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T cell responses to control
fungal infection in an
immunological memory lens
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and Som Gowda Nanjappa*

Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-
Champaign, Urbana, IL, United States
In recent years, fungal vaccine research emanated significant findings in the

field of antifungal T-cell immunity. The generation of effector T cells is essential

to combat many mucosal and systemic fungal infections. The development of

antifungal memory T cells is integral for controlling or preventing fungal

infections, and understanding the factors, regulators, and modifiers that

dictate the generation of such T cells is necessary. Despite the deficiency in

the clear understanding of antifungal memory T-cell longevity and attributes, in

this review, we will compile some of the existing literature on antifungal T-cell

immunity in the context of memory T-cell development against

fungal infections.
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Introduction

An increasing global burden of fungal diseases due to increasing immunocompromised

individuals has heightened the need for effective preventive and therapeutic strategies.

Fungi are one of the large biome classes, but only a handful of them are pathogenic to

humans, causing a significant case fatality of up to 90%. More than 150 million severe cases

and over 1.5 million succumb to fungal infections annually, despite the use of antifungal

drugs (1–3). Some existing antifungals are effective but cause serious side effects and are

liable to the growing drug-resistant fungal pathogens. With expanding knowledge on host–

fungal pathogen interactions, there is a tremendous leap in the thrust to develop fungal

vaccines. The pan-fungal vaccine is highly desirable, but the features of different fungal

pathogenesis and elicitation of distinct immune responses require a clear understanding of

the fungus–immune system interface, i.e., vaccine immunity and the potential to develop

immunological memory. This review gives an overview of antifungal memory T cells.

Although there is a good amount of evidence of antibody-mediated immunity (4),

adaptive immune cell responses against pathogenic fungi are mainly mediated by T cells, and
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genetic or acquired T-cell deficiency leads to a higher incidence of

opportunistic infections (1, 5, 6). Antifungal defensemechanisms by

CD4+ T cells, a major class of T cells, involve the secretion of

proinflammatory cytokines and cell–cell interactions to activate

innate immune cells, help CD8+ T cells, and provide help for the

generation of antibodies from B cells (7). The antifungal CD4+ T-

cell immunity involves the expression of IFNg, TNFa, GM-CSF,

and IL-17A cytokines, which are differentially produced in a

fungus- and tissue-specific manner. For example, IFNg, TNFa,
and GM-CSF are predominantly induced during histoplasmosis,

aspergillosis, cryptococcosis, paracoccidioidomycosis,

pneumocystosis, and talaromycosis, whereas type 17 cytokines,

IL-17A/F, and IL-22 are mainly induced during candidiasis,

coccidioidomycosis, blastomycosis, and mucormycosis (reviewed

here). Nonetheless, it is common to see both types of responses with

variable degrees in most fungal infections. These secreted cytokines

generate an inflammatory milieu and act on other cells for innate

cell recruitment, activation, secretion of antimicrobial peptides, and

killing of fungi (8–10). In contrast, the antifungal T cell-mediated

immunity is compromised if their cytokine signature yields

regulatory or unprotective cytokines that can lead to severe

disseminated infections (11, 12). Despite the need for CD4+ T-cell

help for CD8+ T-cell activation and memory maintenance in viral

and bacterial infection scenarios, using mouse models of fungal

infections against Pneumocystis, Histoplasma, and Blastomyces, the

studies have shown that antifungal CD8+ T cells can be induced,

retained as long-lasting memory, and recalled upon the challenge to

provide immunity independent of the T-cell help during mouse

models of Pneumocystis, Histoplasma, and Blastomyces infections

(8, 13–16). Antifungal activity of CD8+ T cells involves cell

cytotoxicity (17) and secretion of proinflammatory cytokines; the

latter often mimics CD4+ T-cell antifungal cytokine functions.

The host’s first response to fungal invasion starts with innate

immunity, which then engages the adaptive immune arm to

mount antigen-specific responses to control or clear fungal

infection (18). The pattern recognition receptors (PRRs) are

critical for innate immune responses for initial fungal control,

and their mutations are associated with higher susceptibility (6,

19–21). The activation of innate immune cells and generation of

apt inflammatory milieu facilitate dendritic cell priming of naïve

T cells to become effectors, which eventually differentiate to form

antifungal memory T cells (22). Thus, the innate immunity

dictated by fungal recognition shapes adaptive T-cell immunity

and immunological memory.

Fungal recognition by the
immune system: Bridging innate to
adaptive immunity

Among innate cells, dendritic cells are essential for priming

naïve T cells (23). The activated dendritic cells process and

present the antigens to CD4+ and CD8+ T cells through MHC-II
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and MHC-I molecules, respectively. Along with antigen

presentation, dendritic cells provide costimulatory signals for

T-cell responses (24). Thus, the functions of dendritic cell

maturation and activation are a critical step toward bridging

innate with adaptive immunity, and such events are mainly

mediated by PRR signals. PRRs are a category of host cell

receptors that sense specific molecules/patterns, the pathogen-

associated molecular patterns (PAMPs) such as b-glucans and
mannans of pathogenic fungi, and this recognition is key for

innate immune cell activation to provide a primary antifungal

defense. The PRRs are mainly classified as Toll-like receptors

(TLRs), C-type lectin receptors (CLRs), retinoic acid-inducible

gene I-like receptors (RLRs), and NOD-like receptors (NLRs),

which can directly bind to the PAMPs of fungi, whereas damage-

associated molecular patterns (DAMPs) can bind to PRRs and

their canonical DAMP-sensing receptors such as P2X

purinoceptor 7 (P2XR7), triggering receptor expressed on

myeloid cells 1/2 (TREM1/2), and receptor for advanced

glycation end products (RAGE) (25–28). Several of PAMPs of

fungi, including b-glucans, mannans, glycoprotein A, and

glyceroglycolipids, have been identified for their functions

using their PRRs in the host (29–32). There are excellent

reviews on PRRs and fungal immunity elsewhere. Here, we

highlight how PRRs can influence the innate immune cells to

guide adaptive T-cell immunity.

Although negative signaling is noted with few PRRs, many are

associated with their positive signaling to promote activation,

phagocytosis, and antigen presentation by dendritic cells to T

cells. The activated innate immune cells generate an

inflammatory micro milieu conducive to the recruitment,

activation, differentiation, and expansion of fungal-specific T cells

by secreting cytokines and chemokines. Among PRRs, fungal-

recognizing CLRs are instrumental in driving innate immune cell

responses. Due to structural differences, different fungi show

differential CLR binding properties leading to diverse host cell

responses. The prototypic member of this family, the Dectin-1

receptor, expressed on innate immune cells including macrophages,

neutrophils, and dendritic cells (DCs), recognizes b1-3-glucans of
the fungal cell wall. The interference of Dectin-1 interaction with b-
glucans by a soluble dectin-Fc fusion protein dampened the

expression of inflammatory cytokines, TNFa, IL-1, IL-6, MIP-2,

CCL3, G-CSF, and GM-CSF, expression in vivo, and increased

fungal burden during aspergillosis (33). Ablation of Dectin-1

resulted in decreased reactive oxygen species (ROS) production

by neutrophils and the ability to kill Aspergillus in vitro.

Additionally, alveolar macrophages of Dectin-1−/− mice had

defective production of proinflammatory cytokines and

chemokines, including IL-1a, IL-1b, and TNFa. The Dectin-1

recognition of Aspergillus seems important for IL-17A

production, and neutralization of IL-17A led to impaired

Aspergillus fumigatus clearance and higher mortality of infected

mice (34). Dectin-1 promoted the survival of antigen-specific CD4+

T cells, not the CD8+ T cells, specifically in GI-associated lymphoid
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tissues following systemic Candida infection, and ablation of

Dectin-1 reduced the tissue-specific dendritic cells and increased

activation of CD4+ T cells leading to higher susceptibility to

Candida-induced colitis (35). During systemic Candida infection,

the protective role of Dectin-1 was fungal strain-specific, possibly

due to variable adaptation of Candida albicans strains in vivo,

including the changes in the microbiota of mice due to different

mouse facilities, with changes in the cell wall components and high

chitin in the cell wall masks the dependability on Dectin-1

recognition (36). Further, pathogenic fungi can avoid host

Dectin-1 recognition of b-(1,3)-glucan by masking with a-(1,3)-
glucan, phosphatidylserine, capsule, rodlet layer/melanin, and

mannans or trimming to reduce the exposure in the cell wall,

thus increasing immune evasion in vivo (37–40). However, Dectin-

1 was dispensable for controlling infections from Blastomyces,

Cryptococcus, certain strains or species of Candida, or Candida

colonization (36, 41–45), suggesting the differential requirement of

CLRs for fungal immunity.

Unlike the Dectin-1 receptor, cytoplasmic domains of Dectin-2

and Mincle receptors lack their own ITAM motifs and associate

with FcRg immunoreceptor harboring cytoplasmic ITAMmotif for

signaling (46, 47). Dectin-2 and Mincle have been shown to be

important for immunity against blastomycosis (48), aspergillosis

(49), histoplasmosis (44), chromoblastomycosis (50), disseminated

candidiasis (51, 52), and species-specific candidiasis (45). Dectin-2

signals through the Syk-CARD9 pathway and promote Th17 cell

responses (51) by inducing the expression of IL-1 and IL-23

cytokines (53). Despite that Dectin-2 and Mincle share their

signaling through FcRg immunoreceptors, their role in activation,

expansion, and differentiation of antigen-specific CD4+ T-cell

responses may differ. While Dectin-2 was essential for enhancing

Th17 cell differentiation, Mincle recognition suppressed Th17

polarization during chromoblastomycosis (50).

In addition to CLRs, TLRs expressed by innate cells are

involved in the control of fungal infection. Myeloid

differentiation primary response protein 88 (MyD88), an

adaptor molecule for many TLRs signaling, has been shown to

play a role in antifungal immunity against Blastomyces

dermatitidis, Paracoccidioides brasiliensis, A. fumigatus,

Cryptococcus neoformans, and C. albicans (54–56). TLR2 plays

a significant role in conferring protective immunity against

Candida infection at mucosal sites, including gastrointestinal

and reproductive tracts by inducing Th17 differentiation

through MyD88 signaling (57, 58). However, the role of TLR2

in controlling systemic candidiasis seems to be fungal strain

specific (59, 60). Additionally, IL-1R/MyD88 signaling pathway

is necessary for host resistance against Candida, and TLR4/

MyD88 pathways mediate protection against Aspergillus

infection by regulating Th1 and Th2 response (54, 61). TLR3

in DCs senses fungal RNA derived from dying cells and

potentiates the cross-presentation to activate CD8+ T cells

during aspergillosis (62). Nevertheless, compared to those of
Frontiers in Immunology 03
CLRs, the functions of many TLRs in the context of antifungal

immunity seem to be modest or redundant.

NLRs function against fungal defense mainly involved the

activation of inflammasomes, which leads to caspase-dependent

production of functional IL-1b and IL-18 cytokines. Both of

these cytokines have been shown to exert antifungal host defense

in an NLRP3-dependent manner (63). NLRC4 negatively

regulates NLRP3 inflammasome activity, suppressing early IL-

1b and late IL-18-mediated antifungal CD8+ T-cell responses

during pneumocystosis (64). Thus, some PRRs of the non-CLR

class play a role in immunity against fungal infections (26).

Genetic polymorphisms are associated with susceptibility or

resistance to infections. The genetic TLR polymorphisms related

to fungal disease susceptibility in humans undergoing allogenic

stem cell transplants seem to be modest or minimal (65, 66). The

genetic predisposition due to PRR polymorphisms to fungal

infections is variable and depends on the pathogen or the degree

of inflammation. For example, TLR4 polymorphism D299G is

associated with increased susceptibility to Candida bloodstream

infection, possibly due to higher immunosuppressive cytokine

IL-10 production. However, such susceptibility was not seen in

urogenital Candida infection (67). Similarly, the TLR4

polymorphisms (D299G/T399I), despite the normal

colonization of the fungus, are associated with mitigating the

hyperinflammation and tissue damage during aspergillosis (66).

Similarly, genetic polymorphisms of CLRs have been associated

with susceptibility to fungal infections. Dectin-1 single-

nucleotide polymorphisms (SNPs), rs3901533 and rs7309123,

enhanced the susceptibility to invasive pulmonary aspergillosis

(68). Dectin-1 polymorphism of Y238X led to decreased

receptor signaling and increased susceptibility to invasive

aspergillosis and recurrent vulvovaginitis caused by Candida

(69, 70). Alternative splicing leading to truncated Dectin-1 seen

in the C57BL/6 strain, compared to the DBA/2 mouse strain,

increased the susceptibility to coccidioidomycosis (71). Thus, it

is essential to decipher gene polymorphisms in humans to

understand the susceptibility to fungal infections.

T cells can also express several PRRs to respond to PAMPs

during fungal infections. Engagement of the cell-intrinsic PRR

pathway is one of the non-classical T-cell signaling routes to

enhance the activation, effector function, and memory

formation of T cells as proposed originally by Janeway (72).

Important PRRs on T cells that detect fungal PAMPs are TLRs,

NLRs, and damage-associated molecular pattern-sensing

receptors. TLRs can function as co-stimulatory receptors that

complement TCR-induced signals to enhance effector T-cell

proliferation, survival, and cytokine production (73). T cells

expressing TLRs, including TLR2 and TLR4, can directly sense

pathogens and modulate T-cell responses. Naïve CD4+ T cells

do not express significant levels of TLR2/TLR4 mRNA and

proteins, but activated and memory T cells express high levels

of membrane-bound TLR2 and TLR4 (74, 75). TLR2 signaling
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in T cells can be modulated by TCR and IL-2-induced mTOR

signals (76). Intrinsic MyD88 signaling can modulate the T-cell

functions during fungal infections. MyD88 signaling, both

extrinsic, non-CD4+ T cell-mediated (77) and intrinsic, CD8+

T cell-mediated (78), fosters fungal vaccine immunity by T

cells by regulating the survival and proliferation of effector T

cells. MyD88 promoted the sustained Tc17 cell proliferation by

activating mTOR via Akt1, and cell-intrinsic IL-1R and TLR2

signaling, but not IL-18R, were required for MyD88-dependent

Tc17 responses (78). MyD88 deletion in FoxP3+ regulatory T

cells increased the fungal burden and immunopathology

during oral C. albicans infection in mice, coinciding with

reduced IL-17A expressing FoxP3+ T cells (Treg17) and

increased dysfunctional IFNg+/FoxP3+ cells (IFNg+ Treg).

This dysregulated IL-1b-mTOR-Treg17 axis contributes to

overt inflammation during mucosal infections in elderly

individuals in a model of oral candidiasis (79). NLRP3, a

member of the NLR family, can indirectly sense danger

signals. In a murine model of disseminated talaromycosis,

compared to wild-type mice, Casp-1 and Nlrp3 global KO

mice displayed higher mortality rates and fungal load, which

correlated with impaired CD4+ T-cell recruitment into

granulomas (80). Although this study did not look into T-cell

intrinsic effect, NLRP3 signaling in CD4+ T cells has been

shown to augment Th1 immunity (81). Further studies are

needed to dissect the T-cell intrinsic PRR functions against

fungal infections. Interestingly, PRR has been used to generate

modified TCR of T cells. Dectin-1-chimeric antigen receptor

(D-CAR) was bioengineered using the extracellular domain of

Dectin-1 to redirect T-cell specificity toward fungal b-glucan
moieties for immunity (82). D-CAR+ T cells could inhibit A.

fumigatus hyphae formation in vitro and reduce pulmonary

fungal burden in vivo. In this study, chimeric CD8+ T cells kill

the fungi directly by pumping out cytolysins onto yeast/hyphae

of Aspergillus and indirectly by secreting IFNg that can

potentiate the killing of yeasts by neutrophils (83).
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Antifungal T cells

CD4+ T cells, also called helper T cells, are instrumental in

controlling fungal infections, and their deficiency leads to severe

disseminated infections by opportunistic fungal pathogens. As

the name suggests, the helper cells bolster innate immune cell

functions, aid in the generation of productive B-cell responses,

help CD8+ T-cell responses, and control autoimmunity. Based

on their cytokine secretion and functions during fungal

infections (84, 85), T cells are classified into Th1 (IFNg, GM-

CSF, and TNFa), Th17 (IL-17A/F), Th22 (IL-22), Th2 (IL-4 and
IL-13), Th9 (IL-9 and IL-10), Treg (IL-10 and TGFb), and Tr1

(IL-10). The cytokines produced by T cells have a multifaceted

role in controlling or regulating the pathogenesis during

infections, including fungal infections (86). Although a

mixture of different cytokine-producing T cells is often found

during fungal infections, the predominant subset of T-cell

responses is associated with the type of pathogen, infection, or

tissue location (Table 1). Here, we will highlight some of the

roles of these T cells for immunity against different pathogenic

fungi with a focus on memory phenotypic cells.
Pathogen-specific antifungal T cells

Candida

Anti-Candida memory T-cell responses are studied in the

context of mucosal infections, vaccine-induced responses, and

commensal-specific/pre-exposed T cells in healthy donors.

Candida is a commensal but opportunistic fungal pathogen

that causes disseminated infection under compromised

immunity. In a mouse model of oropharyngeal candidiasis

(OPC), after resting for 6 weeks following primary infection,

the memory CD4+ conferred immunity to secondary infection

by producing antigen-specific IL-17A responses (91). However,
TABLE 1 Major T-cell subsets elicited and shown to be protective against fungal pathogens.

Pathogenic fungi Mechanism(s) of protection References

Aspergillus spp. Th1 (circulation), Th17 (lungs) Tc1 (87–89)

Blastomyces spp. Th1, Th17 Tc1, Tc17 Tc1 (EM/CM)
Tc17 (EM)

(56, 90)

Candida spp. Th1, Th17 Tc1, Tc17 TRM (91–94)

Cryptococcus spp. Th1, Th17? Tc1 TRM (95, 96)

Coccidioides spp. Th1, Th17, Th2 Tc1 TEM (97–99)

Histoplasma spp. Th1, Th17 Tc1 (100)

Paracoccidioides spp. Th1, Th17 Tc1 (101)

Pneumocystis spp. Th1? Tc1 (102)

Talaromyces spp. Th1, Th17 (103, 104)
fr
Different subsets of CD4+ T helper cells and CD8+ T cells have been shown to participate in immunity against different pathogenic fungi. In some of the pathogenic fungi, different types of
memory T-cell development have been documented.
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depletion of CD4+ T cells did not cause OPC, possibly

compensated by developed residual IL-17A expressing

memory CD8+ T cells and CD3+CD4−CD8− cells. In a mouse

model of C. albicans skin infection, IL-17+ CD4+ T cells were

enriched in the skin, which transitioned into sessile CD69+/

CD103+ tissue-resident memory T cells (TRM) within 90 days.

This suggests that the long-lasting antifungal memory Th17 cells

are generated in the non-lymphoid organ, such as the skin (105).

Importantly, these TRM cells provided better immunity than

migratory Th17 cells following infectious challenges. In a mouse

model of vulvovaginal candidiasis, Th17 cells persisted even after

the clearance of the yeast but in low numbers by day 30 (106).

The vaginal washes showed the presence of IL-17A, IL-23, and

b-defensins. Nevertheless, this study did not examine the long-

term maintenance of effector/memory CD4+ T cells.

The C. albicans hypha-specific surface protein antigen,

agglutinin-like sequence (Als3)-based NDV-3A vaccine was

used for active immunization in a mouse model that

prevented Candida colonization at vein catheterization site

(107), and the mechanisms involve the induction of high levels

of anti-rAls3p-N antibodies. Here, the antibody titers persisted

15 days post-boost, interfered with Candida colonization at the

catheter site, and reduced the fungal burdens in the kidneys.

Although the elicitation of CD4+ T-cell responses or their

persistence was not evaluated in this study, the blocking/

inhibitory ability of the antibodies may suggest their potential.

In another study, where the NDV-3 vaccine was used in a mouse

model of vaccine immunity to vulvovaginal candidiasis, robust

antibody responses and immunity were dependent on both T

and B cells (108). However, the immunity was assessed 2 weeks

following the boost, which may not give a clear understanding of

long-lasting memory CD4+ T-cell development. Nevertheless, in

a human study, intramuscular NDV-3 vaccination of the

volunteers induced the durable serum and cervicovaginal

antibody titer (anti-Als3) for up to 1 year and provided

significant immunity against recurrent vulvovaginal candidiasis

(109). This study found significantly higher numbers of Als3-

specific cytokine (IFNg and IL-17A) secreting peripheral blood

mononuclear cells (PBMCs) even after day 90 of vaccination.

Although this trial evaluated an immunotherapeutic vaccine,

whether the vaccination induces the antigen-free (Candida

reexposure-free) persistence of long-lasting “memory adaptive

(T and B) cells” needs to be assessed.

Candida-specific memory CD4+ T cells in healthy blood

donors produced IL-17A and IFNg, but not IL-10, following

restimulation (110). The human Candida-specific memory Th17

cells preferentially expressed phenotypic markers, CCR6 and

CCR4 (92), which suggests the generation of long-lived anti-

Candidamemory T cells in humans, possibly due to stimulations

from commensal microorganisms. Notably, human Candida-

specific memory CD4+ T cells are heterogeneous, produce

multiple cytokines, and have unique and shared clonotypes

among memory subsets (111). C. albicans-specific TRM cells
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prevented the fungal overgrowth in human skin and oral mucosa

by producing IL-17A (105, 112). Similarly, Candida-specific IL-

9-producing CD4+ T cells, Th9, were found enriched in the skin

of healthy donors (suggesting their memory phenotype) and

have the ability to amplify IFNg, IL-9, IL-13, and IL-17 by skin-

tropic T cells (113). However, gut Th9 cells protect against

Candida reinfection and mitigate associated pathology (114).

Another Candida-specific subset of CD4+ T cells expressing IL-

22 (Th22) is found in humans as memory cells and is increased

following infection (115). Further, Th22 seems to provide

defense against recurrent vulvovaginitis caused by Candida in

humans (116), suggesting the formation of mucosal memory

Th22 cells. In this line, defective Th22 responses are associated

with chronic mucocutaneous candidiasis (117). Although little is

known about the fate of pre-existing antifungal memory T cells

during co-infection, a recent study suggests the impaired T-cell

responses to Candida following COVID-19 infection that was

associated with diminished inflammatory cytokines

release (118).

In the mouse models of mucosal candidiasis, studies have

shown that Tc17 cells play a role in both oral and vaginal

infections (91, 119). Oral immunization of mice with C. albicans

under B-cell deficiency induced systemic memory of CD8+ T

cells and provided protection following the challenge (120). The

screening of Candida-specific memory CD8+ T cells in healthy

human blood donors showed a non-classical cytotoxic molecules

expression profile, i.e., secretion of granulysin and granzyme K

rather than perforin/granzyme B (121). The CD8+ T cells were

reactive to C. albicans, Candida glabrata, and Sporothrix and

expressed lysosomal degranulation markers, CD107a/b, and

secreted IFNg and TNFa, following ex vivo stimulation with

yeast-loaded dendritic cells.

In one study, the various phylogenetically closer and distant

yeast-specific T-cell responses were assessed using PBMCs of

humans and found a predominant presence of IFNg-expressing
effector memory CD8+ T cells (122). Interestingly, in this study,

enriched CD8+ T cells were more reactive to filamentous form

than the unicellular form of Candida. In HIV+ patients, the

Candida-specific activated memory CD8+ T cells were

accumulated within the oropharyngeal candidiasis (OPC)

lesions at the lamina propria–epithelium interface (123).

Similarly, C. albicans-specific CD8+ T cells were found in the

blood and nasal mucosa of chronic rhinosinusitis patients,

suggesting a possible persistent T cell-mediated mucosal

inflammation (124), which may be due to repeated exposure

to the antigen.
Aspergillus

Aspergillus, a globally prevalent opportunistic fungal

pathogen, causes pulmonary and invasive mycoses following

inhalation of spores. Immunity to aspergillosis is primarily
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associated with the development of memory Th1 cells, while

biased Th2 or regulatory responses are linked to exacerbated

disease (125–127). Experimental vaccination of mice with

conidia, hyphae, crude culture filtrate antigens, or adjuvanted

(CpG ODN1862) cell wall glucanase Crf1 protein strongly

induced Th1 (IFNg and IL-2) responses, formed effector or

memory T cells, and conferred immunity following the

challenge (87, 128–131). In line with the protective role of Th1

responses, IL-4 seems to play a negative role following A.

fumigatus challenge (127). In chronic rhinosinusitis with nasal

polyposis patients, the mycology culture showed the presence of

Aspergillus flavus, and PBMCs stimulated with aspergillus

antigens showed an increased ratio of aspergillus-specific Th17

cells over Tregs, suggesting prior sensitization (132). Further,

stimulated PBMC culture supernatant showed elevated levels of

IL-17 and IL-10 with reduced TGFb levels, suggesting the

possible associated pathology in these patients. Prior work has

shown the negative effect of IL-10 for control of experimental

lethal systemic aspergillosis (133), and its overexpression, due to

genetic polymorphisms, predisposes to invasive aspergillosis

possibly by inhibiting TNFa secretion in hematopoietic stem

cell recipients or hematological patients (134, 135). However, IL-

10 seems to be protective in regulating exaggerated immune

responses and inflammation in allergic bronchopulmonary

aspergillosis (136), suggesting that the regulatory role of IL-10

depends on the disease context. In many healthy individuals

(10%–30%), multi-Aspergillus-specific T cells were found,

suggesting their memory potential and feasibility to expand,

store, and be used for self-adoptive transfers following

hematopoietic stem cell transplantation (137–139).

Hematopoietic stem cell transplant patients undergo a period

of immunocompromised state, enhancing vulnerability to many

opportunistic fungal infections, including aspergillosis. Thus,

rapid preventive or therapeutic reconstitution of the functional

adaptive immune system is beneficial. Adoptive immunotherapy

using either donor-derived (139) or partially HLA-matched

antigen-specific T cells can be used to prevent or treat

opportunistic fungal infections (140). In a preclinical study, in

vitro expanded yeast-specific cytokine-producing Th cells have

been used to reduce the severity of pulmonary and cerebral

forms of aspergillus infections in mice (141).

Although the role of Th17 cells in pulmonary aspergillosis is

debated, a recent study suggests the presence of aspergillus-

specific Th17 cells that correlated with protective immunity (88),

and possible mechanisms may include the formation of

inducible bronchus-associated lymphoid tissue (iBALT)

structures and development of TRM cells (142). With the use

of recombinant aspergillus proteins (Asp f proteins), a study

investigated the presence of yeast-specific CD4+ and CD8+ T

cells in healthy non-atopic donors (143). In these individuals, the

cytokine production signature suggested the presence of

aspergillus-specific memory T cells expressing IFNg, IL-17A,
and to some extent IL-4, possibly due to prior exposure.
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Importantly, this study showed the presence of Aspergillus-

reactive IFNg+ T cells for up to 6 months of follow-up

observations. However, the persistence of diverse cytokine-

expressing T cells as memory in humans needs to be evaluated

for the i r ro le in immuni ty or immunopatho logy

following infection.
Pneumocystis

Pneumocystis is another opportunistic fungus that causes

infection under immunodeficiency, especially of CD4+ T cells

and B cells. It is believed that Pneumocystis may persist in

individuals upon early age exposure without any apparent

symptoms, akin to toxoplasma. The reactivation occurs when

an individual becomes immunodeficient or severely

immunosuppressed, suggesting an active role of memory or

effector adaptive immunity to keep the fungus at bay.

However, recent studies suggest the possibility of reinfection in

immunocompromised individuals (144). Murine models have

been valuable in understanding the host–Pneumocystis interface

for adaptive immunity and recapitulating human primary

immune disorders (145). Increasing evidence suggests that B-

cell responses are important in the control of Pneumocystis.

Anti-CD20 mAb therapy in humans enhanced the susceptibility

to pneumocystosis, suggesting a critical role of B cells (146). Of

note, the CD20 mAb therapy does not deplete mature

plasma cells (147), raising questions on mature long-lived

plasma cell generation against Pneumocystis. It is possible that

anti-CD20 mAb therapy leads to functional impairment

of antibody-secreting cells. However, in a murine model of

pneumocystosis, neither the memory CD4+ T cells nor B cells

are required for clearance of infection (146). Here, convalescent

Pneumocystis-specific IgGs were enough to provide immunity.

Interestingly, B cells are required for elicitation of antigen-

specific CD4+ T-cell responses to Pneumocystis (148, 149),

suggesting a potential cross-talk between these two subsets for

immunity against pneumocystosis. Notably, in the simian model

of vaccination with Pneumocystis jirovecii protease kexin

(KEX1), once the B cells are primed, induction of CD4+ T-cell

deficiency with SHIV infection did not prevent antibody-

dependent control of infection, suggesting the persistence of

“memory” plasma cells or threshold levels of Ab titers (150). In a

murine model, memory CD4+ T cells were dispensable for

pneumocystosis control, whereas memory CD8+ T cells,

alveolar macrophages, and Pneumocystis-specific IgG

contributed to secondary immunity (102). Here, the IgG

antibody enhanced the macrophage killing of yeast, while

macrophages helped CD8+ T-cell recall responses in IFNg
production. IFNg-stimulated CD8+ T cells, in turn, can be

potent antifungal cytotoxic cells (13). However, interestingly,

CD8+ T cells seem to help CD4+ T cells with their IFNg
responses. Memory CD4+ T cells can indirectly potentiate NK
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cell functions against infection caused by Pneumocystis murina,

and depletion of CD4+ T cells significantly reduced the

accumulation of NK cells and NK-cell mediated immunity

(151). In a mouse model of vaccine immunity, immunization

with a recombinant fusion protein containing N-terminal 544-aa

Pneumocystis cross-reactive antigen-1 and trigger factor (TF)

induced protective and cross-reactive antibody responses that

provided immunity even after memory CD4+ T cells were

depleted at the time of challenge infection (152). Thus, CD4+

T cells seem to have functional duality against Pneumocystis

infection, first by helping B cells and CD8+ T cells to become

protective differentiated memory cells and second by secreting

proinflammatory cytokines to control the primary infection.
Cryptococcus

C. neoformans is a facultative intracellular opportunistic

pathogen commonly associated with AIDS patients due to

severe CD4+ T-cell deficiency. The CD4+ T-cell immunity to

cryptococcosis is mainly dependent on Th1 cytokines. Models of

vaccination and infection suggested the role of CD4+ T cells and

their Th1 cytokine profile. Cryptococcus-activated CD4+ T cells

recruited other immune cells, enhanced the phagocytosis, and

killed infected cells by CD8+ T cells, akin to intracellular

bacterial infections (153). Striking effects of Th1-derived

cytokines for immunity against cryptococcosis are noticed

when genetically engineered C. neoformans strain H99

expressing IFNg (H99-g) was experimentally used in mice

(154). Here, the “vaccinated” mice cleared the infection that

was associated with a large influx of leukocytes, enhanced T-cell

recruitment, and increased Th1 and decreased Th2-type

cytokines following challenge infection. The use of a

recombinant strain of C. neoformans (H99-g) as a vaccine

strain induced memory CD8+ T cells to mediate immunity

under CD4+ T-cell deficiency, suggesting that antifungal CD8+

T cells can compensate CD4+ T cells (155). Notably, there was

the development of memory T cells and enhanced secondary

responses following the challenge. C. neoformans chitin

deacetylase 2 peptide (Cda2-Pep1) delivered in glucan particle

(GP)-based vaccination robustly protected the mice following

the challenge, and the immunity was correlated with their MHC-

II binding affinity (156). Similarly, multi-epitope vaccine/s may

be useful in controlling cryptococcosis (157). In an experimental

model, immunization with either cell wall or cytoplasmic protein

preparation from Cryptococcus gattii induced vaccine immunity

after challenge and protection that was associated with enhanced

Th1 responses and antigen-specific serum IgG (158).

Nevertheless, in such vaccination platforms, the development

of memory T cells is not clear. However, Cryptococcus antigen-

pulsed dendritic cell-based systemic vaccination elicited long-

lived memory Th17 cells in the lungs (95). Interestingly, these

cells were lung resident TRM cells, produced IL-17A but not
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IFNg, and mediated protection against C. gattii challenge.

Pulmonary infection with C. neoformans elicited strong CD8+

T-cell responses to control the infection independent of CD4+ T

cells (15). In this line, immunization with the genetically mutant

Cryptococcus strain (Dsgl1) that accumulates steryl glucosides

led to induction of protective immunity that required either

CD8+ or CD4+ T cells (159). However, these studies did not

show memory T-cell development or persistence. In HIV-

associated Cryptococcus meningitis patients, the clearance of

infection was strongly correlated with Th1, not Th2 or Th17,

cytokines (IFNg or TNFa). In contrast, their defective

expression led to higher mortality (160), suggesting an

importance of type I immunity. Lower frequency of cytokine-

producing memory CD8+ and CD4+ T cells was found in HIV-

infected patients with Cryptococcus meningitis (CM), but their

numbers were increased with more polyfunctional IL-2+/IL-17+

CD4+ T cells and IL-2+ CD8+ T cells following antiretroviral

therapy (ART) in CM-associated immune reconstitution

inflammatory syndrome (CM-IRIS) (161) patients, suggesting

the pathological role of cryptococcal memory T cells under

certain conditions.
Blastomyces

Mouse models of immunity to blastomycosis suggest that

CD4+ T cells are essential for controlling primary pulmonary

infections. An experimental mouse model of vaccination

suggested that Th17 cells expressing IL-17A are the main

driver for immunity against pulmonary blastomycosis by

activating macrophages and neutrophils (56). A Blastomyces-

specific fungal antigen, Calnexin, was found to be conserved

among multiple fungal pathogens, and vaccination with

Adjuplex adjuvant or encapsulated glucan mannan particles

seems to induce robust CD4+ T-cell responses and immunity

(162, 163). Identification of such conserved antigens may help

the design of pan-fungal vaccines (164). Although homeostasis

of memory CD4+ T cells was not studied, the fungal-specific

CD4+ T cells persisted for 8 weeks and the adoptive transfer of

vaccine-induced effector CD4+ T cells mediated the immunity

following the lethal challenge even after 10 weeks of rest (162),

suggesting their potential to become memory. Interestingly,

intranasal delivery of vaccine-candidate Blastomyces

endonuclease-2 (Bl-Eng2) induced TRM cells in the lungs but

failed to provide proactive immunity, unlike systemic vaccine-

induced migratory CD4+ T cells (165). Importantly, Bl-Eng2 is a

glycoprotein antigen that has mannose residues that bind to

Dectin-2 and a protein backbone with protective CD4 T-cell

epitope/peptide (165, 166), thus a vaccine candidate with

intrinsic adjuvanticity property. Admixing adjuvants, especially

TLR9 (CpG55.2) and Aldeltin (formulation with alum OH) with

fungal antigen (Bl-Eng2 peptide) potentiated the vaccine

immunity against blastomycosis, which was dependent on type
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1 and type 17 cytokine-producing migratory and lung-resident T

cells (167). In the mouse model of vaccination under CD4+ T-

cell deficiency, CD8+ T cells could mount sterilizing immunity to

lethal pulmonary infection. Immunity was predominantly

mediated by IL-17A+ CD8+ (Tc17) cells (90) with disparate

dependency on the type I cytokines (by Tc1 cells), IFNg, TNFa,
and GM-CSF (168); i.e., deficiency of one Tc1 cytokine was

compensated by other Tc1 cytokines. Notably, antifungal

memory CD8+ T cells were long-lasting and persisted stably

without plasticity in the absence of vaccine antigen or CD4+ T-

cell help (16, 169). These memory CD8+ T-cell precursors

portrayed stem cell-like phenotype and can be fine-tuned by

MyD88-Akt-mTOR signaling (78). Additionally, targeting the

negative regulator of the TCR signaling molecule, Cblb, could

enhance memory CD8+ T-cell responses of both Tc1 and Tc17

responses to inactivated vaccine and potentiate immunity

following lethal pulmonary challenge (170). Memory Tc17

cells predominantly expressed GM-CSF, and these co-

expressing cells potentiated the fungal vaccine immunity

without precipitating pathology (171).
Histoplasma

Histoplasma is an opportunistic fungal pathogen and causes

disseminated infection in severely immunocompromised

patients. Incidentally, most people living in the Ohio-

Mississippi river valley endemic regions were reactive to

Histoplasma (172), suggesting memory T-cell persistence.

Memory CD4+ T cells contributed to immunity following the

secondary infection, and depletion of both CD4+ and CD8+ T-

cell subsets enhanced the infection and decreased survivability

(173). The deficiency of IL-10 conferred salutary effects on

memory T ce l l -mediated protect ion to secondary

histoplasmosis (174). The immunity was dependent on T cell-

derived TNFa or IFNg, and the protection conferred by T cells

generated under IL-10 deficiency was robust. Although memory

responses of IL-17+ T cells are not clear, induction of their

effector type and immunity has been noticed following

vaccination or infection with Histoplasma (56, 90, 170, 175).

In a model of histoplasmosis, CD8+ T cells could compensate for

the loss of CD4+ T cells for vaccine immunity (176), and

the depletion of CD8+ T cells compromised the primary

immune responses (177). Immunity to histoplasmosis

was perforin-dependent and perforin- independent ,

which included cytokine-mediated (IFNg or TNa)
mechanisms (178). The antigen cross-presentation by dendritic

cells seems to be critical for the elicitation of protective

antifungal CD8+ T-cell responses (14). Although the above

studies do not evaluate memory homeostasis, memory

responses to histoplasmosis were bolstered by IL-10

neutralization, where fewer CD8+ T cells were enough to

mediate immunity (174).
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Coccidioides

Coccidioidomycosis or Valley Fever is caused by species of

dimorphic fungus,Coccidioides, a major cause of mycosis endemic

to the southwestern United States. Immunity to Valley Fever is

primarily associated with T cells expressing both type 1 and type

17 cytokines (Th1/Th17) (179, 180). The regulatory T cells were

associated with persistent coccidioidomycosis in the pediatric

population that was recapitulated in resistant vs. susceptible

mice (181, 182). Cytokine IL-10 plays a negative role in

memory Th1 and Th17 recall responses and immunity

following Coccidioides infection, but not for the development of

memory T cells. Coccidioidomycosis immune donors had

polyfunctional T cells composed of both effector and central

memory phenotypic cells (183), suggesting their long-term

immune role. In a human vaccine study using formaldehyde-

killed sperules of Coccidioides immitis, no statistical differences in

susceptibility to infection were found between placebo and

vaccination groups (184). However, the memory T-cell

development or their functions between these groups were not

clear. Nevertheless, there is an active attempt to improve the

vaccine efficacy using a multivalent vaccine against Coccidioides

infection that required mixed Th1 and Th17 cell-mediated

immunity (185, 186). In a mouse model of vaccine immunity

using a temperature-sensitive, auxotrophic mutant of C. immitis,

the adoptive transfers of either CD4+ or CD8+ T cells from

vaccinated mice to recipient mice infected with lethal strain

conferred protection, and the immunity was mediated through

TNFa (97). In this study, although effector CD8+ T cells (2 weeks

post-immunization) were used to show protective immunity, the

mice were monitored for 50 days following the challenge,

suggesting the effector cells’ persistence and possible conversion

into memory cells.
Paracoccidioides

Immunity to paracoccidioidomycosis depends on the CD4+ T

cells expressing Th1 cytokines, IFNg, TNFa, and IL-2 (187). The

type of T-cell response determines the nature of the disease or the

susceptibility, with Th2-dominant responses being non-protective

and a mix of Th17/Th22 and Th1/Th2 providing the intermediate

protection (188). Experimental vaccination with P10 antigen (of

gp43 protein) in Montanide ISA 720, CFA, flagellin, and DODAB

adjuvants induced Th1 response and protected against intratracheal

challenge infection (189, 190). Here, both effector and central

memory phenotypic cells were found to be successfully recalled

into the lungs after infection. Similarly, fungal-specific memory

CD4+ and CD8+ T cells were seen in the patients, and low numbers

of memory CD4+ T cells were associated with relapse of the disease

(191). In the model of pulmonary paracoccidioidomycosis, CD8+ T

cells were induced to control the fungi in the absence of CD4+ T

cells by secretion of type 1 cytokines (IFNg and IL-2), and the
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depletion of CD8+ T cells increased the fungal burden with a

concomitant increase of non-protective IL-4 and IL-5 cytokines

(101). Nitric oxide helps control Paracoccidioides infection, and

deficiency of NO and CD8+ T cells seems to be detrimental to

immunity. Interestingly, CD8+ T cells enhance the recruitment of

TNFa/IFNg-producing CD4+ T cells and the influx of

inflammatory cells (192). However, the maintenance of such a

response as memory is unclear.
Cross-reactive antifungal T cells

Cross-reactivity, the recognition of two or more peptides by

the same TCR, of T cells has been documented. Cross-reactive

antifungal T cells are useful, and identifying the antigens helps in

the generation of a pan-fungal T-cell vaccine (193). C. albicans

existence as a commensal microbe induces memory CD4+ T

cells. Incidentally, these C. albicans-specific cells can cross-react

with airborne fungi, like Aspergillus, and exacerbate acute

inflammatory lung pathologies (194, 195). Similarly,

A. fumigatus antigen-induced memory Th1 cells were cross-

reactive to C. albicans (130). T cells specific to A. fumigatus were

cross-reacted to induce protective immune responses against

Aspergillus and Mucorales sp. infections (138). A. fumigatus-

specific T cells, in culture, exhibited cross-reactivity with lysates

derived from other fungi, including non-fumigatus Aspergillus,

C. albicans, Penicillium spp., and Scedosporium apiospermum

but not with Aspergillus terreus, C. glabrata, Fusarium spp., and

Mucor spp. (196). Although such distantly related fungi have

cross-reactive T cells, high cross-reactivity of T cells was noticed

between phylogenetical ly related Scedosporium and

Lomentospora species, but not with A. fumigatus (197). The

cross-reactivity by adaptive immunity across kingdoms, i.e.,

fungus and bacteria, is noticed and exploited for vaccination

against Candida and Staphylococcus aureus (198), including

emerging multidrug-resistant Candida auris infection (199).

Similarly, pan-fungal vaccines can be developed and used

against different pathogenic fungi if the shared antigen is

identified (163). Although the mechanism of cross-reactivity of

fungal T cells is mainly due to shared epitope sequence (163), the

broad cross-reactivity of the CD4+ T cells may be due to the

nature of TCR binding with peptide-MHC class II that allows

multiple anchor residues with greater flexibility of amino acid

variation (200, 201). The bystander activation via TCR-

independent mechanisms (202) may also be involved.
Mechanisms of T cell-mediated
fungal control

T cell-mediated control of fungal infections involves

mechanisms that are chiefly mediated through the effectual

functions of the cytokines they secrete. Additionally, cytotoxic
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functions, independent of cytokines, of CD8+ T have been

documented during fungal infections. Here we highlight some

of the actions of cytokines/cytotoxic molecules for

fungal control.

IL-17A and GM-CSF cytokines at the site of infection

protected against fungal pathogens in part by enhancing the

neutrophil recruitment to the site of infection (9). Further, these

cytokines can activate recruited neutrophils and macrophages to

bolster their ability to kill fungal cells. Activated neutrophils and

macrophages may exert direct fungicidal activity via

phagocytosis, degranulation, ROS production, and neutrophil

extracellular trap (NET) formation (203). Different granules

(primary azurophilic, secondary specific, and tertiary

gelatinase) in neutrophils contain different cytolytic molecules

(17). The role of the IL-17 axis and neutrophils during

dimorphic fungal infections has been reviewed elsewhere

(204). IL-17 and IL-22 act on cells to promote STAT3

activation, upregulate Reg proteins, and secrete antimicrobial

peptides (AMPs), S100 proteins, and b-defensins from epithelial

cells and keratinocytes that destroy the fungal pathogen (205).

Further, IL-22 signaling helps in the regeneration of oral

epithelial cells and “licenses” IL-17 signaling for resistance

against oral mucosal candidiasis (206). AMPs secreted by

epithelial cells induce cell wall permeabilization, mitochondrial

dysfunction, and osmotic dysregulation in fungi to elicit

fungicidal and fungistatic activity (207). Conversely, IL-17A

may drive allergic outcomes by enhancing eosinophil

recruitment following repeated exposure to A. fumigatus

conidia (208).

IFNg, GM-CSF, and TNFa enhance macrophage functions

by promoting phagocyte maturation, polarization of

macrophages to M1 type, and fungus-killing ability. IFNg is

known to strongly activate phagocytes and their functions

against fungi (209). Both IFNg and TNF induce ROS

production from macrophages, which is fungistatic to

intracellular fungal pathogens Histoplasma capsulatum and C.

immitis (210, 211). Furthermore, IFNg promotes rapid

acidification of phagolysosomes in macrophages (212),

upregulation of MHC-II molecules, and antigen presentation

by APCs to elicit T-cell immunity (213). GM-CSF enhances

macrophage ROS production and limits intracellular yeast

growth by sequestration of zinc (214). GM-CSF deficiency

impairs the production of TNFa and IFNg (215), which are

important for the control of intracellular fungal infections.

Similarly, TNFa signaling enhances the activation,

phagocytosis, and ROS-producing ability of innate immune

cells for antifungal functions. Interestingly, early TNFa
expression during C. neoformans infection increased the fungal

burden, reduced mature dendritic cells, and increased Th2

responses (216). TNFa was needed for the maturation and

recruitment of DC and the production of IL-12 and IFNg.
However, TNFa prevented biofilm development by C. albicans

(217), and TNF blockade can enhance opportunistic infections.
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Cytotoxic functions of T cells are well documented for CD8+

T cells. Antifungal CD8+ T cells deploy several antimicrobial

granules (mainly granulysin and granzyme K) (121) for direct

cytotoxic activity against the fungal pathogen or fungus-infected

cells (218, 219). Granzymes can mediate cell death by induction

of active caspases, generation of ROS, and mitochondrial

damage, while perforin may facilitate their release from the

endosomes (220). Although this review focuses on T cells and

their memory, antifungal NK cell development is not well

documented. NK cells, like CD8+ T cells, can produce

cytotoxic molecules to kill fungi. The binding of NK cell

receptors NKp46 and NCR1 to surface glycans of Candida led

to degranulation and death of the yeast (221). Similar

observations were made with human NK activating receptor

NKp30 for the direct killing of Cryptococcus and Candida (222).

Interestingly, “cytotoxic” CD4+ T cells can also produce

granulysin to mediate the killing of C. neoformans (223), and

this function was dysregulated in HIV-infected patients.
CD4+ T-cell help for antifungal
CD8+ T cells

Most fungal infections are caused by opportunistic fungal

pathogens under compromised CD4+ T cells or their functions.

Unlike viral or bacterial models, effector and memory CD8+ T-

cell homeostasis in fungal infections is poorly understood, and

the studies have been done using animal models of fungal

vaccine immunity. Attempts have been made to understand

the role of antifungal CD8+ T cells in the absence of CD4+ T

cells, a potential avenue to exploit residual immunity for

preventive and therapeutic purposes for individuals with CD4+

T-cell lymphopenia. Because optimal programming leads to the

generation of long-lasting memory CD8+ T cells (224, 225) and

contributes to fungal vaccine immunity (8), we reason that a

potent fungal vaccination can “license” dendritic cells for CD8+

T-cell priming independent of CD4+ T-cell help. Fungi are

decorated, including some secretory, with several potential

PAMPs that can bolster the dendritic cell activation and

functions (226–228). Therefore, the CD8+ T-cell memory

imprinting and memory homeostasis following fungal

vaccination can be independent of CD4+ T-cell help (16, 169).

However, evidence from viral and bacterial infections suggests

that CD4+ T-cell help is essential for eliciting CD8+ T-cell

responses (229). The mechanisms of CD4+ T cells help CD8+

T cells involve optimal activation of dendritic cells, enhancement

of their phagocytosis, potentiation of antigen processing and

presentation, upregulation of costimulatory ligands, and

generation of an apt inflammatory micro milieu by dendritic

cells for naïve CD8+ T-cell priming and programming (230,

231). The direct mechanisms of CD4+ T cells help involve

providing IL-2 for the proliferation of differentiating CD8+ T

cells and lending co-stimulation through CD40L-CD40 (7).
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Further, CD4+ T cells may help recruit memory CD8+ T cells

into mucosal surfaces (232). Well-primed CD8+ T cells can

produce IL-2 (169) and get help in an autocrine manner (233).

We also found chemokine receptor-mediated recruitment of

effector CD8+ T cells into the lungs, which was independent of

CD4+ T cells following pulmonary challenge in a mouse model

of vaccine immunity to pulmonary blastomycosis (90). Recent

evidence suggests that the requirement of help from CD4+ T

cells to CD8+ T cells largely depends on their distinct

interactions with the dendritic cells during their activation

(230, 234). Thus, well-programmed CD8+ T cells, endowed

with intrinsic memory capacity, can independently bestow

their recall responses and immunity (235, 236). Further studies

are needed to understand the fungal antigens and the role of

dendritic cells in CD8+ T-cell priming.
Memory T cells: An overview

The development of immunological memory is the hallmark

of vaccination. Following infection or vaccination, the first

responders, innate immune cells, exert broadly specific

immunity to limit pathogen growth and initiate adaptive T-

cell immunity. T-cell recognition is highly antigen-specific and

binds to processed antigens/epitopes loaded onto MHC

molecules, resulting in their activation, differentiation, and

proliferation during the first phase of T-cell response, which is

the expansion phase (237). In the ensuing contraction phase,

mostly coinciding with the elimination of pathogen or antigen,

~90%–95% of effector T cells [short-lived effector cells (SLECs)]

undergo attrition by apoptosis, and the remaining 5%–10% of

cells [memory precursor effector cells (MPECs)] differentiate to

become long-lived, quickly and robustly responding, memory

cells (238) in the memory phase (Figure 1). The central

paradigm of vaccination is to generate qualitatively superior

threshold numbers of memory T cells (237, 239, 240).

Memory T cells are unique and often behave like stem cells

in their homeostasis and longevity. Many models of memory T-

cell generation are proposed, and one of them suggests that

memory programming or imprinting can happen as early as the

first antigen encounter (241, 242). Others suggested dynamic

and progressive imprinting of memory from a subset of effector

cells. In the absence of cognate antigen, memory T cells are

quiescent and slow dividing and share many features with naïve

T cells (243, 244). However, they are uniquely programmed for

stem cell potential and balanced cell apoptosis and proliferation

for their steady homeostasis (240, 245), chiefly controlled by

cytokines IL-7 and IL-15 (246). Naïve, effector, and memory T

cells are differentiated based on their expression of surface and

intracellular markers (241, 247–249), which endorse their

homing and functional attributes. Memory T cells are a

heterogeneous pool of cells derived from multiple clones and

fates of polarization and differentiation based on the “one cell
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multiple fate theory” (250, 251). Hence, these features are

imprinted in memory T-cell heterogeneity in homeostatic

turnover, effector function, location, and trafficking properties

(111, 248, 252).

Classically, memory T cells were divided into two groups, TEM

and TCM, based on their lymph node homing properties with

distinct proliferative renewal and functional properties (240, 241).

With the advancement of our understanding and discovery of new

markers, memory cells are classified into many groups in both

humans and mice. Based on the markers, memory cells are broadly

classified as central memory T (TCM), effector memory T (TEM),

tissue-resident memory T (TRM), and stem cell memory T (TSCM)

cells (241, 253–255). Effector memory T cells (TEM),

CD45RA−CD127+CD122+CD27−/+CD62L−/CCR7−, can migrate

into peripheral tissues and exhibit immediate higher effector

function with limited proliferation potential during the

reinfection. TCM cells, CD45RA−CD127+CD122+CD27+CD62L+/

CCR7+, are housed in secondary lymphoid organs with high

proliferative potential but weaker effector properties as compared

to TEM cells (255, 256). The dogma is that TCM cells are reservoirs or
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seeders of TEM cells in need. The property of CD62Llo/CCR7lo

defines the TEM cell exclusion from lymph nodes and migration to

peripheral tissues to rapidly exude effector molecules upon antigen

encounter. In contrast, TCM cells are CD62Lhi/CCR7hi, allowing

them to be preferentially home to lymph nodes (257). Both types of

memory cells endow memory homeostasis properties where TCM
mediates secondary immune responses for long-term protection

and TEM offers instant protection (258). Nevertheless, as alluded

earlier, the homeostatic proliferative potential of TEM and TCM cells

varies (259).

A newly emerging T-cell memory subset, tissue-resident

memory (TRM), is restricted to a particular tissue and is

identified based on the expression of CD103+/−, CD49a, and

CD69 (260). The main feature of TRM is their restriction to the

tissue (261), possibly due to the expression of CD69 that

suppresses the S1P receptor function for lymph node homing

(262). Further, TGFb signaling in these T cells augments the

CD103 expression that facilitates latching onto epithelial cells

(263, 264). Given the strategic position, TRM cells offer immediate

local tissue immunity against invading pathogens (265).
FIGURE 1

Differentiation and generation of memory T-cell subsets. Following recognition of fungal PAMPs by PRRs, activated antigen-presenting cells
(APCs) process the antigen from phagocytosed fungus to load onto MHC molecule. MHC–peptide complex is recognized by cognate TCR of
naïve T cells leading to TCR signaling, activation, and differentiation of T cells into different subsets directed by different cytokine milieus. The
differentiated T cells accompanied by proliferation during expansion phase secrete inflammatory cytokines to aid in fungal killing. Fungal
clearance usually coincides with initiation of T-cell contraction phase where 90% of effector cells die by apoptosis. The remaining cells
differentiate to become long-lived memory cells. Memory T cells express unique phenotypic attributes and transcription factors, some of which
dictate homing to lymphoid organs (CCR7/CD62L). Tissue-resident memory T cells (TRM) continue to reside in tissue of responses. The effector
memory T cells (TEM) continue to invigilate the pathogen by recirculation between peripheral tissues and blood. Self-renewing central memory
(TCM) and central memory stem T cells (TSCM) are preferentially home to secondary lymphoid organs and serve as “seeders” of secondary
effector and memory T cells when needed. PAMPs, pathogen-associated molecular patterns; PRR, pattern recognition receptors; Th, helper T
cell; Tc, cytotoxic T cell (CD8+ T cell); TSCM, stem memory T cells; TCM, central memory T cell; TEM, effector memory T cell.
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The memory stem T cell (TSCM) subset, unique and often

considered closest to naïve T cells, exhibits stem cell-like

properties with higher self-renewal capacity. Unlike

conventional memory T-cell subsets, the TSCM subset

maintains a naïve cell phenotype with multipotency and serves

as a reservoir of memory T cells for a lifetime (266, 267).

However, the identity of such unique memory T cells that are

fungal-specific is lacking despite the description of antifungal

memory cells in humans (111). Further studies are required to

reveal the existence of antifungal TSCM in mice and humans.

With our understanding of memory T-cell differentiation

and function, the memory cells can be classified in many ways,

may depend on the infection or model system, and may be

largely due to graded responses during the early programming of

effector cells (254, 268–270). Unlike an acute viral infection, in

chronic viral infection, the central memory phenotypic T cells

poorly develop (271), and high antigen levels induce an

exhausted phenotype (272). It should be noted that antifungal

memory T-cell homeostasis is poorly defined and not

well understood.
Factors influencing generation of
antifungal memory T cells

Our understanding of memory T-cell generation suggests

that their attributes are bestowed by early programming during

the expansion phase. However, the inflammatory milieu and the

antigen persistence can affect their fate. The graded imprinting

and epigenetic changes during the effector phase determine the

memory T cell fate and the type. Naïve T cells must recognize

cognate antigens portrayed on MHC molecules (Signal 1) of

dendritic cells. Studies have shown that degree of antigen

recognition by naïve or effector cells and antigen persistence

(chronic and persistent infections) has a greater impact (273–

275). However, this feature can be valuable during vaccine

formulations where the antigen is delivered to the site of T-cell

activation gradually to enhance the magnitude of their

differentiation and expansion. Not surprisingly, booster doses

are often given to augment adaptive immune responses,

especially with subunit or inactivated vaccines. The

costimulatory signal/s (Signal 2) is essential to break the TCR

signaling threshold or tolerance to activate the T cells. The role

of the classical costimulatory molecule, CD28, in recognizing B7

ligands on antigen-presenting cells is well defined, including

during fungal vaccine immunity (276). However, other

costimulatory molecules may influence memory T cells’

qualitative and quantitative traits (277), including fungal

immunity (278–282). Interestingly, CD28 may play a negative

role in Th17 subset differentiation (283), but in the absence of

CD28, the differentiation required proinflammatory cytokine

signaling (284). Nevertheless, for subunit or less potent vaccine
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antigen formulations, engaging multiple costimulatory

molecules may help potentiate the T-cell responses and

eventual memory formation (167, 226). The inflammatory

milieu generated by proinflammatory cytokines (Signal 3) is

instrumental for effector T-cell differentiation and memory

feature imprinting (285). Immunity to different fungal

infections needs distinct cytokines produced by T-cell subsets

(4), and the deviation from protective T-cell subsets may lead to

enhanced pathology and disseminated infections (286–289).

Immunity to different fungal pathogens predominantly

requires either T cell-derived type I cytokines (IFNg, GM-CSF,

and TNFa) or type 17 (IL-17A/F) responses (80, 290) mainly at

systemic and mucosal surfaces, respectively. Nevertheless,

following fungal vaccination or infections, both types of

subsets are induced at different magnitudes and found to

contribute to immunity at variable degrees (8, 22, 168, 291–

294). Future studies are necessary to understand the elements of

memory T-cell differentiation, homeostasis, and their recall

responses for immunity following infection or vaccination.
Co-stimulatory and coinhibitory
molecules influencing antifungal
potential memory T cells

Co-stimulatory and coinhibitory receptor molecules present

in T cells can fine-tune immune responses to fungal vaccines and

infections. While co-stimulation leads to the potentiation of cell

signaling, inhibitory signals deliver opposite effects during T-cell

activation, thus inhibiting T-cell responses (295). Similarly,

coinhibitory receptors present on memory T cells restrict

recall responses but preserve memory cells by inhibiting

terminal differentiation (296). Interestingly, the expression of

coinhibitory molecules on resident memory CD8+ T cells (Trm)

is an intrinsic property present in their core gene signature (297,

298). Compared to circulatory memory T cells, resident memory

T cells expressing high amounts of coinhibitory receptors (2B4,

CTLA-4, LAG3, PD-1, and Tim-3) were able to undergo local

proliferation following secondary rechallenge (299). Here, we

highlight a few studies where the co-stimulatory or inhibitory

molecules modulate antifungal T-cell responses.

PD-1 is a coinhibitory molecule expressed in T cells

associated with dysfunction, and blocking PD-1 enhances the

T-cell functions. Hence, anti-PD-1 mAb administration

improved the fungal clearance in a model of persistent

cryptococcosis (297). Interestingly, the effect was independent

of effector cell numbers and myeloid cell activation, but reduced

expression of IL-5 and IL-10 by lung leukocytes and enhanced

sustained expression of OX40, a costimulatory molecule, on T

cells. Similarly, the blockade of PD-1 and CTLA-4 improves

survival during primary and secondary fungal sepsis (300)

associated with improved T-cell functions. Signaling
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lymphocyte activation molecule (SLAM) family members act as

co-receptors for T cells fine-tuning immune homeostasis during

infections (301). Mutation in SLAM-associated protein (SAP),

required for SLAM signal ing , resul ts in X-l inked

lymphoproliferative disease (XLP). A recent study showed that

SLAMF1, a member of the SLAM family, was dispensable for T-

cell activation and expansion following fungal vaccination, but

the fungal immunity was severely compromised (302). This

study of vaccine immunity against lethal fungal pneumonia

implied that SLAMF1 is mainly important for innate host

control of lung fungal overgrowth as well as inflammation,

recruitment, or expansion of fungal-specific effector CD4+ T

cells. Another molecule, CD43, also called sialophorin, is a

membrane-bound receptor that exists in two forms with one

highly glycosylated on T cells (303, 304). CD43 can be co-

stimulatory and inhibitory, and depending on the context, it is

known to promote T-cell contraction and reduced memory

(305). In the context of cell-to-cell interactions, studies showed

that CD43 deficiency led to enhanced homotypic binding of T

cells through ligands such as ICAM-1 and fibronectin while

augmenting the T-cell proliferation (306, 307). In other studies,

pre-activation of CD43 with a mAb reduced the TCR signaling

threshold, enhanced the degradation of Cbl, prolonged the TCR

signaling, and augmented the T-cell response (308). Our recent

study showed the indispensable role of CD43 for Tc17 responses

and vaccine immunity to pulmonary fungal infection (309).

T cells typically express one or more co-stimulatory receptors.

Thus, understanding the role of their signaling helps design

vaccines to bolster qualitatively superior antifungal memory T

cells and potentiate their functions for immunotherapeutics.

Further, formulations of vaccines for fungal infections should

account for the type of T-cell responses desired. Nevertheless,

additional studies are warranted to delineate the role of co-

stimulatory molecules during fungal infections. Adjuvants in

vaccines act to enhance the T-cell stimulatory signals and

proinflammatory cytokine production that polarize the T-cell

responses (310). Different adjuvants have different characteristics

in biasing T-cell response/s. For example, Alum potentiates Th2

responses, while Monophosphoryl lipid A (MPL)/CpG1018

bolsters Th1 responses. For controlling some fungal infections,

especially those that are dependent on IL-17 responses, novel

adjuvants are necessary.
Conclusions and future directions

Immunological memory of fungal infections is poorly defined,

but their existence and longevity are documented in preclinical

and clinical studies. Most studies on T-cell memory came from

preclinical model systems of fungal vaccine immunity. It is

increasingly evident that T cells play a dominant role in fungal

immunity, although other immune elements, including B cells and

antibodies, cannot be overlooked. Although the innate cell
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inflammatory micro milieu is key for defining T-cell lineages

and their functions for fungal immunity, the direct

costimulatory signals or blockade of inhibitory signals delivered

to T cells can regulate their effectors and memory cells. Non-

canonical T cells such as natural T helper, MAIT, and NKT cell’s

role in some fungal infections have been documented, but their

persistence as memory cells is not clear (32). Harnessing non-

canonical T cells for vaccine immunity can be a new avenue for

controlling fungal infections.

The mechanisms of the generation of antifungal memory T

cells are not well understood and need in-depth investigations. The

studies will be particularly relevant for the development and

application of vaccine platforms. As with many different bacterial

and viral defense mechanisms, the protective T-cell effectors vary

depending on the pathogenic fungi, so the memory T-cell

development mechanisms. Further, fungal co-infections and the

disease outcomes need thorough studies, such as mucormycosis in

COVID-19 patients. Novel findings on the use of fungal PAMPs as

adjuvants for vaccines call for an understanding of adjuvanticity

properties and their role in the programming of immunological

memory. The new concept-based emergence of chimeric antigen

receptor T (CAR-T) cells for immunotherapy to treat fungal

infections is attractive, and its efficiency or utility needs

attention. The plasticity of antifungal T cells has not been clearly

understood, and its bases for immunopathology during recall

responses and immunity need further evaluation. Further, the

identification of phenotypic and functional markers of protective

immunological memory T cells would be useful in designing and

assessing the potency and efficacy of fungal vaccines.
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