyperintensities con-
nected in 3D to the thresholded
white matter template (FPM2,
white matter probability =
0.63). A: Comparison of auto-
matic (orange) and manual
tracing (green) results. Overlap
of the two methods is shown
on the far right. B: Overlap
for slices representing varying
degrees of WMH load and loca-
tion. Magenta: voxels identified
by both methods; Orange:
automated method; Green:
manual tracing.
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voxels had not been removed from the data, our seg-
mentations would have also failed on slices with the
largest WMH loads. The consistency of the underesti-
mation values across WMH levels speaks to the effi-
cacy of the first-pass removal step in maintaining the
correct balance among tissue classes. In addition, if
the algorithm is in fact “missing” voxels at higher
lesion loads in the subject data, they are also voxels
that are not likely to be included by an experienced
operator.

Specific features incorporated into the procedure to
improve the accuracy of the method included the re-
moval of clearly hyperintense voxels, the use of a con-
sensus segmentation in two planes, and the incorpo-
ration of a white matter mask to define the probable
spatial locations for WMH. The first-pass removal step
was designed to ensure more robust and consistent
operation of the FCM algorithm. Using the manually
segmented data as a guide, 99% of slices had WMH
loads <6% of the total slice volume after clearly

Percent Slice WMH Load

constraint; Blue: FPM2+, FPM2
plus manual editing,.

hyperintense voxels were removed. Thus, the first-
pass removal step effectively reduced the WMH load
for each slice to a range optimal for the two-class
FCM. In fact, the less-than-perfect performance at
this step was restricted to eight slices from a single
subject’s data, where slice WMH load was between 7%
and 11%. Although striking differences were not
observed between the axial and coronal FCM results,
the requirement that a voxel segment as hyperintense
in both orientations avoided the need to reject image
slices from analysis due to an insufficient number of
voxels for the FCM algorithm.

Both automatic FPM strategies were successful
across a range of template thresholds. Additionally,
the results suggest that accurate WMH segmentations
do not depend on precise registration, as a simple
affine registration of the template was sufficient to
reduce false positives. The two FPM methods differed
statistically only with respect to under- and overesti-
mations. For these metrics, the 3D connectivity rule
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(FPM2) outperformed the simple masking approach
(FPM1). Given the small size of the differences (~1%),
the choice of which FPM strategy is optimal for a given
dataset or application depends on whether or not
manual intervention is deemed to be important to
more completely reduce false positives for small WMH
loads. If a fully automated approach is indicated, it
may be more desirable use the thresholded white mat-
ter template directly as a mask (FPM1). While this
strategy was insensitive to WMH located outside the
boundaries of typical white matter, and thus pro-
duced the largest PUE, it was not as likely to include
CSF flow artifact. On the other hand, simply exclud-
ing hyperintensities not connected in 3D to the white
matter template (FPM2) brought underestimations to
their best level, and adopting a semiautomatic strat-
egy further improved both SI (~2%) and POE (~5%).
The semiautomated procedure using FPM2 required
the least amount of manual reclassification, because
there was a greater initial agreement with the manual
tracings, and there were no instances where subsec-
tions of WMH were misclassified.

The primary sources of error with this segmentation
procedure are directly linked to the sensitivity of the
FLAIR sequence. CSF inflow artifact can be a major
source of error on 2D FLAIR imaging (=50%) (15), but
was not prominent in the current dataset (=10%).
However, prominent CSF flow artifact was easily elimi-
nated as a major source of false positives by both
FPM methods. Second, there is continuing debate in
the literature regarding the relevance of thalamic
infarcts, lacunes, and cystic white matter hyperinten-
sities (23-25) for cognitive decline and progression of
dementia. If these “black holes” on T;-weighted
images are in fact CSF-filled, they will tend to be
black holes on FLAIR images, and will not be included
in the WMH burden volume (eg, 26). Incorporating
those hypointense voxels as a unique tissue compart-
ment would require separate segmentation of PD
and/or T,;-weighted images. One of our ultimate goals
is to combine WMH and T; segmentation results to
achieve regional lobar tissue volumes (27). Therefore,
the WMH segmentations and tracings were performed
on FLAIR images coregistered to T;-weighted images.
Performing the analysis in native acquisition space
would avoid introducing interpolation error, and may
be an important factor to consider in certain instan-
ces. However, the high similarity indices achieved
indicate the procedure is robust with respect to the
error introduced from interpolating the image into the
higher resolution space.

The whole-brain accuracy of the present approach
equaled or exceeded those derived from methods opti-
mized for both single- and multichannel data at 1.5T.
Our approach exceeded that of Admiraal-Behloul et al
(10), who found SIs ranging from 0.70-0.82 across
three similar levels of WMH load using a multispec-
tral, fuzzy segmentation. At large lesion loads, our
method had SIs similar to those derived using K-near-
est neighbor (6) or multispectral fuzzy connectivity
approaches (7). At smaller whole-brain WMH loads,
the current approach appears to have outperformed
both. At the slice level, high similarity indices and low
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underestimations were achieved consistently at slice
loads >3% when an FPM strategy was used, and at
slice loads >4% when the basic segmentation was
used.

An additional advantage of this approach is that it
is straightforward to implement. Neither large training
datasets or labor-intensive manual labeling of hyper-
intensities are required. For a given set of FLAIR ac-
quisition parameters, only two thresholds need to be
established. The first threshold is derived from nor-
malized images and is used to exclude obviously
hyperintense voxels, so that slice WMH load is
roughly 6% in the most severely affected cases. This
threshold can be determined on a representative data-
set with moderate to high WMH load. The second
threshold establishes which voxels will be considered
outliers in the background/CSF class. Very high simi-
larity indices in the test dataset were achieved using
only two subjects to establish the optimal values for
both thresholds. Because the segmentation procedure
has been designed and validated to perform equally
well across a wide range of lesion loads, appropriate
segmentation parameters can be selected by visual
reference to only a small sample of test images.

In conclusion, the method presented here is the
first, to our knowledge, to optimize segmentation of
WMH in the elderly on 3T FLAIR images. This unsu-
pervised method does not require extensive training
sets or manual segmentations. It is based on a quick
and simple clustering algorithm which, in conjunction
with a template-based FPM strategy, meets or exceeds
the results from more complex multichannel and/or
pattern recognition techniques. Importantly, it deliv-
ers consistent results across a range of WMH loads,
suggesting it will be useful in larger cohort studies of
WMH in aging and dementia.
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