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Patients with Alzheimer’s disease (AD) and related dementias are commonly reported to
exhibit aggressive behavior and other emotional behavioral disturbances, which create
a tremendous caretaker burden. There has been an abundance of work highlighting
the importance of circadian function on mood and emotional behavioral regulation, and
recent evidence demonstrates that a specific hypothalamic pathway links the circadian
system to neurons that modulate aggressive behavior, regulating the propensity for
aggression across the day. Such shared circuitry may have important ramifications
for clarifying the complex interactions underlying “sundowning syndrome,” a poorly
understood (and even controversial) clinical phenomenon in AD and dementia patients
that is characterized by agitation, aggression, and delirium during the late afternoon
and early evening hours. The goal of this review is to highlight the potential output and
input pathways of the circadian system that may underlie circadian dysfunction and
behavioral aggression associated with sundowning syndrome, and to discuss possible
ways these pathways might inform specific interventions for treatment. Moreover, the
apparent bidirectional relationship between chronic disruptions of circadian and sleep-
wake regulation and the pathology and symptoms of AD suggest that understanding the
role of these circuits in such neurobehavioral pathologies could lead to better diagnostic
or even preventive measures.
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INTRODUCTION

Behavioral aggression and circadian dysfunction are both prevalent in several neural disorders
(Todd and Machado, 2019), including Alzheimer’s disease (AD) and related dementias, and
there has been an abundance of work over the last decade highlighting the general importance
of circadian function on the regulation of mood and emotional behavior, including aggression
(Bronsard and Bartolomei, 2013; Hood and Amir, 2018; Taylor and Hasler, 2018; Logan and
McClung, 2019; Ketchesin et al., 2020). For example, circadian disruptions such as rotating shift
work and jet lag due to transmeridian travel have been shown to precipitate or exacerbate mood
symptoms (Asaoka et al., 2013; Kalmbach et al., 2015; Inder et al., 2016). More specifically,
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social jet lag (defined as a discrepancy between the body’s
internal circadian clock and the actual sleep schedule) has been
associated with increased physical and verbal aggression (Randler
and Vollmer, 2013; Lin and Yi, 2015). Converging evidence
also supports the notion that evening chronotypes exhibit a
greater predisposition for behavioral aggression (Schlarb et al.,
2014; Deibel et al., 2020). Recent work in transgenic mice also
suggests that the master circadian pacemaker, located within the
suprachiasmatic nucleus (SCN) of the anterior hypothalamus,
directly modulates a rhythm in the propensity for aggressive
behavior via a polysynaptic pathway contained entirely in the
hypothalamus (Todd et al., 2018). Todd et al. (2018) showed
that a functionally connected circuit from the SCN, through
the nearby subparaventricular zone (SPZ), gates the activity of
neurons within the ventromedial hypothalamus (VMH) that
drive aggressive behavior (the SCN → SPZ → VMH pathway,
see Figure 1). This pathway may be a substrate through which
circadian dysfunction can lead to increased aggression, both
acutely and chronically in disorders that are characterized by
circadian disruption and high levels of aggression and agitation.

Agitation and aggression, circadian dysfunction, and several
other non-cognitive symptoms of AD and dementia seem
to point to an underlying disruption in the hypothalamus
(Ishii and Iadecola, 2015; Hiller and Ishii, 2018), even though
brainstem and cortical structures are normally the foci of most
neuropathological investigations concerning these disorders.
While circadian disruption of sleep-wake and other rhythms is
a typical component of normal healthy aging, such dysfunction
is greatly exacerbated in neurodegenerative disorders such as
AD and dementia. Indeed, a growing body of evidence suggests
a bidirectional interaction between the circadian system, AD
pathology, and the progression of the disease (Musiek, 2015;
Videnovic and Zee, 2015; Musiek and Holtzman, 2016; Duncan,
2020). Since such neurodegenerative disorders clearly disrupt the
circadian rhythmicity of sleep-wake, it is likely that they also
disrupt the circadian regulation of emotional processing and
aggression propensity as well. Indeed, the interaction between
the circadian system and processes modulating aggression may
be a key contributor to the clinical phenomenon known
as “sundowning syndrome”, which is commonly reported in
AD and dementia patients. Sundowning is characterized by
increased confusion and emotional behavioral disruptions,
such as agitation and aggression, particularly during the late
afternoon and early evening hours (Bachman and Rabins, 2006;
Khachiyants et al., 2011; Bedrosian and Nelson, 2013; Canevelli
et al., 2016). This syndrome can create a major burden on
both patients and caretakers, with organizations such as the
Alzheimer’s Association and the National Institute on Aging
providing online caretaker resources to help them better cope
with sundowning symptoms (Aging, 2017; Association, 2020).
Indeed, sundowning symptoms have been cited as among
the most important factors leading to the decision to seek
institutionalization (Pollak and Perlick, 1991; Hope et al., 1998).

Sundowning was first described in the medical literature
over 80 years ago as “senile nocturnal delirium” (Cameron,
1941), when D. Ewen Cameron noted an exacerbation of
delirium and agitation that occurred within an hour of placing

dementia patients into a darkened room. The term “sundowning
syndrome,” due to the phenomenon’s association with the onset
of daily darkness, was first coined in the late 1980s by Lois
K. Evans, who described it as a recurring condition among
institutionalized older adults similar to delirium, but lasting
much longer (Evans, 1987). However, since that time, the relevant
literature on sundowning has been relatively scarce, and the
underlying pathophysiology of the syndrome remains enigmatic.
Perhaps one of the primary reasons sundowning remains poorly
understood is that the symptoms and criteria used to define it
have differed widely across groups (Bachman and Rabins, 2006;
Canevelli et al., 2016). For instance, some groups have focused
more on the emotional components of the syndrome, some more
on the increased nocturnal locomotor activity such as wandering,
whereas fewer have described sundowning as primarily a sleep-
related disturbance (Boronat et al., 2019). It is also important
to note that sundowning is not an official diagnosis (it does
not appear in the DSM-5), but rather a loose grouping of
symptoms. These challenges probably contribute to the wide
range of prevalence reported for sundowning across studies, with
some studies reporting as high as 60%, while others reporting
as low as 2.5% for dementia patients depending on the setting
(Khachiyants et al., 2011; Canevelli et al., 2016). However, more
recent work suggests a more narrow prevalence between 20 and
27.8% (Angulo Sevilla et al., 2018; Pyun et al., 2019).

Research done during the 1990s and 2000s led some
to question whether sundowning represents an actual time-
dependent worsening of behavioral disturbances, or instead
an increase in caretakers’ perceptions of the stress caused
by these disruptions at a particular time of day (Gallagher-
Thompson et al., 1992; Bliwise et al., 1993; Cohen-Mansfield,
2007). Additionally, some studies did not find support for
an exacerbation of behavioral symptoms occurring specifically
around sunset (Bliwise et al., 1993; Friedman et al., 1997), with
one suggesting that peak agitation actually occurs during the early
afternoon (Martin et al., 2000). However, in a later discussion
of diagnostic criteria for sleep disorders in AD (Yesavage et al.,
2003), several of these same authors noted that “other research
does support the notion that the nocturnal hours or the period
of sunset (ranging from 4:00 to 8:00 PM depending on the
study) are vulnerable to agitation,” and that “(t)aken together,
these results lend support to the existence of a circadian rhythm
for agitated behaviors in many AD patients that peaks late
in the day, although its precise delineation in real time and
its association with sunset, sleep, and patient and/or disease
characteristics remain unclear.” Yesavage et al. (2003) further
stressed the important point that “although there is mixed
evidence for the existence of sundowning and it may be useful
descriptively, the term, when used to define sleep disturbance,
is too broad to be of practical diagnostic value.” Altogether, this
raises the possibility that the sundowning phenomenon reflects a
time-dependent disturbance in emotional regulation rather than
a direct sleep disturbance. And, its occurrence may be more
generally tied to a 4-h window within the late afternoon and early
evening instead of being directly tied to sunset.

Indeed, during this same time, numerous more groups
reported disturbances in AD and dementia patients that
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FIGURE 1 | Output and input pathways of the central circadian timing system in the mammalian brain that may be involved sundowning–related behavioral
aggression and circadian dysfunction in Alzheimer’s disease and related dementias. The master circadian pacemaker, is the suprachiasmatic nucleus (SCN) of the
hypothalamus. The SCN releases the fast neurotransmitter GABA, as well as several peptides including vasoactive intestinal peptide (VIP) and argine vasopressin
(AVP) from its major axonal output pathway to the nearby subparaventricular zone (SPZ). The GABAergic SPZ regulates rhythms of locomotor activity, sleep-wake,
and feeding via pathway to the dorsomedial hypothalamus (DMH), and regulates rhythms of aggression propensity via a pathway to the ventromedial hypothalamus
(VMH). The SCN is entrained to the daily light-dark cycle by input from intrinsically photosensitive retinal ganglion cells, which release pituitary adenylate cyclase
activating polypeptide (PACAP) and glutamate (GLU) via the retinohypothalamic tract (RHT). The RHT also densely innervates the SPZ in most nocturnal mammals,
but provides little or no innervation of the SPZ in many diurnal mammals, including humans (indicated by dashed line). A cholinergic (ACh) input to the SCN from the
basal forebrain has been suggested in rats, but is absent in mice (indicated by dashed line). Cholinergic input to the SCN has also been reported from the
laterodorsal tegmentum (LDT), pedunculopontine tegmentum (PPT) complex, which also releases GABA and GLU. Serotonergic (5HT) inputs to both the SCN and
SPZ have been reported from the midbrain raphe complex. Finally, the geniculo-hypothalamic tract (GHT), originating from the retinoreceipient (not shown here)
ventral lateral geniculate nucleus (LGN) and intergeniculate leaflet (IGL) of the thalamus, provides an input of GABA and neuropeptide Y (NPY) to both the SCN and
SPZ. Structures are not drawn to scale.

temporally and qualitatively match the traditional description of
sundowning-related agitation and aggression (Martino-Saltzman
et al., 1991; Cohen-Mansfield et al., 1992; O’Leary et al.,
1993; Burgio et al., 1994; Sloane et al., 1998). Even more
recently, several observational studies defining sundowning as
an increase in neuropsychiatric behaviors (including agitation
and aggression) in the late afternoon and early evening have
observed this phenomenon in AD patients in association
with important circadian or AD-related factors (Silva et al.,
2017; Angulo Sevilla et al., 2018; Menegardo et al., 2019;
Pyun et al., 2019; Shih et al., 2019). For instance, Menegardo
et al. (2019) associated the aggressiveness and irritability
of sundowning with increased nocturnal behavior such as
wandering. Silva et al. (2017) also associated sundowning with
increased depressive and cognitive symptoms, suggesting that
multiple emotional systems are disrupted in this syndrome
and that these become even more compromised as AD

progresses with more associated cognitive decline. Angulo Sevilla
et al. (2018) also noted an association of such sundowning
symptoms with an increased severity of dementia, but also
in association with insomnia and hypersomnia. Interestingly,
Pyun et al. (2019) found a strong association between these
sundowning symptons and the presence of the apolipoprotein
E (APOE) ε4 allele, an important genetic risk factor in the
development of late-onset AD that promotes amyloid pathology
(Corder et al., 1993).

A recent scoping review across 23 studies focused on
sundowning found that temporal periodicity was the most
prevalent finding, with 90.0% of the studies that met their criteria
for inclusion reporting an onset of behavioral disturbances
occurring during the middle afternoon and early night (Boronat
et al., 2019). The symptoms examined across these studies most
commonly clustered into “psychomotor disturbances” at 83.3%,
and included agitation, aggression, and restlessness, followed by
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a cluster of symptoms categorized as “cognitive disturbances”
at 66.7% including confusion, disorientation, and wandering.
Importantly, these studies also largely support the notion
that sundowning may reflect a time-dependent disturbance in
emotional behaviors, rather than a sleep disturbance per se.
Therefore, in order to better understand and treat sundowning
symptoms, it is important to recognize the interacting neural
components that modulate the production and daily timing
of emotional behavioral states. Interestingly, Todd et al.
(2018) found that disrupting the SCN → SPZ → VMH
pathway led to increased behavioral aggression specifically
during the early resting phase (the light phase for nocturnal
mice), a time which appears to be temporally analogous
to when AD and dementia patients have traditionally been
reported to display sundowning symptoms (Todd et al.,
2018). Such shared neural pathways may be promising targets
for treatments that could greatly reduce sundowning and
other symptoms associated with circadian dysfunction. This
review examines the existing literature on specific pathways
emanating from the circadian system and the behaviors they
regulate, in addition to pathways that provide input to
the circadian system and influence its function (Figure 1).
It also focuses on the evidence concerning whether AD-
related disruption of these circuits might underlie sundowning
symptoms, as well as how these pathways might inform potential
treatments options.

THE EXTENDED MAMMALIAN
CIRCADIAN TIMING SYSTEM

The SCN (see Figure 1) is required for daily rhythms of
physiology and behavior (Moore and Eichler, 1972; Stephan
and Zucker, 1972), and SCN neurons function as individual
oscillators with rhythms of electrical activity that have period
lengths of about 24 h (Welsh et al., 1995). This electrical
activity becomes highly coupled across SCN cells, resulting
in an emergent ensemble circadian period (Herzog et al.,
1998). The electrical activity rhythms within individual SCN
neurons are under the control of canonical “clock genes,”
via a transcriptional-translational-post-translational negative
feedback loop (Gekakis et al., 1998; Jin et al., 1999). This
genetic machinery has been found to be present in cells
throughout the brain and body, however, the integrity of the
SCN is necessary to synchronize these peripheral oscillators and
maintain rhythmic behavior (Mohawk et al., 2012). Specifically,
SCN neuronal activity has been shown to be required for
such circadian output, as the application of tetrodotoxin to the
SCN in vivo reversibly disrupts circadian behavior, even while
proper circadian timekeeping within the SCN remains intact
(Schwartz et al., 1987).

Suprachiasmatic nucleus neurons are predominately
GABAergic (Liu and Reppert, 2000), with subpopulations
that differentially release several neuropeptides, including
vasoactive intestinal peptide (VIP), arginine vasopressin (AVP),
gastrin-releasing peptide (GRP), neuromedin S (NMS), and
cholecystokinin (CCK). Some of these neuropeptides are

arranged somatotopically, as the SCN is composed of “core”
and “shell” subregions that express VIP and AVP, respectively
(Abrahamson and Moore, 2001). The VIP neurons within
the SCN core receive direct retinal input and are required for
normal circadian rhythmicity (Harmar et al., 2002; Aton et al.,
2005; Maywood et al., 2006). These VIP core neurons then
appear to entrain the rhythmicity of AVP shell neurons and
other SCN neuronal cell types in order to establish SCN-level
synchrony (Aton et al., 2005; Maywood et al., 2006). The
subpopulation of SCN neurons expressing NMS have also been
implicated as playing a crucial role in circadian pacemaking
(Lee et al., 2015), however, more recent work suggests that the
critical neurons in this role belong to a molecularly distinct
subpopulation that expresses both NMS and VIP together
(Todd et al., 2020). Interestingly, Todd et al. (2020) found
that SCN VIP neurons that also contain NMS are enriched
with the transcript Per2 associated with a core clock gene,
whereas the non-NMS subpopulation of SCN VIP neurons that
also contain GRP did not have such transcripts. Altogether,
this suggests that SCN VIP neurons are composed of both
pacemaker and non-pacemaker subpopulations, which is
supported by previous work demonstrating that SCN VIP
neurons can be divided into two groups based on the light-
inducibility of clock genes, innervation of retinal afferents,
day-night variability of VIP mRNA, and coexpression of GRP
(Kawamoto et al., 2003).

Suprachiasmatic nucleus neurons have been suggested to
synchronize downstream molecular clocks and coordinate
circadian rhythms via the release of humoral factors, as
encapsulated implants of fetal tissue (which prevent the
establishment of new neural connections) into SCN-ablated
animals have been shown to restore modest behavioral rhythms
(Silver et al., 1996). Identified humoral factors that are released
by the SCN and have been shown to modulate behavioral
and physiological rhythms include transforming growth
factor alpha and prokineticin 2 (Cheng et al., 2002; Li et al.,
2006; Gilbert and Davis, 2009). However, developmental
work suggests that the influence of SCN humoral factors
may decrease during the early postnatal period as axonal
connections develop between the circadian system and
downstream areas regulating behavioral state (Gall et al.,
2012; Blumberg et al., 2014). Overall, the SCN’s major axonal
output pathway through the SPZ (see below) appears to
be the primary method for synchronizing downstream
oscillators and maintaining circadian rhythms of behavior
(Saper, 2013).

As also depicted in Figure 1, the majority of axons emanating
from the SCN synapse onto neurons within the SPZ, an
adjacent region of GABAergic cells located just dorsal to the
SCN and ventral to the paraventricular hypothalamus (PV)
(Watts and Swanson, 1987; Watts et al., 1987; Vujovic et al.,
2015). Like the SCN, the SPZ displays circadian rhythms of
multiunit activity in vivo (Nakamura et al., 2008), and this
output pathway has been hypothesized to be the primary
circuit by which the SCN synchronizes organismal-level circadian
rhythmicity (Saper, 2013). Specifically, studies in rats have
shown that circadian rhythms of sleep-wake, locomotor activity,
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and feeding behavior are regulated by a pathway from the
SCN, through the SPZ, to the dorsomedial nucleus of the
hypothalamus (DMH) (Lu et al., 2001; Chou et al., 2003).
As mentioned previously, it was recently demonstrated that
rhythms of aggression propensity in male mice are regulated
by SPZ neurons that project to VMH neurons known to
promote attack behavior (Todd et al., 2018). These SPZ
neurons were found to be active during the early light
phase, the resting phase for nocturnal mice, and disrupting
their GABAergic transmission resulted in a time-dependent
increase in behavioral aggression. Importantly, this time point
is temporally analogous to the early resting phase in humans,
when sundowning symptoms are most commonly reported in
AD patients (Boronat et al., 2019). In addition to aggression,
neurons within the VMH have also been associated with the
regulation of fear and anxiety (Silva et al., 2013; Kunwar
et al., 2015), raising the interesting possibility that the
SCN → SPZ → VMH pathway may also influence circadian
aspects of these emotional processes in a circadian fashion
(Bilu and Kronfeld-Schor, 2013; Albrecht and Stork, 2017).
Given the wide range of rhythms that the SPZ appears to
influence, this structure appears to be a likely candidate for
which its dysfunction, or dysfunction of its inputs (from the
SCN or elsewhere), could affect multiple aspects of circadian
physiology and behavior that are seen in conditions such as
sundowning syndrome.

DYSFUNCTION WITHIN MAJOR
CIRCADIAN STRUCTURES ASSOCIATED
WITH AGING AND AD PATHOLOGY
Interestingly, separate studies have reported conflicting results
regarding the direct impact of AD pathology on SCN VIP and
AVP neurons in humans. Such studies are often complicated
by the fact that researchers often do not have access to both
hypothalamic tissue and the profile of circadian behavior of the
same patients. However, one study examined hypothalamic tissue
containing the SCN in aged patients that had at least 1 week
of actigraphy data within 18 months of their death, and found
that an age-related decline in VIP, but not AVP, SCN neurons
was associated with increased circadian dysfunction (Wang et al.,
2015). A group of AD patients examined within this study,
however, did not show a significantly greater loss of VIP SCN
neurons compared to controls, even though they showed delayed
acrophases of the locomotor activity rhythms. This led Wang
et al. (2015) to suggest that structures that supply input to the
SCN may instead be affected by AD pathology, therefore leading
to a disruption of phase-setting and resulting in the delay found
in their patients. Indeed, similar phase delays are a common
report in AD and dementia patients from several other studies
(Harper et al., 2005; Schlosser Covell et al., 2012; Manni et al.,
2019). One other study using actigraphy reported that a loss
in AVP neurons in the SCN in AD patients was associated
with fragmented rhythmicity compared to healthy aged-matched
controls (Harper et al., 2008), however, this group used a ratio
of AVP neurons to glial cells in only a few selected fields of the

SCN, whereas Wang et al. (2015) used a stereological rigorous
method to quantify AVP and VIP throughout the entire nucleus.
Finally, one other group reported reduced levels of AVP mRNA
in the SCN but they did not count AVP mRNA-expressing
neurons (Liu et al., 2000), and the same group had previously
reported no change in AVP-expressing SCN neurons in elderly
dementia patients compared to healthy age-matched controls
(Swaab et al., 1985).

Evidence in healthy aging wild-type mice suggests an age-
related decline in circadian output from the SCN to the SPZ
(Nakamura et al., 2011). These researchers saw a reduction in the
circadian amplitude of multi-unit activity rhythms (MUA) in the
SCN with age, as well as a similar reduction in the amplitude of
MUA rhythms within the SPZ. While the interpretation of these
findings as a dysfunction in SCN output is sound, it is possible
that these results might also reflect an age-related dysfunction in
the SPZ neurons’ ability to maintain rhythms as well (instead of
only a decline in SCN output). Indeed, the SPZ has been largely
overlooked as a possible locus for the circadian dysfunction
that has been reported in neurobehavioral pathologies. However,
since it regulates both sleep-wake and locomotor rhythms via
its projections to the DMH, and also regulates the propensity
for aggression via its projections to the VMH, the SPZ is in
a logical position to underlie multiple symptoms associated
with sundowning should its function become disrupted by AD
pathology. It is interesting that, in both rats and mice, the
SPZ has been shown to be composed of distinct subregions
that differentially project to the DMH or VMH (Vujovic et al.,
2015; Todd et al., 2018). Therefore, differences in the degree of
dysfunction caused by AD pathology in different SPZ subregions
might explain the reported differences in sundowning symptoms
across patients, as some studies have reported sundowning to
mainly be composed of mood related disturbances such as
agitation and aggression, as compared to sleep disturbances,
whereas other studies have reported both (Boronat et al., 2019).

CHOLINERGIC INPUTS TO THE
CIRCADIAN SYSTEM

Multiple studies have shown a cholinergic innervation of the
SCN (Ichikawa and Hirata, 1986; Kiss and Halasz, 1996; Castillo-
Ruiz and Nunez, 2007), and that acetylcholine modulates the
function of SCN neurons and circadian rhythmicity (Liu and
Gillette, 1996; Liu et al., 1997; Hut and Van der Zee, 2011;
Gritton et al., 2013). In the field of AD research, the so-called
“cholinergic hypothesis” has long posited that neurodegeneration
of neurons in the basal forebrain (BF) expressing acetylcholine,
which extensively project to cortical areas, underlie much of the
memory and cognitive decline seen during the progression of
the disease (Contestabile, 2011; Craig et al., 2011; Pinto et al.,
2011). Indeed, there is ample evidence in AD patients that the
cholinergic neurons of sub-regions within the BF, such as the
nucleus basalis of Meynert (NBM) (Cummings and Benson, 1987;
Vogels et al., 1990; Mesulam, 2013; Liu et al., 2015), are a major
site of neurodegeneration in AD. Several groups have proposed
that a cholinergic BF input to the SCN may also be disrupted in
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AD, leading to sundowning or other observed circadian deficits
(Klaffke and Staedt, 2006; Hut and Van der Zee, 2011; Bedrosian
and Nelson, 2013). Lending some support to this hypothesis,
acetylcholinesterase inhibitors including donepezil, have been
found to ameliorate neuropsychiatric symptoms such as agitation
and aggression (Mega et al., 1999; Paleacu et al., 2002; Cummings
et al., 2006; Carrasco et al., 2011). One case study also reported
that donepezil reduced agitation and restlessness specifically in
a sundowning dementia patient (Skjerve and Nygaard, 2000).
Interestingly, donepezil has also been shown to enhance rapid
eye movement (REM) sleep in AD patients (Moraes Wdos et al.,
2006), but has also been associated with an increased prevalence
of nightmares (Ridha et al., 2018).

However, the evidence for the existence of a cholinergic
pathway from the BF to the SCN comes from only one study
in rats using non-specific retrograde tracing from the SCN, and
then co-labeling for the cholinergic transporter (CHAT) in BF
neurons (Bina et al., 1993). Another study in rats suggested that
chemical lesions of the NBM were associated with a reduction
in VIP and AVP synthesis and expression in the SCN, however,
anatomical tracing was not done in these experiments (Madeira
et al., 2004). Importantly, recent work using more selective
genetically targeted tracing from the BF in CHAT-IRES-Cre
mice reported no evidence of such a cholinergic BF to SCN
pathway (Agostinelli et al., 2019). While it is possible that this
findings represent a species difference between mice and rats,
the conservation of a BF to SCN pathway across mammalian
species warrants further investigation (Figure 1). Yet, this does
not discredit a cholinergic input to the SCN from other areas,
such as the brainstem. Indeed, the same authors who reported
the cholinergic BF to SCN in rats also reported retrogradedly
labeled CHAT cells in the laterodorsal tegmentum (LDT) and
pedunculopontine tegmentum (PPT) complex of the brainstem
(Bina et al., 1993). The LDT/PPT has been shown to display tau
pathology in AD patients, but interestingly, not cholinergic cell
loss (Mufson et al., 1988; Dugger et al., 2012; Kotagal et al., 2012).
It may be possible that aging and tau pathology could disrupt the
function of the LDT/PPT to SCN pathway, even without causing
the loss of cholinergic cells, as synaptic changes associated with
high levels of soluble of amyloid-β or tau have been reported to
appear well before the insoluble plaques or tangles themselves
(Scheff et al., 2006; D’Amelio et al., 2011).

In addition to cholinergic neurons, however, the LDT/PPT
complex also contains GABAergic and glutamatergic neurons
that are known to play different roles in sleep-wake regulation
(Kroeger et al., 2017). It is unclear whether these cell populations
also project to the SCN and influence circadian function
or aggression; a cell type-specific approach to examine
the presence of such pathways and their function would
be greatly informative. And, although cholinergic cells
appear to be spared in the LDT/PPT of AD patients, the
presence of tau pathology in this region could instead lead
to neurodegeneration of these GABAergic and glutamaterigic
populations, which does not appear to have been previously
examined. Interestingly, Bedrosian et al. (2011) showed reduced
global c-Fos expression (a marker of neuronal activation)
in PPT neurons in aged mice compared to healthy adult

mice, which was also associated with temporal changes in
anxiety behavior. These authors also found similar time-
dependent changes in anxiety behavior in APP mice (which
bear amyloid-β pathology), but at even earlier ages (however,
it does not appear that c-Fos was examined in the PPT in
these APP mice).

SEROTONERGIC INPUTS TO THE
CIRCADIAN SYSTEM

There is also substantial evidence for a role in the disruption
of serotonergic neurons in AD (Rodriguez et al., 2012;
Vakalopoulos, 2017; Chakraborty et al., 2019), and serotonin is
also known to play role in circadian regulation (Ciarleglio et al.,
2011; Daut and Fonken, 2019). Several studies have suggested a
dense serotonergic input from the midbrain raphe complex to
the SCN and SPZ (see Figure 1). In hamsters, these serotonergic
inputs appear to arise primarily from the median raphe nucleus
(MRN) (Meyer-Bernstein and Morin, 1996; Leander et al., 1998;
Yamakawa and Antle, 2010), while studies in rats have revealed
serotonergic inputs from both the MRN and dorsal raphe nucleus
(DRN) (Kawano et al., 1996; Moga and Moore, 1997). Such
serotonergic inputs to the SCN appear to play a role in setting
circadian phase, as administration of serotonin or serotonergic
agonists into the SCN has been shown to produce phase shifts
during certain parts of the light-dark cycle (Lovenberg et al.,
1993; Ehlen et al., 2001; Sprouse et al., 2004). Additionally,
developmental disruption of the serotonin transcription factor
Pet-1 disrupts locomotor activity rhythms and in vitro SCN
activity (Ciarleglio et al., 2014). Serotonergic function is also
highly implicated in the direct regulation of aggression (Nautiyal
et al., 2015; Niederkofler et al., 2016), and serotonergic neurons
have been shown to project from the raphe complex to the VMH
(Kanno et al., 2008). So, its possible that AD-related disruptions
in serotonergic signaling also underlie overall levels of aggression,
as well as differences at certain times of the day. Indeed,
several groups have reported serotonergic deficiencies in AD that
were associated with either increased circadian dysfunction or
behavioral aggression (Lai et al., 2003; Vermeiren et al., 2014;
Chakraborty et al., 2019).

Serotonergic drugs have commonly been administered to
AD patients in order to treat aggression, anxiety, and other
emotional behavioral disturbances, as well as to treat sleep-
wake and circadian disruption. Citalopram, a selective serotonin
reuptake inhibitor (SSRI) widely used as an antidepressant,
has been found to reduce irritability, anxiety, and aggression
in moderately agitated AD patients (Leonpacher et al., 2016;
Schneider et al., 2016), however, it was much less effective in
the severely agitated patients. Interestingly, patients categorized
as the most severely agitated actually showed an increase in
nighttime behavioral or sleep disruptions when treated with
citalopram (Leonpacher et al., 2016). An intriguing body of
work also suggests that early administration of SSRIs may also
slow the progression of mild cognitive impairment to AD,
perhaps through a mechanism by which serotonin affects the
amyloid-β precursor protein, thereby reducing the accumulation
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of amyloid-β (Elsworthy and Aldred, 2019). It is also possible that
serotonin’s modulation of the circadian system could indirectly
play a role in slowing or expediting this progression, as chronic
circadian dysfunction exacerbates AD pathology (Musiek, 2015).
Indeed, trazodone, a serotonin antagonist and reuptake inhibitor
(SARI) that is also commonly used as an antidepressant, has been
shown to improve circadian function and sleep-wake rhythms
in AD patients (Camargos et al., 2014; Grippe et al., 2015).
Risperidone and olanzapine, both atypical antipsychotics and
antagonists for serotonin (as well as for dopamine), have been
shown to have differential effects in AD patients. Risperidone,
but not olanzapine, was found to reduce aggression and other
neuropsychiatric symptoms in AD patients (Nagata et al., 2017),
whereas a separate study in AD patients found olanzapine
to reduce anxiety (Mintzer et al., 2001). While serotonin has
historically been implicated in sleep-wake regulation, a recent
study demonstrated that DRN serotonergic neurons actually
promote sleep through anxiolysis, further highlighting the
critical role of serotonin in mood and emotional regulation
(Venner et al., 2020).

THE RETINOHYPOTHALAMIC TRACT

Perhaps the most extensively studied input to the SCN comes
from a distinct set of retinal ganglion cells (RCGs) (see Figure 1),
via the retinohypothalamic tract (RHT) (Moore et al., 1995).
This pathway is required for circadian photoentrainment, as
shown by enucleation studies where removing both eyes results
in free-running rhythms under a light-dark cycle (Nelson and
Zucker, 1981; Foster et al., 1991). A subset set of RGCs
are intrinsically photosensitive and contain the photopigment
melanopsin (Berson et al., 2002; Hattar et al., 2002; Sekaran et al.,
2003). These melanopsin cells themselves comprise 5 different
subtypes (M1–M5-type) (Ecker et al., 2010), and evidence
suggests that a molecularly distinct subpopulation of M1-type
RGCs, defined by their lack of expression of the transcription
factor Brn3b and numbering around only 200 cells, are sufficient
for driving entrainment of the SCN (Chen et al., 2011). To
enable such photoentrainment, the RHT releases glutamate and
pituitary adenylate cyclase activating polypeptide (PACAP) onto
the SCN (Hannibal et al., 2000). While light during the day is
required for proper circadian photoentrainment, light exposure
at night has been shown to be deleterious to mood regulation and
overall circadian function (Fonken and Nelson, 2014; Bedrosian
and Nelson, 2017). Evidence in AD patients suggests altered
function of melanopsin RGCs in preclinical AD (Oh et al.,
2019), and post mortem studies suggest an AD-related loss of
melanopsin RGCs (La Morgia et al., 2016). Bright light therapy
has already been shown to improve circadian rhythmicity and
mood in AD patients (Figueiro et al., 2014; Munch et al., 2017;
Wahnschaffe et al., 2017). Additionally, one study reported that
morning light exposure shifted the peak of agitated behavior in
patients with severe AD (Ancoli-Israel et al., 2003).

Another interesting possibility for a future treatment of
sundowning via this pathway could be using intravitrial
injections of chemogenetic vectors into the eye and driving

activity of RGCs via peripheral injection of the chemogenetic
ligand. A similar strategy has been suggested to show promise
as a potential therapy for other mood-related disorders (Bowrey
et al., 2017; Venner et al., 2019). Interestingly, the RHT has been
shown to densely project to the SPZ in some species, but not in
others (Figure 1), and this pathway has been suggested to play a
role in modifying nocturnal versus diurnal sleep-wake behavior
in a species typical manner (Todd et al., 2012). Understanding
how such species differences impact circadian function will
be vital for teasing apart the underlying factors contributing
to circadian phase preference (diurnality versus nocturnality),
which will be critical for properly translating the findings of AD-
related research in nocturnal rodents into potential treatment
applications in diurnal AD patients.

THE GENICULOHYPOTHALAMIC TRACT

As also depicted in Figure 1, the SCN and SPZ are also known to
receive input from photo receipient structures in the thalamus,
the ventral lateral geniculate nucleus (LGN) and the adjacent
intergeniculate leaflet (IGL), via the geniculohypothalamic tract
(GHT) (Moore et al., 2000). Importantly, AD patients have
been reported to show significant amyloid-β pathology in the
LGN (Erskine et al., 2016). The GHT pathway releases GABA
and neuropeptide Y (NPY), and this input has been shown
to influence the response of SCN neurons to light, as well as
to play a critical role in non-photic entrainment (Mrosovsky,
1996; Harrington, 1997). For instance, giving rodents time-
dependent access to a novel running wheel leads to non-photic
phase advances and ultimately entrainment of the circadian
system (Reebs and Mrosovsky, 1989). NPY released from the
IGL neurons that make up the GHT appears to underlie these
non-photic effects on the SCN, as novelty-induced wheel running
induces c-Fos expression in the IGL NPY neurons (Janik and
Mrosovsky, 1992), and infusions of NPY directly into the SCN
produce similar phase shifts (Albers and Ferris, 1984; Huhman
and Albers, 1994). To further support this view, electrolytic
lesions of the IGL (Janik and Mrosovsky, 1994), and SCN infusion
of NPY antiserum (Biello et al., 1994), both block the phase-
advancing effect produced by novelty-induce wheel running.
Interestingly, these results may suggest a pathway by which daily
exercise at a consistent time could improve circadian function
and reduce possible sundowning symptoms in AD and dementia
patients, which has previously been suggested as a strategy to
counteract attenuation of circadian rhythms that come with
normal aging and AD (Duncan, 2020). Lending support to this
idea, timed access to a running wheel has already been shown
to increase the robustness of circadian behavioral rhythms in
mice lacking the VIP receptor, VPAC2 (Power et al., 2010).
Additionally, two separate studies have indicated that daily
exercise enhances circadian cortisol rhythms in patients with
AD or mild cognitive impairment (Tortosa-Martinez et al., 2015;
Venturelli et al., 2016). Moreover, one group found that routine
walking at certain times of the day ameliorated sundowning
symptoms in AD patients in two separate studies (Shih et al.,
2017; Shih et al., 2019).
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OTHER NEUROTRANSMITTER INPUTS
TO THE SCN: DOPAMINE AND OREXIN

While less is known about their potential role in AD and
related dementias, there is some evidence to suggest that
dopaminergic and orexinergic inputs to the SCN may could
also be comprised in these neurodegenerative diseases. For
instance, recent work has implicated an important role for
dopaminergic input to the SCN from the ventral tegmental
area (VTA) (Grippo et al., 2017). Grippo et al. (2017)
demonstrated that this dopaminergic input to the SCN is
important for resynchronizing locomotor activity rhythms
to shifts of the light-dark cycle, and that elevating levels of
dopamine in the SCN actually accelerates photoentrainment.
Interestingly, work in a transgenic mouse model of AD
pathology revealed degeneration of VTA dopaminergic
neurons (Nobili et al., 2017), and a imaging study in
prodromal AD patients suggest a decrease in VTA volume
(De Marco and Venneri, 2018).

Additionally, the neurotransmitter orexin, located in the
lateral hypothalamus and perifornical region (de Lecea et al.,
1998), is known for its role in maintaining consolidated
wakefulness as the degeneration of orexinergic neurons results
in the sleep disorder narcolepsy (Lin et al., 1999). Orexinergic
fibers have also been shown to project to the SCN (Backberg
et al., 2002), and have been shown to modulate SCN activity
(Belle et al., 2014). Belle et al. (2014) found that orexin is
upregulated at dusk in nocturnal mice, and suppresses the
activity of SCN neurons that specifically express the clock gene
Per1. These authors also demonstrated that orexin enhances the
resetting ability of NPY in the SCN (that has been released
from the IGL), highlighting how multiple input pathways may
act together to modulate circadian rhythmicity. Interestingly,
AD patients with high levels of neuropsychiatric symptoms,
including agitation and aggression, have been found to have
higher overall levels of orexinergic tone and fragmented sleep
(Liguori et al., 2018). Indeed, other studies have found that
similarly high cerebrospinal fluid (CSF) levels of orexin in
AD patients are also associated with increased amyloid-β
levels (Gabelle et al., 2017). While promising, more work
is needed to better understand the role of orexinergic and
dopaminergic influence on the circadian system in AD, in
order to delineate their respective potential contributions to
sundowning symptoms.

SUMMARY

Several characteristic non-cognitive symptoms of AD and
related dementias involve behavioral and physiological
processes known to be regulated by the hypothalamus
(Ishii and Iadecola, 2015; Hiller and Ishii, 2018). These
include, among others, circadian and sleep-wake dysfunction,
and emotional behavioral disruptions such as agitation and
aggression. These particular non-cognitive symptoms are
comorbid in the clinical phenomenon known as sundowning
syndrome. Whether this term is an appropriate descriptor is

debatable, given that the direct linkage of this phenomenon
to sunset is not always supported (Yesavage et al., 2003).
However, the weight of the evidence does suggest that
a time-dependent exacerbation of emotional behavioral
disturbances, including agitation and aggression, is prevalent
in AD and dementia patients during the late afternoon
and early evening (Boronat et al., 2019). Interestingly,
this phenomenon seems to be less connected to sleep
disruption, per se, and more directly tied to disturbances in
emotional state.

Although sundowning has been studied for several decades, its
cause remains unclear. Evidence from basic research (Bedrosian
and Nelson, 2013; Todd et al., 2018), along with pathological
findings from AD patients (Wang et al., 2015; Erskine et al.,
2016; Chakraborty et al., 2019), suggests several pathways
that might be involved in the circadian dysfunction, and
agitation and aggression, underlying sundowning. There is a
strong association between circadian rhythms and emotional
regulation (Hood and Amir, 2018; Ketchesin et al., 2020),
and the shared circuitry between these two systems presents
potential candidates for such pathology-related dysfunction.
These include the major circadian structures themselves, the
SCN, SPZ and its output pathways to the DMH and VMH
(Venner et al., 2019), as well as several structures that project to
circadian system.

Disrupting GABAergic transmission from SPZ cells that
project to the VMH has been shown to cause increased
behavioral aggression during the early resting phase, when
these cells have been shown to be active in a time dependent
manner (Todd et al., 2018). There is also some evidence
for LDT/PPT dysfunction associated with a time-dependent
change in anxiety in aged mice (Bedrosian et al., 2011)
(but it is unclear whether the affected cells are cholinergic,
glutamatergic, or GABAergic), and LDT/PPT neurons also to
project to the SCN (Bina et al., 1993). Serotonergic function
seems to be dysregulated in AD (Rodriguez et al., 2012;
Vakalopoulos, 2017), and serotonergic neurons of the midbrain
raphe complex project to and modulate the circadian system
and are highly involved in mood regulation and aggression
(Ciarleglio et al., 2011; Niederkofler et al., 2016; Daut and
Fonken, 2019). Direct retinal input to the SCN, as well
as the direct NPY input from the retinorecipient IGL, are
also possible candidates as pathology and dysfunction have
been reported in these structures in AD (Erskine et al.,
2016; La Morgia et al., 2016), and properly timed light
exposure improves circadian rhythms and mood whereas
ill-timed light exposure has deleterious effects (Bedrosian
and Nelson, 2017). Altogether, a better understanding of
the role of these pathways in behavioral and emotional
timing will be important for treating circadian dysfunction
and sundowning-related symptoms in AD and dementia
patients and may also lead to the identification of important
early indicators of the progression of AD. For instance,
agitation and aggression have been found to be important
predictors of the progression from mild cognitive impairment
to probable AD, suggesting such behavior could be an
important early indicator that could inform treatment options
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(Dietlin et al., 2019). Similarly, circadian dysfunction of
locomotor activity has been shown to be present in preclinical
AD patients, well before the cognitive and amnesiac symptoms
appear (Musiek et al., 2018). Thus, such interventions hold
the promise of improving quality of life for both patient and
caregiver, and may even slow the progression of the disease.
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