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Non-coding RNAs (ncRNAs) take essential effects on biological processes, like gene
regulation. One critical way of ncRNA executing biological functions is interactions
between ncRNA and RNA binding proteins (RBPs). Identifying proteins, involving
ncRNA-protein interactions, can well understand the function ncRNA. Many high-
throughput experiment have been applied to recognize the interactions. As a
consequence of these approaches are time- and labor-consuming, currently, a great
number of computational methods have been developed to improve and advance the
ncRNA-protein interactions research. However, these methods may be not available to all
RNAs and proteins, particularly processing new RNAs and proteins. Additionally, most of
them cannot process well with long sequence. In this work, a computational method
SAWRPI is proposed to make prediction of ncRNA-protein through sequence information.
More specifically, the raw features of protein and ncRNA are firstly extracted through the
k-mer sparse matrix with SVD reduction and learning nucleic acid symbols by natural
language processing with local fusion strategy, respectively. Then, to classify easily, Hilbert
Transformation is exploited to transform raw feature data to the new feature space. Finally,
stacking ensemble strategy is adopted to learn high-level abstraction features
automatically and generate final prediction results. To confirm the robustness and
stability, three different datasets containing two kinds of interactions are utilized. In
comparison with state-of-the-art methods and other results classifying or feature
extracting strategies, SAWRPI achieved high performance on three datasets,
containing two kinds of lncRNA-protein interactions. Upon our finding, SAWRPI is a
trustworthy, robust, yet simple and can be used as a beneficial supplement to the task of
predicting ncRNA-protein interactions.

Keywords: ncRNA-protein interactions, ncRNA, ensemble learning, sequence analysis, natural language processing

Edited by:
Aashish Srivastava,

Haukeland University Hospital,
Norway

Reviewed by:
Xiangtao Li,

Jilin University, China
Guohua Huang,

Shaoyang University, China

*Correspondence:
Li-Ping Li

lipingli_szu@foxmail.com
Chang-Qing Yu
xaycq@163.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 20 December 2021
Accepted: 07 February 2022
Published: 28 February 2022

Citation:
Ren Z-H, Yu C-Q, Li L-P, You Z-H,
Guan Y-J, Li Y-C and Pan J (2022)

SAWRPI: A Stacking Ensemble
Framework With Adaptive Weight for
Predicting ncRNA-Protein Interactions

Using Sequence Information.
Front. Genet. 13:839540.

doi: 10.3389/fgene.2022.839540

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8395401

ORIGINAL RESEARCH
published: 28 February 2022

doi: 10.3389/fgene.2022.839540

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.839540&domain=pdf&date_stamp=2022-02-28
https://www.frontiersin.org/articles/10.3389/fgene.2022.839540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.839540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.839540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.839540/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.839540/full
http://creativecommons.org/licenses/by/4.0/
mailto:lipingli_szu@foxmail.com
mailto:xaycq@163.com
https://doi.org/10.3389/fgene.2022.839540
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.839540


INTRODUCTION

Protein is the main carrier of cellular activities. Human proteins are
translated from less than 2% of genome, but more than 80% of
genome has biochemical functions (Djebali et al., 2012; Pennisi
2012), which accounts for the large number of non-coding RNA
(ncRNA), known as the RNA with little or without ability of
encoding proteins, have biological functions. There is an
emerging recognition of RNA that any transcripts can have
intrinsic functions (Han et al., 2019). Long non-coding RNA
(lncRNA) is a class of transcribed RNA molecules with no ability
of encoding proteins, which has more than 200 nucleotides
(Prensner and Chinnaiyan 2011; Volders et al., 2013) and more
than 70% of ncRNA are lncRNAs (Yang et al., 2014). Massive
amount of lncRNA means largely precious biological information is
waiting for mining. It has demonstrated that various complex
diseases have strong correlation with lncRNA, like Alzheimer (Ng
et al., 2013) and lung cancer (Shi et al., 2015). Moreover, biological
studies revealed that lncRNA plays important roles in gene
regulation, splicing, translation, chromatin modification and poly-
adenylation (Wang and Chang 2011; Nie et al., 2012; Zeng et al.,
2017). However, it is still largely unknown that the biological
functions of most ncRNAs. And on account of interactions
between ncRNA and RNA binding proteins (RBPs) is a critical
way of ncRNA executing biological functions (Zhu et al., 2013), to
the understanding biological functions of ncRNA, identifying
ncRNA-protein interactions is a crucial step. Wet-lab experiments
have been designed to verify ncRNA-protein interactions, like
RNAcompete (Ray et al., 2009), RIP-Chip (Keene et al., 2006),
and HITS-CLIP (Darnell 2010). While, in the post-genomic era,
much time is used to hand-tune carefully putatively bound
sequences for high-throughput technologies and it is costly to
determine complex sequence structure of them (Alipanahi et al.,
2015). Additionally, wet experiments have no ability to examine
ncRNA-protein interactions efficiently and effectively because of the
large number of unexplored interactions. Due to experimental
methods are costly, time-consuming and localized, and sequences
of RNA and protein carry sufficient information for predicting
interaction between them (Ray et al., 2009; Alipanahi et al.,
2015), many computational models have been proposed as
alternative methods to overcome the drawbacks of ncRNA-
protein interactions prediction.

Nowadays, two kinds of computational methods, traditional
machine learning and deep learning, are mainly used to predict
ncRNA-protein interactions. Muppirals et al. proposed RPISeq,
which is a computational model utilizing the information of
sequence, encoding RNA and protein sequence through k-mers
and classification through the SVM and Random Forest
algorithms (Muppirala et al., 2011). RPI-SE method, developed
by Yi et al., extracts sequence information through k-mers sparse
matrix and position weight matrix (PWM) with singular value
decomposition (SVD) (Yi HC. et al, 2020). Suresh et al. designed
model of RPI-Pred, same to RPISeq, which exploited RNA and
protein sequence information and classified through SVM
(Suresh et al., 2015). Wang et al. has developed an approach
to make prediction of RNA-protein interactions based on
sequence characteristics and naive Bayes classifier (Wang

et al., 2013). catPAPID is introduced by Bellucci et al., to
exploit the physicochemical properties on nucleotide and
polypeptide, and further to predict protein interactions in Xist
network through catPAPID (Bellucci et al., 2011; Agostini et al.,
2013). Cirillo et al. proposed method to predict protein-RNA
interactions with Global Score, integrating local structure feature
of RNA and protein into overall binding tendency, and
calibrating through high-throughput data (Cirillo et al., 2017).
Xiao et al. utilized the measure of HeteSim to score pairwise
lncRNA-protein, and with the score, SVM was built to classify
(Xiao et al., 2017). Li et al. applied LPIHN based on implementing
random walk with restart on the heterogeneous network,
including lncRNA-lncRNA similarity network, lncRNA-protein
interactions network and protein-protein interaction network (Li
et al., 2015). Methods proposed respectively by Zheng et al. and
Yang et al. and the model of PLIPCOM extracted topological
information of ncRNA-protein interactions by calculating the
HeteSim scores on the relevance paths of the heterogeneous
network (Yang et al., 2016; Zheng et al., 2017; Deng et al.,
2018). Yao et al. used the knowledge graph with auto-encoder
to detect protein complexes (Yao et al., 2020). DM-RPIs extracted
sequence characteristics through making full use of stacked auto-
encoder networks and trained through multiple base classifier
(Cheng et al., 2019). NPI-RGCNAE is proposed by Yu et al.
utilizing graph convolutional network (GCN) to predict ncRNA-
protein interactions, and they developed a novel approach of
negative sample selecting (Yu et al., 2021). Although existing
computational methods using different RNA and protein features
to predict with good performance, these methods may be
ineffective due to the features may not available to all RNAs
and proteins, particularly facing to new RNA and protein, which
have no known interactions with any protein or RNA. Apart from
that, existing approaches handled not good with long sequence
and effective manner for feature extraction is crucial.

In this paper, to avoid existing deficiencies, we proposed a
computational framework SAWRPI based on stacking ensemble.
Traditional machine learning approaches have demonstrated
their potential ability in small sample learning task, like
prediction task of ncRNA-protein interactions with tree-based
model and SVM (Yi H.-C. et al, 2020). Thus, our framework
integrates four base classifiers XGBoost (Chen and Guestrin
2016), SVM (Cortes and Vapnik 1995; Chang and Lin 2011),
ExtraTree (Geurts et al., 2006) and Random Forest (RF) (Breiman
2001) for classification and prediction. Specifically, we catch
information of group-level amino acids through 3-mers sparse
matrix, which contains the components of amino acid and the
information of sequence order (You et al., 2016; Yi et al., 2019),
and then generating feature vector through SVD. Meanwhile,
method of natural language processing (NLP) is used to get
representation of ncRNA nucleic acid symbols, then getting
comprehensive information through a local fusion strategy.
Next, Hilbert Transformation is exploited to further extract
information and transform raw feature data to the new feature
space which is easier to classify. Finally, inspired by Pan et al.(Pan
et al., 2016), stacking ensemble is adopted to fuse all classification
results from base predictors and generate final prediction results.
To confirm the robustness and stability, three different datasets
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containing two kinds of interactions are utilized.When compared
with state-of-the-art methods and other strategies for results
classifying or feature extracting, our method achieved better
performance. These results demonstrate the proposed
framework is trustworthy and effective for ncRNA-protein
interactions prediction.

MATERIALS AND METHODS

Dataset Description
As the biological common sense, RNA contains two categories
of mRNA and ncRNA. The ncRNA includes long non-coding
RNA, which is longer than 200 nt, and small ncRNA, like
miRNA and snoRNA and there are different biological
functions among them (Pan et al., 2016). To demonstrate the
robustness and stability of SAWRPI, different RNA-protein
interactions benchmark datasets are used to validate, which
including mRNA-protein and lncRNA-protein datasets. In
practice, dataset RPI488 (Pan et al., 2016)and RPI369
(Muppiral et al., 2011), RPI1807 (Suresh et al., 2015) were
chosen to evaluate. The first one is lncRNA-protein dataset,
while the last two datasets stand for mRNA-protein. RPI488 is a
non-redundant dataset of lncRNA-protein interactions,
containing 245 negative samples and 243 positive samples
among 25 lncRNAs and 247 proteins (Huang et al., 2010;
Puton et al., 2012). Dataset RPI369 also is non-redundant
with 332 RNA chains and 338 protein chains, generated from
RPIDB (Lewis et al., 2010), a comprehensive database calculated
from PDB (Berman et al., 2000), and has no ribosomal protein
or ribosomal RNAs. It contains a total of 369 positive interactive
pairs. RPI1807, a non-redundant dataset, generated by NDB (Lu
et al., 2013), includes 1,078 RNAs and 1807 proteins, and then
consist 1807 pairwise positive samples and 1,436 pairwise
negative samples. Table 1 illustrates details of these three
benchmark datasets.

Overview of Methods
In this study, to predict ncRNA-protein interactions, we
developed a computational method SAWRPI. Due to the
difference of structure between ncRNA and protein, we
extracted sequence information of two entities through
different ways. For proteins, extracting conjoint triad (3-
mers) from 7 groups of amino acids and generating 3-mers
sparse matrix. Immediately, SVD is utilized to reduce the
sparse matrix into a vector, which is seen as raw features. For
ncRNA, word embedding method is used to extract raw
representation of ncRNA symbol with the local fusion
strategy (LFS). Before predicting through the classification

strategy, Hilbert Transformation (HT) is used to further
extract information of raw features. Finally, making
prediction through the classifier with our strategy of
stacking ensemble with adaptive weight initialization.
Figure 1 deploys the detail of this process.

Representation of ncRNA and Protein
Sequences
To preliminarily obtain raw features, for each protein sequence,
20 amino acids are partitioned into 7 groups (Pan et al., 2010),
“AGV”, “TMTS”, “ILFP”, “HNQW”, “DE”, “RK” and “C”, based
on the dipole moments and side chain volume. Protein sequence
with length of n, can be expressed using only seven symbols, and
under sequence dividing into n-(k-1) subsequences, there are 7k

different possible k-mer. Then the k is set to 3 which is
commonly accepted as empirical parameter (Shen et al.,
2007; Yi et al., 2018). As Table 2 shown, the features of
conjoint triad pjpj+1pj+2 based on the seven groups for each
protein can be extracted as a sparse matrix Lp with the
dimension of 7k×(n-(k-1)) (You et al., 2016), which can be
defined as follows:

Lp � (aij), i ∈ [0, 7k − 1], j ∈ [0, (n − (k − 1))] (1)

aij � { 1, if pjpj+1pj+2 � k −mer(i)
0, else

(2)

Furthermore, the SVD is used to extract the vector with
dimension of 7k×1 from sparse matrix Lp. While, for each
ncRNA sequence with length of m, k-mer composition is also
used to divide them into m-(k-1) subsequences and the semantic
information is utilized, which is different from the treatment
processes of protein sequences. Each ncRNA can be considered as
“sentence” and the subsequences (e.g., AAA, AAC, . . . , UUU)
can be seen as “word”. Word embedding techniques have
demonstrated the promise in natural language processing
applications. Therefore, we used this technique to encode each
subsequence. Specifically, features of global word co-occurrence
probability are extracted through model of GloVe (Pennington
et al., 2014), the details following the next section. Each “word”
can be expressed as a feature vector, and each sentence with
length of m-(k-1) are expressed as a feature matrix with
dimension of d×(m-(k-1)), where d stands for dimension of
embedding and is set to 32 in this experiment.

For long non-code RNA, there are more than 200-(k-1) words
to be embedded. The count of feature factors is a tremendous
overwhelming number. To solve it, many methods select the way
of directly truncate, which is helpful but may loss many
information of sequence (You et al., 2018; Chen et al., 2019;
Yi H.-C. et al, 2020). Inspired by. Zeng et al. (2021) and motivated
by spatial pyramid pooling-net (He et al., 2015), we proposed a
novel local fusion strategy named LFS to fully explore the
evolutionary features that after subsequence embedding, as
Figure 2 shown, an average pooling layer is used to produce
the patterns of the subsequence, and then combining all the
pattern to a vector with certain dimension. Notably, if the length
of RNA is too short to satisfy the setting dimension, zero will be

TABLE 1 | The details of the ncRNA-protein interactions datasets.

Data set Interaction pairs # of ncRNAs # of proteins

RPI369 369 332 338
RPI1807 1807 1078 1807
RPI488 243 247 25
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filled. Finally, the raw feature vectors of each ncRNA and protein
sequence can be extracted. And we set the number of groups
as 11.

Method of Word Embedding
One reason of deep learning technology developing rapidly is
remarkably disposing of corpora in various fields. There are
now many natural language processing methods and word
embedding methods having been adopted, like iDeepSubMito
(Hou et al., 2021), iCircRBP-DHN(Yang et al., 2021), Latent
Semantic Analysis (LSA) (Dumais 2004), word2vec (Mikolov,

et al., 2013; Mikolov, et al., 2013) and Global Vectors for Word
Representation (GloVe) (Pennington et al., 2014). While in
this paper, we exploit the model of GloVe to learning the
embedding vectors of ncRNA “words”.

The model of GloVe can overcome the drawback of first two
embedding methods mentioned previously that the high
computational burden and utilization of partial corpus. It
produces a word vector space, which has meaningful substructure,
based on making full use of the information of global word-word co-
occurrence. In detail, implementation of the GloVe is in a three-steps
procedure. Firstly, constructing a co-occurrence matrix X based on
ncRNA “word” corpus. Each co-occurrencematrix element pij stands
for probability of co-occurrence rather than count of co-occurrence,
following the formula:

pij � P(j∣∣∣∣i) � xij

xi
(3)

where xij represents for the appearing number of word j in the
context environment of word i, and xi stands for the total
appearing number of all word in the context environment of
the word i. Then, generating the word vector to construct

FIGURE 1 | Pipeline of the framework of SAWRPI.

TABLE 2 | 3-mer sparse matrix of protein sequence.

p1p2p3 p2p3p4 . . . pn-2pn-1pn

‘AGV’ ‘AGV’ ‘AGV’ a11 a12 . . . a1,n-2
‘AGV’ ‘AGV’ ‘TMTS’ a21 a22 . . . a2,n-2
‘AGV’ ‘TMTS’ ‘AGV’ a31 a32 . . . a3,n-2
. . . . . . . . . . . . . . .

‘C’ ‘C’ ‘C’ a343,1 a343,2 . . . a343,n-2
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approximation relationship with the co-ocurrence matrix
through the function as follows.

ω⊤
i ~ωj + bi + ~bj � log(xij) (4)

where ωi and ~ωj respectively mean the embedding vectors of
word i and word j, while bi and ~bj respectively mean bias
terms. In the end, obtaining and minimizing the loss
function:

J � ∑V
i,j�1

f(xij)(ω⊤
i ~ωj + bi + ~bj − log(xij))2 (5)

f(x) � { (x/xmax)α if x<xmax

1 otherwise
(6)

where the f(·) is a weight function used to make the value of
appearing number between the words rarely appearing much
lower. In the experiment, we set embedding dimension as 32.
After splitting nucleic acids sequences into 3-mers, each “words”
can be indicated as a vector.

Feature Extraction Method of Hilbert
Transformation
To fully exploit sequence information, we further extract
information from raw features. Hilbert transform
(Johansson 1999) is used to generate features easily
analyzing based on the raw features of ncRNA and protein.
Hilbert transformation is usually used to analyze signal in the
time and frequency, which acts as a 90° phase shifter without
changing energy and amplitude, phase-shifting −90° to part of
positive frequency, while phase-shifting 90° to part of negative
frequency, and it can also be used as a tool of features
extracting in the field of biology (Pan et al., 2021). The
transformation function can be defined as:

x̂(t) � x(t) 1
πt

� 1
π
∫
∞

−∞

x(τ)
t − τ

dτ � −1
τ
∫
∞

−∞

x(t + τ)
τ

dτ (7)

where x(t) is seen as each feature vectors. And the back-
transformation is defined as:

FIGURE 2 | The architecture for extracting ncRNA structure feature through NLP method with local fusion strategy. As (B) shown, each ncRNA from database
is divided into many triple symbols by 3-mers composition, and GloVe is used to generate embedding vector of 43 symbols. Then, as (A) shown, each ncRNA will be
split into some consecutive subsequences with no overlap. All the triple symbols embedding vector of each subsequence can be obtained from (B). Finally, the
representation of ncRNA can be obtained through calculating the average of all symbol vectors in each subsequence respectively, and concatenating all
average vectors.
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x(t) � −x̂(t) 1
πt

� −1
π
∫
∞

−∞

x̂(τ)
t − τ

dτ � 1
τ
∫
∞

−∞

x̂(t + τ)
τ

dτ (8)

Specifically, in this work, we respectively used model of
SVD and GloVe to obtain the raw feature of protein and
ncRNA. Then each protein and ncRNA is encoded as vectors
with dimension of 7 × 7 × 7 and dimension of 11 × 32. Finally,
after the processing of Hilbert transforming, hidden high-
level features can be extracted.

Machine Learning Base Classifier
In this work, four kinds of machine learning base classifiers are
utilized to integrate, including XGBoost (Chen and Guestrin
2016), SVM (Cortes and Vapnik 1995; Chang and Lin 2011),
ExtraTree (Geurts et al., 2006) and Random Forest (Breiman
2001). SVM is used for classification, regression or other work,
through constructing one or multiple hyperplanes in a high-
dimension space. Intuitively, a decent segmentation using the
hyperplane can maximize the distance of function margins
(points of training data) in any class. It is usually used in high
dimension space with high-performance, although the
sample size is lower than data dimension. However, if the
number of samples is much lower than the number of the data
features, SVM may overfitting and need to select efficient
kernel to avoid.

Supposing the training dataset with label [(xi, yi), i = 0, 1, . . . , n, yi
= (1, -1), xi∈ R] and regarding (w(x)+b) = 0 as a separating
hyperplane. In the linear separable problems, to maximize the
margin, SVM minimizes subject of ||w||2/2 to find the separation
hyperplane through the constraint:

yi(wxi + b)≥ 1,∀xi (9)
And in the linear non-separable problems, slack variables are
introduced to look for the optimal separating hyperplane, then
minimizing the function:

∣∣∣∣∣∣∣∣w∣∣∣∣∣∣∣∣2/2 + C∑n
i�1
ξ i, ξ i ≥ 0,∀xi (10)

yi(wxi + b)≥ 1 − ξ i, ξ i ≥ 0,∀xi (11)
where C is user-adjustable parameter. Kernel of Radial Basis
Function (RBF) is adopted, which is defined as:

f(x) � e−γ||x−x’||2 (12)
XGBoost, a model of end-to-end tree boosting, can perceive

sparsity data well called sparsity-aware. To control complexity of
the model, XGBoost adds a regularization term to cost function,
which can reduce the variance of the model as well as prevent
situation of overfitting, and then performs second-order Taylor
expansion. For a larger learning space, XGBoost diminishes the
impact of each tree through multiplying the weight of leaf nodes.
Its objective function is defined as follows.

Obj � ∑n
i�1
l(yi, ŷi) +∑K

k�1
Ω(fk) (13)

Ω(ft) � γT + λ

2
∑T
j�1
w2

j (14)

where l is used to compute difference between target yi and
prediction ŷi. Then, Ω(·) stands for regular term containing T,
count of leaf nodes, and the sum of l2 modulus square of score on
each leaf. XGBoost supports column sampling and draws on the
method of Random Forest, which can avoid over-fitting and save
computation resources.

Random Forest is a representative ensemble classification
algorithm, which is based on the decision tree evaluator to
introduce randomness features selection into the process of
decision tree training. Specifically, it uses multiple decision tree to
reduce variance of output. For each node of decision tree, randomly
selecting a subset containing K features from the node features set,
and then optimal features can be selected from subset to split. TheK is
used to control degree of randomness. Supposing the label sets is
{c1, c2, ..., cN} and the prediction of ith base classifier on the sample is
(h1i (x), h2i (x), ..., hNi (x))⊤. For integrating results of each base
classifier, majority voting and averaging methods are often used,
which are respectively defined as:

H(x) �
⎧⎪⎪⎨⎪⎪⎩

cj, ∑T
i�1
hji (x)> 0.5 +∑N

k�1
∑T
i�1
hki (x)

reject, otherwise

(15)

H(x) � 1
T
∑T
i�1
wihi(x) (16)

where wi is weight of ith base classifier. Extremely randomized
tree (ExtraTree) is on the basis of random forest to further
random on splitting threshold. And extremely randomized
tree essentially builds totally randomized trees, which selects
attribute and cut-point with strongly randomizing when it
splits a tree node. Tree structure is independent of the output
value. It can further enhance randomness of segmentation
points that choosing suitable parameter according specific
task. Under the segmentation rule, selecting the best
threshold for each candidate feature from these randomly
generated thresholds.

And all the parameters were set as follows. The sklearn tool
was used in this paper to training four models. For the parameters
of XGBoost, we set max_depth = 6 and booster = ’gblinear’. The
kernel of ‘rbf’ is set for SVM model. There are four parameters to
Random Forest model, criterion = ’gini’, n_estimators = 25,
random_state = 1 and n_jobs = 2. Model of ExtraTree uses
default parameters.

Strategy of Stacking Ensemble With
Adaptive Weight Initialization
Ensemble learning method accomplished learning task through
constructing and combining multiple evaluators rather than one
learning machine, which considers multiple results of each
evaluator and integrates into a comprehensive result. In most
situations, multiple evaluators are better than single evaluators in
performance of classification and regression task.
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Generally, different performances are present in different
classifiers (evaluators). And how to efficiently integrate
different classifiers to generate the target function is so crucial.
Previously, there are many studies of integrating multiple
classifiers, containing majority voting (Breiman 2001),
averaging results of each base model (Pan et al., 2011) and
stacked ensemble method (Töscher et al., 2009). Majority
voting and averaging has been detailed previously. While,
stacked ensembling follows the intuition of the deep neural
network, uniting with encoder layer and successive decoder
layer. Specifically, the level 0 classifiers, regarded as encoder
layer, firstly generate prediction probability score, and then,
the level 1 classifier integrate results from single classifier
through logistic regression. Figure 3 shows the detail as follows.

In the encoding layer with cth base classifier, the training set Tr
will be split divided into four equal fractions Tri and encoded in
four runs. In ith run, training sub-set of Tri is encoded by the sub-
encoder learning from the rest of the training sub-sets through cth
base classifier, and the testing set Te also is encoded as a vector of
tei

c. After four iterations, with cth classifier, the training set Tr can
be expressed in trc, and the testing set Te can be expressed in tec

through the function as follows:

tec � 1
N

∑N
i�1
teci (17)

where Nmeans the number of base classifiers. Through all of the
base classifiers, encoding matrix of Tr and Te can be generated,

FIGURE 3 | The detailed process of the strategy, stacking ensemble with adaptive weight initialization. As (A) shown, the data are calculated by the four classifiers
under five-fold cross-validation, respectively and making final prediction through stacked ensemble strategy. Section (B) displays the process of 0-level classifier, and
section (C) displays the process of 1-level classifier.
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whose rows stand for encoding vectors of all the samples. Then,
level 1 layer of logistic regression satisfies the following equations:

Pw(y � ± 1
∣∣∣∣x) � 1

1 + e−yw⊤x
(18)

where x is encoding vector, and w is learning weight vector for
each classifier. When w is same constant for each classifier, it is
equivalent to strategy of averaging, however, if only one element
of is non-zero, it is like strategy of majority voting.

In this work, we provided a strategy of adaptive weight
initialization through initialization parameter λc for cth
classifier which is defined as follows.

λc � − 1

(1 − 1
(wc)2)N

(19)

wc � 1
N

∑N
i�1
wc

i (20)

where wi
c stands for the AUC score of Tri prediction with cth

classifier in each run mentioned above. The aim of arising
parameter λc is making the importance of weaker classifier to
reduce before feeding the vectors to decoder layer to improve
performance by fine-tuning. Thus, Tr and Te can be expressed in
λc×trc and λc×tec respectively with cth classifier.

EXPERIMENTAL RESULTS AND
DISCUSSION

Evaluation Criteria
In this article, the performance of SAWRPI is evaluated by five-
fold cross validation. And each validation makes full use of the
frequently utilized metrics to assess robustness and effectiveness
of the proposed method. Including Accuracy (Acc.), Sensitivity

(Sen.), Precision (Prec.), F1 (Macro F1) and MCC (Matthews’s
Correlation Coefficient). These evaluation indicators can be
represented as follows:

Acc. � TP + TN

TN + TP + FN + FP
(21)

Prec. � TP

TP + FP
(22)

Sen. � TP

TP + FN
(23)

F1 � 2 × Prec. × Sen.
Prec. + Sen.

(24)

MCC � TP × TN − FP × FN��������������������������������������������(TP + FP) × (TN + FN) × (TN + FP) × (TP + FN)√
(25)

where TP and FN are treated as the number of positive samples
which are correctly predicted as positive and incorrectly predicted as
negative, respectively, then TN and FP respectively stand for the
number of negative samples which are correctly detected as negative
and incorrectly detected as positive. Apart from the above indicators,
AUC, the area under the ROC curves, is constructed to evaluate our
model. The mean value of the results of five validation is used to
ensure low-variance and unbiased evaluations.

Assessment of Prediction Ability
In this work, to demonstrate performance and robustness of
SAWRPI, three datasets, indicating two kinds of ncRNA-protein
interactions, have been used to validate, including mRNA-protein
and lncRNA-protein datasets. Furthermore, the five-fold cross-
validation can enhance the persuasion of the predicting results.
Specifically, dataset RPI369, RPI488 and RPI1807 is used to
evaluate SAWRPI. Table 3 reveals the result of prediction.
Certainly, the same experiments with the other classifiers are
reported in Supplementary Material.

Table 3 | Five-Fold cross-validation results on three datasets by SAWRPI.

Dataset Fold Acc Prec Sen F1 MCC

RPI369 0 0.743 0.720 0.797 0.756 0.489
1 0.682 0.667 0.730 0.697 0.367
2 0.696 0.688 0.716 0.702 0.392
3 0.721 0.709 0.757 0.732 0.443
4 0.707 0.679 0.781 0.726 0.420

Average 0.710 ± 0.023 0.693 ± 0.022 0.756 ± 0.034 0.723 ± 0.024 0.422 ± 0.047

RPI488 0 0.918 0.976 0.851 0.909 0.842
1 0.897 0.972 0.795 0.875 0.800
2 0.876 0.911 0.879 0.895 0.746
3 0.918 0.955 0.875 0.913 0.838
4 0.866 0.878 0.818 0.847 0.729

Average 0.895 ± 0.024 0.938 ± 0.042 0.844 ± 0.036 0.888 ± 0.027 0.791 ± 0.052

RPI1807 0 0.963 0.954 0.981 0.967 0.925
1 0.969 0.965 0.981 0.973 0.938
2 0.963 0.957 0.978 0.967 0.925
3 0.966 0.964 0.975 0.970 0.931
4 0.975 0.967 0.989 0.978 0.950

Average 0.967 ± 0.005 0.961 ± 0.006 0.981 ± 0.005 0.971 ± 0.004 0.934 ± 0.011
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As the table shown, the average scores of Acc reach 0.710,
0.895, and 0.967 in all three datasets. When applying SAWRPI
to RPI1807, we obtained the highest average score of Acc, Prec,
Sen, F1 and MCC of 0.967, 0.961, 0.981, 0.971, and 0.934, with
the standard deviation of 0.005, 0.006, 0.005, 0.004, and 0.011,
respectively. On the dataset of RPI369, whose type of
interaction is same to RPI1807, obtained average Acc, Prec,

Sen, F1 and MCC of 0.710, 0.693, 0.756, 0.723 and 0.422, with
the standard deviation of 0.023, 0.022, 0.034, 0.024 and 0.047,
respectively. Comparing these results, it is easy to see that
SAWRPI is more applicable to the dataset of RPI1807. Thus,
the size of dataset can cause effect on prediction result. The
other type dataset RPI488 reached average Acc, Prec, Sen, F1
and MCC of 0.895, 0.938, 0.844, 0.888 and 0.791, with the
standard deviation of 0.024, 0.042, 0.036, 0.027 and 0.052,
respectively. At the view of interaction type, our model may be
more effective on the interaction type of lncRNA-protein. One
reason may be that our method of representing ncRNA can
capture more distal sequence information, which may bring
some noise at the same time. Even then, it is undeniable that
SAWRPI still achieved a fabulous capability of ncRNA-protein
interactions prediction.

TABLE 4 | AUC of different integrating methods on three datasets.

Integrating method RPI369 RPI488 RPI1807

Averaging 0.737 0.919 0.993
Ensemble 0.744 0.921 0.992
Ensemble with initialization 0.746 0.922 0.992

The bold values represent the higher values each column.

TABLE 5 | Five-Fold cross-validation average results on three datasets by different
classifiers.

Dataset Classifier Acc Prec Sen F1 MCC

RPI369 XGBoost 0.553 0.551 0.596 0.571 0.107
SVM 0.638 0.661 0.569 0.610 0.280
RF 0.686 0.685 0.686 0.685 0.372
ExtraTree 0.690 0.677 0.726 0.700 0.381
SAWRPI 0.710 0.692 0.756 0.723 0.422

RPI488 XGBoost 0.891 0.941 0.831 0.882 0.783
SVM 0.887 0.916 0.848 0.880 0.773
RF 0.891 0.935 0.837 0.883 0.783
ExtraTree 0.860 0.877 0.837 0.855 0.720
SAWRPI 0.895 0.938 0.844 0.888 0.791

RPI1807 XGBoost 0.802 0.754 0.959 0.844 0.617
SVM 0.899 0.876 0.952 0.913 0.796
RF 0.965 0.966 0.971 0.969 0.929
ExtraTree 0.965 0.960 0.978 0.969 0.930
SAWRPI 0.967 0.961 0.981 0.971 0.934

The bold values represent the higher values each column of each dataset.

FIGURE 4 | Average result of ROC curves of five-fold cross-validation
with four single base classifiers and our method of stacking ensemble on
RPI369 by SAWRPI. AUC expresses area under an ROC curve.

FIGURE 5 | Average result of ROC curves of five-fold cross-validation
with four single base classifiers and our method of stacking ensemble on
RPI488 by SAWRPI. AUC expresses area under an ROC curve.

FIGURE 6 | Average result of ROC curves of five-fold cross-validation
with four single base classifiers and our method of stacking ensemble on
RPI1807 by SAWRPI. AUC expresses area under an ROC curve.
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Comparison Between Different
Classification Strategies
AUC, the area under ROC curve, is regarded as an important
criterion for evaluating the performance of the classification
model. To verify the superiority of our strategy of stacking
ensemble with adaptive weight initialization, we compared it
with two different integrating methods in the same
features of ncRNA and protein. As Table 4 shown, our
integrating strategy is more advantageous on dataset of
RPI369 and RPI488, and competitive on dataset of
RPI1807. The results of other evaluation parameters are
reported in Supplementary Material.

Moreover, to reveal the improvement of stacking ensemble
strategy, we also contrasted our strategy with the four
classifiers, which are used as base predictors of our method.
Integrating four base predictors through a Logistic Regression
function automatically. As Table 5 illustrates, on the RPI369
dataset, SAWRPI obtained five the highest values of Acc, Prec,
Sen, F1 and MCC of 0.710, 0.692, 0.756, 0.723 and 0.422,
respectively. On the RPI488 dataset, SAWRPI got four the

highest values of Acc, Prec, F1 and MCC of 0.895, 0.938, 0.888
and 0.791, respectively. On the RPI1807 dataset, SAWRPI
obtained four the highest values of Acc, Sen, F1 and MCC
of 0.967, 0.981, 0.971 and 0.934, respectively. Although the
results of our method are not the best on each criterion, it still
obtained comparable results which are only 0.004 and 0.005
lower than the best value, respectively. For further description
of the model reliability, three ROC curves displayed following,
shown by Figures 4–6. To verify that the results are truly
significant, statistical learning method is used to plot boxplots,
shown by Figure 7. Additionally, ROC curves figures of
comparing all classifying strategies in three datasets and
five-fold cross-validation results on three datasets by
different classifying strategies are shown in Supplementary
Material.

Comparison Between Different Feature
Extracting Strategies
To illustrate the effectiveness of feature extraction method, HT
was compared with some correlatively common methods,
including Auto-covariance (AC) (Zeng et al., 2009) and
Discrete Wavelet transform (DWT) (Nanni et al., 2012).
As shown in Table 6, on the RPI369 and RPI1807 dataset,
our method got the highest prediction values on all
evaluation criteria of 0.710, 0.692, 0.756, 0.723, 0.422 and
0.746, and 0.967, 0.961, 0.981, 0.971, 0.934 and 0.992,
respectively. And on the RPI488 dataset, our method
obtained only 0.008 lower accuracy in term of Sen,
comparing the highest value. Obviously, the performance
of our feature extracting strategies is better than the
others. To verify that the results are truly significant,
statistical learning method is used to plot boxplots shown
by Figure 8. Notably, the five-fold cross-validation results
table and the ROC curve figures of each classification method
mentioned above based on different feature extracting
strategies are reported in the Supplementary Material.

FIGURE 7 | Experimental results of SAWRPI on RPI369 and RPI488 datasets with different classifiers. The result of SAWRPI on RPI1807 is shown in
Supplementary Material.

TABLE 6 | Five-Fold cross-validation average results on three feature extracting
strategies.

Dataset Strategies Acc Prec Sen F1 MCC AUC

RPI369 AC 0.690 0.675 0.732 0.702 0.381 0.737
DWT 0.706 0.689 0.751 0.718 0.414 0.736
HT 0.710 0.692 0.756 0.723 0.422 0.746

RPI488 AC 0.893 0.923 0.852 0.886 0.786 0.910
DWT 0.893 0.932 0.843 0.885 0.786 0.913
HT 0.895 0.938 0.844 0.888 0.791 0.922

RPI1807 AC 0.961 0.960 0.971 0.965 0.921 0.992
DWT 0.965 0.961 0.977 0.969 0.929 0.992
HT 0.967 0.961 0.981 0.971 0.934 0.992

The bold values represent the higher values each column of three datasets.
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Comparison With Other State-of-The-Art
Methods
Furthermore, in order to verify effectiveness and stability of
SAWRPI, we compared SAWRPI with other state-of-the-art
computational approaches in the same three datasets that
RPI488, RPI369 and RPI 1807. The contrast methods include
RPISeq-RF (Muppirala et al., 2011), lncPro(Lu et al., 2013), SDA-
RF (Pan et al., 2016) and SDA-FT-RF (Pan et al., 2016), which are
based on sequence information and similar to SAWRPI. The
authors, proposing method of RPISeq-RF, also developed another
method RPISeq-SVM to predict. We only used RPISeq-RF which
has better performance as comparation. Comparison methods of
SDA-RF and SDA-FT-RF respectively used stacked denoising
autoencoder through RF classification and stacked denoising
autoencoder with fine tuning through RF classification.
Table 7 shows all of the results of comparison. Through

comparing with any other methods, it can be indicated that a
little better performance of our method with Acc of 0.710, Sen of
0.756, F1 of 0.723 and MCC of 0.422. For the RPI1807 dataset,
SAWRPI also gives a good performance in Prec, Sen and F1 with
0.961, 0.987 and 0.971. On RPI369 and RPI1807 datasets,
SAWRPI obtained acceptable performance and got the highest
value in term of F1 with 0.723 and 0.971 respectively. For the
lncRNA-protein interactions dataset RPI488, our method
achieved significant dominance in the important parameter
AUC with 0.922 and displayed the performance with the
outstanding improvements of 0.025–0.015, 0.028–0.006,
0.051–0.029 and 0.021–0.013 against others in terms of Acc,
Prec, MCC and AUC respectively. Proposed method got the
highest result in multiple criteria on three datasets, and notably,
the best results in terms of highest AUC were obtained on
RPI488. This illustrates that our method has more obvious
advantages in task of predicting lncRNA-protein interactions.
Without a doubt, SAWRPI is a powerful method of predicting
ncRNA-protein interactions.

CONCLUSION

In this work, we provided a computational model named SAWRPI
which can predict ncRNA-protein interactions utilizing sequence
information through integrates four individual base classifiers,
including SVM, XGBoost, ExtraTrees and Random Forest. LFS
and k-mers sparse matrix with HT are made full use of extracting
efficient feature. It is proven that SAWRPI can accurately predict
potential ncRNA-protein interactions and get good performance on
both of small and large datasets. Besides, comparative analysis of
different classification strategies and different feature extracting
strategies respectively demonstrated superior performance of our
classification strategies and using HT to generate final features.
Furthermore, comparing with state-of-the-art method indicates
our method has advantages of predicting potential interactions,
specifically on predicting ncRNA-protein interactions. There is no
doubt that our method can provide a useful guidance for ncRNA-

FIGURE 8 | Experimental results of SAWRPI on RPI369 and RPI488 datasets with different feature extracting strategies. The result of SAWRPI on RPI1807 is
shown in Supplementary Material.

TABLE 7 | Results of comparing with state-of-the-art methods on three
datasets.

Dataset Method Acc Prec Sen F1 MCC AUC

RPI369 RPISeq-RF 0.704 0.707 0.705 0.706 0.409 0.767
lncPro 0.704 0.713 0.708 0.710 0.409 0.740
SDA-RF 0.707 0.689 0.699 0.694 0.416 0.754
SDA-FT-RF 0.693 0.602 0.664 0.631 0.396 0.728
SAWRPI 0.710 0.692 0.756 0.723 0.422 0.746

RPI488 RPISeq-RF 0.880 0.932 0.926 0.929 0.762 0.903
lncPro 0.870 0.910 0.900 0.905 0.740 0.901
SDA-RF 0.880 0.928 0.922 0.925 0.762 0.904
SDA-FT-RF 0.881 0.926 0.916 0.921 0.762 0.909
SAWRPI 0.895 0.938 0.844 0.889 0.791 0.922

RPI1807 RPISeq-RF 0.973 0.960 0.968 0.964 0.946 0.996
lncPro 0.969 0.955 0.965 0.960 0.938 0.994
SDA-RF 0.972 0.962 0.970 0.966 0.944 0.995
SDA-FT-RF 0.972 0.940 0.955 0.947 0.944 0.995
SAWRPI 0.967 0.961 0.981 0.971 0.934 0.992

The bold values represent the higher values each column of three datasets.
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protein interactions related biomedical research. In the future, more
effective feature extracting strategy and adding other biological
information to the model may bring higher accuracy and improve
the performance.
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