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Abstract

A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using

imaging methods. The map depicts not only distribution patterns of chromomeres specific to

pachytene chromosomes, but also the higher order information of chromosomal structures,

such as heterochromatin (condensed regions), euchromatin (decondensed regions), the pri-

mary constrictions (centromeres), and the secondary constriction (nucleolar organizing

regions, NOR). These features were image analyzed and quantitatively mapped onto the

map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between

H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin,

thus was, clearly visualized. Then the pachytene chromosome map was unified with the

existing somatic chromosome and linkage maps by physically mapping common DNA mark-

ers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S

and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1

bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ

hybridization (FISH). Detailed comparison between the locations of the DNA probes on the

pachytene chromosomes using multicolor FISH, and the linkage map enabled determination

of the chromosome number and short/long arms of individual pachytene chromosomes

using the chromosome number and arm assignment designated for the linkage map. As a

result, the quantitative pachytene chromosome map was unified with two other major rice

chromosome maps representing somatic prometaphase chromosomes and genetic link-

ages. In conclusion, the unification of the three rice maps serves as an indispensable basic

information, not only for an in-depth comparison between genetic and chromosomal data,

but also for practical breeding programs.
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Introduction

Chromosome map is a geographic representation of chromosomes within a genome in which

their relative sizes are drawn and genes are plotted according to, either their relative or abso-

lute distance. There are two kinds of chromosome maps—genetic and cytological maps, whose

basis are the recombination values of the genes and physical length of the mitotic or meiotic

chromosomes, respectively. Chromosome maps have been constructed throughout the 20th

century, based on both the facts that chromosomes could be observed as lod/dot like objects

under a microscope, and that the genes are linearly arranged on the chromosome. Given that

the chromosome maps present the geometry of genetic information on an individual chromo-

some, both maps are useful for genetic research and breeding programs, like to a road map of

the navigator system used in automobiles. Analogous to the travel situation, different road

maps represent varying distances to the destination, duration, and travel costs, etc., each chro-

mosome map has its own geometric representation of biological information. Therefore, it

would be ideal if the different chromosome maps are unified, and present diverse information

in an easy and comparable form. However, there has been no quantitative chromosome map

that represents meiotic pachytene chromosomes in rice (Oryza sativa L.), even though a quan-

titative mitotic chromosome map and detailed linkage map have already been developed by

imaging of mitotic prometaphase chromosomes in 1991 [1–8].

As pachytene and somatic chromosome maps provide basic and useful information for

genetic research, and designing breeding strategy, the former has been developed in many

crops especially with small chromosomes, such as tomato [9], maize [10], Medicago trunca-
tula [11]., and the latter in the crops with large chromosomes, such as barely [12–15], wheat

[16, 17], rye [18, 19] etc. In rice, containing small chromosomes, pachytene chromosome

maps have also been handwritten by experienced and skillful rice cytogeneticists and

reported throughout the 20th century [20–23]. Khush et al. [21] and Kurata et al. [23]

depicted 300, 340 chromomeres in a total of 12 rice chromosomes, respectively, indicating

the use of longer pachytene chromosomes than what we used in this study. Although, these

maps showed the similar characteristics among them, they have little compatibility with the

recent quantitative genetic and chromosome maps. In the absence of quantitative data in the

scale of figures, or number of the chromosomes used to develop the individual chromosome

maps, compatibility can be challenging. Some handwritten somatic chromosome maps are

also available to date [23], and the situation with these maps are similar to the pachytene

chromosome maps, i.e., they are similar to each other, but difficult to be used in a compara-

ble way. Linking the rice linkage map and the mitotic chromosome map was explored by

using trisomic series [21, 24].

Chromosome dynamics in their structures through M phase have been thoroughly inves-

tigated, mainly because they are visible as biological objects by optical microscopy. Morpho-

logical features, such as banding patterns appearing on the chromosomes are the important

markers for chromosome identification and mapping genes [12, 13, 25]. Imaging is an effec-

tive method to analyze chromosome images quantitatively and dynamically. Chromosome

imaging has a historical perspective over quarter of a century after the first versatile chromo-

some image analyzing system was developed [26, 27]. The number of rice chromosomes

was determined as 2n = 24 in 1910 [28], and objective identification and quantitative charac-

terization of the individual somatic rice chromosomes by using imaging methods followed

in 1991, based on the accumulation of years of research work on rice chromosomes [1–3, 6,

8, 21, 22]. As it is entirely impossible to identify or characterize the individual rice chromo-

somes at the mitotic metaphase given their small dimension, a quantitative chromosome

map was developed using mitotic chromosomes at the somatic prometaphase [1, 2].

Development of a quantitative pachytene chromosome map in rice
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Subsequently, an imaging method that enabled analysis of a rice pachytene chromosome,

Chromosome 9, was developed [29]. Now a quantitative pachytene chromosome map cover-

ing all the twelve chromosomes has been developed using the same method. Furthermore,

the pachytene chromosome map is unified with mitotic chromosome and linkage maps

referencing the physical mapping data of the specific nucleotide sequences by multicolor

fluorescence in situ hybridization (FISH). Unification of the different numbering systems

independently developed among the mitotic chromosomes, pachytene chromosomes, and

linkage groups has already been proposed [7]. Further annotation of short and long arms

was demonstrated in 2005 by the Rice Genome Research Program (RGP) [30], based on the

number of nucleotide sequences decoded for individual chromosomes, which covered 96.6–

97.1% of the rice genome (384.2–386.5 Mb) in IRGSP 1.0, released at 2011 (http://rapdb.dna.

affrc.go.jp/index.html) [31, 32]

Physical mapping of the genes/nucleotide sequences, and immunodetection of the proteins

of interest on chromosomes have been performed by ISH/FISH and immunofluorescence

staining, respectively [33–35]. They enable direct comparison between the locations of genes/

marker sequences on pachytene/mitotic chromosomes, and their locations on the linkage map

[36–42]. Distribution of the specific protein modification also indicates the status of chroma-

tin, gene activity and the stage of cell cycle [43]. Identification of cytological features, for exam-

ple, heterochromatin, euchromatin, and studying how these structures are formed during a

cell cycle provides essential information on chromatin condensations, regulation of gene

expression, and identification of the chromosomes. In case of small plant chromosomes such

as rice, somatic prometaphase chromosomes show uneven condensation throughout the chro-

mosome, which is reproducibly generated and visualized by Giemsa staining [1, 2]. In order to

analyze cytological features of plant chromosomes in detail, such as rice, information with

much higher resolution provided by a pachytene chromosome map also seems to be effective

[42]. The heterochromatic regions in the pachytene chromosomes were determined based on

the fluorescent intensity of 4’,6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)

staining along the rice chromosome assuming that the regions with high fluorescent intensity

correspond to the regions of high chromatin density.

To examine the possible mechanism of heterochromatin formation by histone modifica-

tion, which is known to be involved in the epigenetic regulation of gene expression

[44], and condensation of chromomeres as the distribution pattern of histone H3 di-methyl-

ation at lysine 9 (H3K9me2) were image-analyzed in detail. H3K9me2 is a well-known

epigenetic modification for chromatin condensation, and thus the suppression of gene

expression [43, 45]. Furthermore, to explore the possible causes of differences among exist-

ing rice pachytene chromosome maps, the condensation dynamics of pachytene chromo-

somes were also image-analyzed. As a result, each chromosomal region was revealed to have

its own condensation dynamics, resulting its own stage specific lengths and variable chro-

momere distribution patterns even in the same chromosome when the sampling stages were

different.

We report here, a standardized and complete rice pachytene chromosome map depicting

cytological features with the positions of specific nucleotide sequences, validated by FISH and

histone methylation by immunostaining. This map is anchored by centromere-specific and

chromosomal arm-specific BAC/PAC clones, which were already mapped on the linkage map,

and were used for integration between the maps [20]. Linkage maps based on recombination

values do not directly reflect physical distances among genes. Therefore, unification of the four

major maps representing nucleotide numbers, linkage groups, meiotic pachytene chromo-

somes and mitotic prometaphase chromosomes provides fundamental and basic information,

both, for genetic studies and breeding practices.

Development of a quantitative pachytene chromosome map in rice
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Materials and methods

Plant materials and cytology

A rice cultivar, Nipponbare (Oryza sativa L. ssp. japonica, 2n = 2x = 24) was used throughout

the study. Young panicles about 7–10 days before heading were harvested and fixed in a fixa-

tive solution (ethanol: acetic acid = 3:1). After rinsing in distilled water, anthers (0.66–0.76

mm) were excised, and squashed on a glass slide with 20% acetic acid. After freezing the slides

on dry ice, the coverslips were removed. The slides were air-dried and stored at -20˚C, until

further use.

Microscopy and image analyses

Chromosome images were directly captured through a cooled CCD camera (PXL1400, Photo-

metrics, Tucson, AZ, USA) mounted on a fluorescence microscope (BX60, Olympus, Tokyo).

The digitized images were analyzed using Chromosome image analyzing system ver. 4

(CHIAS IV) [46, 47], for which publicly available image processing software, ImageJ (http://

rsb.info.nih.gov/ij/) was used. CHIAS IV is the latest version developed specifically for detailed

analyses of pachytene chromosomes [26]. Detailed image analysis steps of pachytene chromo-

somes using CHIAS III were described previously [29, 48]. The CHIAS IV program and an

instruction manual is available at: http://www2.kobe-u.ac.jp/~ohmido/index03.htm. We

defined the parameters that represent chromatin compaction in pachytene chromosomes as

the division of the estimated DNA content (Mb) of the region by the physical length in μm.

Three fluorescence filters of U-MNIBA, U-MNG, and U-MNU (Olympus) were used for the

detection of the individual fluorescence from fluorescein isothiocyanate (FITC), Cy3, and

DAPI, respectively. Images were captured, merged and pseudocolored using IPLab Spectrum™
(Version 2.4).

Fluorescence in situ hybridization (FISH)

The probes used for identification of individual chromosomes are listed in Table 1. Chromo-

some-specific BAC and PAC clones were selected from the map of RGP website (http://rapdb.

dna.affrc.go.jp/) and the clones with ID No. starting with the letter P or B were obtained from

the DNA bank of the National Institute of Agrobiological Science (NIAS), Japan. OSJNBa and

OSJNBb clones were obtained from Clemson University Genomics Institute (CUGI), USA.

Pericentromere-specific BAC clone, B1109A06, containing rice centromere-specific CentO

sequence [49], chromosome-specific BAC/PAC, 45S ribosomal RNA (rDNA) gene [50, 51], 5S

rDNA [14], and A-genome-specific tandem repeat sequence, TrsA [52, 53] were used as land-

marks for the specific regions of the individual chromosomes. The 45S rDNA and BAC/PAC

clones were labeled with biotin-16dUTP or digoxigenin-11dUTP (Roche, Branchburg, NJ,

USA) using a Nick Translation Kit (Roche). 5S rDNA gene and TrsA were amplified and

labeled with biotin-16dUTP or digoxigenin-11dUTP by PCR [54]. The FISH procedures

according to previous reports [46, 55, 56] were followed.

Immunostaining

Anthers were fixed for 30 min in 4% (w/v) para-formaldehyde (PFA) in PMEG buffer (50 mM

PIPES, 1 mM MgSO4, 5 mM EGTA, 1% glycerol, pH 6.8) [57]. After washing in PBS for 10

min, the anthers were digested for 15 min at 37˚C in a mixture of 2% Cellulase Onozuka RS

(Yakult Co. Ltd., Tokyo) and 5% Pectolyase Y23 (Seishin Kagaku, Tokyo). The anthers were

rinsed in PMEG twice for 5 min each, and squashed on a glass slides in PMEG. After freezing

the slides in liquid nitrogen, the coverslips were removed and the slides were air-dried. The

Development of a quantitative pachytene chromosome map in rice
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slides were incubated for 15 min in a detergent solution (0.5% Triton X-100 in PBS). Slides

were washed three times in PBS for 5 min each and blocked with 1% BSA in PBS for 20 min,

followed by three PBS washes for 5 min each, and stored until immunostaining. Anti-

dimethyl-Histone H3 (Lys9) rabbit immunoaffinity purified IgG (1:200) (Upstate Biotechnol-

ogy Inc., VA, USA) was used as the primary antibody. Slides were incubated with the primary

antibody in a humid dark box at 4˚C overnight. After washing the slides in PBS three times for

5 min each, anti-rabbit IgG FITC conjugate (1:80, Sigma, MO, USA) was applied as the sec-

ondary antibody. These slides were incubated for 3 hours in a humid dark box at 37˚C. After

washing the slides in PBS three times for 5 min each, the chromosomes were counter-stained

with 1 μg/mL DAPI in Vectashield (Vector Lab.).

Results

Identification of individual pachytene chromosomes by FISH

FISH signals from chromosome-specific BAC/PAC clones, a rice tandem repeat TrsA, and 5S

and 45S rDNA enabled identification of individual pachytene chromosomes even when they

existed alone from the rest of the chromosomes within a complement (Fig 1). Chromosome 1,

2, 3, 5, 8, and 10 were identified based on the presence of the FISH signal on their short arms

by the PAC/BAC clones P0439B06, P0575F10, OSJNBa0030C11, P0016H04, OSJNBa12_15D,

and OSJNBb0004A06, respectively. Chromosome 4 and 7 were also identified based on the

presence of the FISH signals on their long arms by OSJNBa0070M12 and P0496C02, respec-

tively. Chromosome 9 and 11 were identified by the FISH signals of 45S and 5S rDNA, respec-

tively. Chromosome 6 and 12 were both identified by the FISH signals of TrsA. BAC clone,

B1109A06, was detected as a red fluorescence (a green fluorescence on only Chromosome 9)

at all the centromeric regions. The intensity and size of the centromeric fluorescence signals

Table 1. A repetitive sequence of TrsA, 5S rDNA, 45S rDNA, five bacterial artificial chromosomes (BACs), and four P1 derived artificial chromosomes (PACs)

clones were used as probes for FISH.

Chromosomes and

arm

Clone ID/Repeats Markers Genetic Position1)

(cM)

Physical Position 2)

(Mb)

Physical location 3)

(%)

Chromosomal location 4)

(μm)

1S P0439B06 C50102,S1442,C53447S,

C970

5.1 0.5 1.74±0.36 0.68

2S P0575F10 S2901, E60571 6.9 1.2 4.38±1.15 1.19

3S OSJNBa0030C11 C1279 11.1 2.1 6.76±1.72 2.28

4L OSJNBa0070M12 E3142S 129.6 35.0 97.57±0.83 25.82

5S P0016H04 S12936,S782,S2649 6.6 0.6 3.10±0.86 0.69

6S TrsA Tandem repeats 1.44±0.86 0.33

7L P0496C02 C596 105.7 27.8 90.19±1.58 19.54

8S OSJNBa12_15D RG29 3.0 3.34±0.85 0.74

9S 45S rDNA Ribosomal RNA gene ~18.99± 1.62 3.61

10S OSJNBb0004A06 R2309,G89B,S21126 4.1 1.9 7.01±0.71 1.21

11S 5S rDNA Ribosomal RNA gene 39.74±4.91 7.87

12L TrsA Tandem repeats 97.52±1.80 20.67

Pericentromere B1109A06 5) E2071SA, R1547

1) Positions are estimated from the end of short arm in cM.
2) Positions are measured from the end of short arm in Mb.
3) Length from the end of short arm shown as %. 100% is considered to be the total length of the chromosome.
4) Length from the end of short arm in μm.
5) BAC clone, B1109A06 contains pericentromeric satellite repeat, CentO and the clone is genetically mapped at 73.4 cM of rice chromosome 1.

https://doi.org/10.1371/journal.pone.0195710.t001
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were significantly varied among the chromosomes and were consistent with the lengths of cen-

tromeric nucleotides reported previously [58]. The signals of chromosomes 1, 2, 6 and 11 were

relatively stronger and larger, while, for chromosomes 4, 5, 8 and 10 it was weak and small (Fig

1b). The red fluorescence intensity of this study is in relation to CentO content in each centro-

mere [58]. These signals depict the centromeric positions and are definitive landmarks to

determine the short and long arm regions of individual rice chromosomes. The signals of BAC

clone B1109A06, including the centromeric repeats on chromosomes 9 and 12 seemed to be

weaker than the signals on chromosomes 4 and 10 in this particular case (Fig 1b). However,

often the intensity of the signals from chromosome 9 and 12 were similar or even stronger

than those from chromosome 6 and 7 when observed under a fluorescent microscope. The 5S

rDNA was detected as a green signal at the proximal region of the short arm of chromosome

11 as indicated by a green arrow (Fig 1b). Two strong signals for 45S rDNA were detected at

the nucleolar organizing regions (NORs) on the satellite, and at the terminus of short arm of

chromosome 9, as indicated by the two red arrows. The green signals of TrsA were detected at

the distal regions of chromosome 6 and chromosome 12. The fluorescent signal of chromo-

some 12 is more intense than that of chromosome 6 [59]. The signals from five BAC clones

and four PAC clones were observed unambiguously on each rice chromosome. As a result, all

the twelve rice pachytene chromosomes were objectively identified.

Characterization and quantification of the identified pachytene

chromosomes by imaging methods

It was previously demonstrated that the condensation pattern (CP) appearing on somatic pro-

metaphase chromosomes can be analyzed by computer imaging [60], but simple application

of this method for somatic chromosomes is not suitable for imaging of pachytene chromo-

somes, because the size and fluorescent intensity of chromomeres vary extremely in the case of

pachytene chromosomes. To avoid this problem, CHIAS IV employed a method to evaluate

Fig 1. Pachytene chromosome and straightened individual FISH images using the BAC/PAC clones, tandem repeats (TrsA), and rRNA genes on

rice pachytene chromosomes. Bar shows 5 μm.

https://doi.org/10.1371/journal.pone.0195710.g001

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0195710.g001
https://doi.org/10.1371/journal.pone.0195710


fluorescent intensity relative to adjacent regions, which enables discrimination of the more

condensed regions within each chromomere [29]. This study demonstrated the effectiveness

of CHIAS IV for detailed structural analysis of pachytene chromosomes. This method was nei-

ther technically demanding nor time-consuming, and as a host application, ImageJ is widely

used with multiple platforms including Windows, macOS, and Linux.

Dimensions of cytological characteristics of the pachytene chromosomes identified by

CHIAS IV are presented in Table 2. The quantitative pachytene chromosome map was also

developed based on the dimensions, distribution of chromomeres, and their fluorescence

intensities (Fig 2). Chromosomes 1, 2, and 3 were associated with a large chromosome group,

and were classified as metacentric chromosomes, when Levan’s definition was extended to

pachytene chromosomes [61]. Chromosomes 1, 2 and 3 consisted of 36, 28, and 29 chromo-

meres, respectively, when the centromeric chromomeres at the proximal regions of short and

long arms were counted as a single chromomere. In addition, the number of chromomeres

indicated the length orders of these long chromosomes as Chromosomes 1, 3 and 2, which was

further indicated by nucleotide numbers of the individual chromosomes (Table 2).

Table 2. Cytological characteristics of rice pachytene chromosomes with their nucleotide number.

Chrmosome

No.��
Chromosome

Length (μm)

Short

arm��

(μm)

Long

arm��

(μm)

Arm ratio The number of

chromomeres

observed���

Nucleotide number (Mbp) � Compaction of DNA

(Mb/μm)

Chromosome length

order���,����

Total Short

arm

Long

arm

Arm

ratio

Total Short

arm

Long

arm

pachytene

chrs.

Somatic

chrs.

1 39.00±5.47a 15.67

±3.08a
23.33

±2.54a
1.49±0.13 36 43.27 16.93 26.34 1.56 1.11 1.08 1.13 1 1

2 27.13±1.51c 10.47

±1.07bc
16.67

±0.61b
1.59±0.14 28 35.94 13.71 22.23 1.62 1.32 1.31 1.33 3 3

3 33.67±1.36b 17.53

±1.58a
16.13

±1.45bc
0.92

±0.15�����
29 36.41 19.59 16.83 0.86 1.08 1.12 1.04 2 2

4 26.47±2.15cd 4.87

±0.25e
21.60

±2.23a
4.44±0.57 20 35.50 9.86 25.64 2.60 1.34 2.03 1.19 4 4

5 22.13±2.19cdef 7.80

±0.61d
14.33

±1.70bcd
1.84±0.15 18 29.96 12.51 17.45 1.40 1.35 1.60 1.22 6 8

6 22.93±1.26cde 11.20

±0.75b
11.73

±0.53d
1.05±0.03 20 31.25 15.44 15.80 1.02 1.36 1.38 1.35 5 5

7 21.67±1.94def 7.73

±1.02d
13.93

±1.20bcd
1.80±0.21 18 29.70 12.08 17.62 1.46 1.37 1.56 1.26 8 10

8 22.13±2.13cdef 9.00

±1.21bcd
13.13

±1.64bcd
1.46±0.27 18 28.44 12.95 15.49 1.20 1.29 1.44 1.18 7 7

9 19.00±1.45ef 5.00

±0.32e
14.00

±1.19bcd
2.80±0.16 17 23.01 2.90 20.12 6.94 1.21 0.58 1.44 11 11

10 17.27±1.86f 4.53

±0.42e
12.73

±1.53cd
2.81±0.25 17 23.21 8.20 15.01 1.83 1.34 1.81 1.18 12 12

11 20.07±3.46ef 8.27

±1.60cd
11.80

±2.30d
1.43±0.27 18 29.02 12.26 16.76 1.37 1.45 1.48 1.42 10 9

12 21.20±0.62def 8.33

±0.96cd
12.87

±1.28cd
1.54±0.36 18 27.53 11.93 15.60 1.31 1.30 1.43 1.21 9 6

�) Nucleotide number of each total chromosome is based on the IRGSP-1.0 database (Kawahara et al., 2013). The lengths of short and long arms are determined by the

midpoint of the annotated centromere in the IRGSP-1.0.

��) Chromosome number and arm assignment is based on the RAP (Rice Annotation Project).

���) The chromomeres were analyzed using five samples from each chromosome.

����) Fukui & Iijima (1991).

�����) Arm ratio based on the data of the short and long arm is 1.09±0.18.

https://doi.org/10.1371/journal.pone.0195710.t002
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Chromomeres were distributed along these three large chromosomes commonly lacking

intensely stained pericentromeric heterochromatic regions. The signal from OSJNBa0030C11

(11.05 cM, 2.2 Mb) was detected at 6.76±1.72% from the distal end of the short arm of Chro-

mosome 3 (Table 1, Rice Genome Database). The physical length of chromosome 3 was longer

than the long arm (Table 2), although the difference was not statistically significant. Chromo-

some 4 was a subtelocentric chromosome and had 20 chromomeres. Highly condensed hetero-

chromatin was characteristic in the entire short arm and pericentromeric region of the long

arm. The heterochromatic region of Chromosome 4 occupied about 17 Mb from the end of

the short arm, based on FISH experiment to pachytene chromosome [62] and the revised

genome sequence of rice (IRGSP-1.0) [32]. Nucleotide sequence of Chromosome 4 showed

that variety of repetitive sequences were located in the heterochromatic regions including the

centromeric region except miniature inverted-repeats transposable elements (MITEs), which

were located at the euchromatic regions of its long arm [36]. Chromosome 5 was a submeta-

centric chromosome, being the 6th in the pachytene length order with 18 chromomeres. Highly

condensed heterochromatic regions were observed in the pericentromeric regions. Chromo-

some 6 was a metacentric chromosome consisting of 20 chromomeres, being the 5th in nucleo-

tide number, pachytene and somatic length order. The difference in lengths between short and

long arms was small but statistically significant. Highly condensed heterochromatic regions

were observed in both the pericentromeric regions. TrsA signal was detected at the terminal

position of the short arm of Chromosome 6. Chromosome 7 was a submetacentric chromo-

some, being the 8th in pachytene length order. It consisted of 18 chromomeres with highly

condensed heterochromatic regions in both the pericentromeric regions. Chromosome 8

was a metacentric chromosome, being the 7th in length order as in the case of the somatic

Fig 2. Rice pachytene chromosome map. Distribution of chromomeres with their numbers, fluorescent intensities, and heterochromatic regions

with the chromomeres. Left: Chromomere with numbers starting from the centromeric chromomere as 1 to both the terminal regions. Middle:

Fluorescence intensity is presented by the graygram. Darker regions correspond to brighter fluorescence intensity. Right: Distribution of condensed

regions with the chromomeres. Locations of the BAC/PAC clones (green), TrsA (tandem repeat, orange), and 45S and 5S rDNA (pink and yellow) are

indicated on the pachytene chromosome map.

https://doi.org/10.1371/journal.pone.0195710.g002
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chromosomes, consisting of 18 chromomeres. Highly condensed heterochromatic regions

were observed at both the pericentromeric regions. Chromosome 9 was a submetacentric

chromosome with large NOR regions on the short arm, being the 11th in length order as in the

somatic chromosome. A total of 17 chromomeres were visually identified including two chro-

momeres at the NOR region. The signals for 45S rDNA were reasonably detected at the NOR

and the end of the short arm regions (~18.99±1.62%) on Chromosome 9. Although, the NOR

region was not firmly condensed through the pachytene stage, the dynamic condensation of

the long arm was observed as the pachytene stage proceeded. Chromosome 10 was the smallest

submetacentric chromosome showing the shortest in length order as in the somatic chromo-

some, consisting of 17 chromomeres. Highly condensed heterochromatic regions were

observed in the entire short arm and the pericentromeric region of the long arm. Chromosome

11 was a metacentric chromosome, being the 10th in length order, and consisted of 18 chromo-

meres. Condensed heterochromatic chromomeres were observed in the pericentromeric

region. Especially, a large heterochromatic region was observed at the pericentromeric regions

in the long arm. Chromosome 12 was a metacentric chromosome, being the 9th in length

order, consisting of 18 chromomeres. Condensed heterochromatic region was observed only

at the pericentromeric region in the short arm.

Comparative analyses of the four maps

Four different rice chromosome maps; physical map (IRGSP-1.0) [32], the linkage map (Data

source: RGP Public Data, http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000, Map figure:

Oryzabase, https://shigen.nig.ac.jp/rice/oryzabase/marker/about), somatic prometaphase

chromosome map [1, 8] and the pachytene chromosome map developed, were visually com-

pared (Fig 3). In Fig 3, the length of each chromosome was drawn as the relative length (%) to

its total chromosome length. Comparison of nucleotide length, and the three different maps

provide interesting and deep insights into rice chromosome structure.

First, Fig 3 depicts that the three maps with different bases present very similar tendency

among them. This point is clearly illustrated by the fact that the designations of short and long

sides are the same for all the four representations of rice chromosomes except for Chromo-

some 6. This means that the nucleotide number primarily determines all the genetic recombi-

nation values and chromosome lengths at mitosis and meiosis. Second, rice chromosomes

were divided into two types—large and small chromosomes as mentioned earlier [1]. The

larger type consists of chromosome 1, 2 and 3, without a heavily condensed region at the pro-

metaphase stage [1]. The analysis of pachytene chromosomes, however, revealed that the chro-

mosome 2, the third longest chromosome is relatively condensed at the pachytene stage. Thus,

although rice chromosomes are grouped into large and decondensed, and small and con-

densed, to which the chromosome 2 belongs, based on the type of division. Third, chromo-

some 11 has two heavily condensed regions on the long arm, however, there is no specific

structure in the pachytene chromosome. Thus, the structures of somatic and pachytene chro-

mosomes could be different, although the higher order structures of somatic and pachytene

chromosomes are not known yet.

The lengths of linkage maps, pachytene chromosomes, somatic chromosomes, numbers of

repetitive sequences, and genes of each chromosome arm, were subjected to regression analy-

sis of DNA length of rice genome (S1A–S1F Fig). In the case of length of linkage maps (A),

the number of repetitive sequences (D), and the genes (E), null hypothesis that the intercept of

the regression line on zero is rejected statistically. Accordingly, the intercept determines the

regression line on non-zero (a solid line in A, D, E). The 95% confidence limits of the regres-

sion line are drawn as a dotted line, and the 95% prediction interval, including the residue data

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 9 / 19

http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000
https://shigen.nig.ac.jp/rice/oryzabase/marker/about
https://doi.org/10.1371/journal.pone.0195710


are drawn as dotted lines. All of the chromosome arms are positioned on the inside of the 95%

prediction interval. This result indicates that the genome DNA length is directly proportional

to the length of linkage map, the number of repetitive sequences and the genes (A, D, E).

Examination of each of the FISH signals in the figure between the nucleotide and linkage

map length (A), revealed that five of seven FISH signals were located inside the 95% prediction

intervals (rhomboidal mark in A). In the case of the association of somatic chromosome length

(B) and pachytene chromosome length (C) to the nucleotide numbers, the null hypothesis of

the regression line on zero is not rejected. In addition, null hypothesis of the regression line on

zero is not rejected in the regression analysis of somatic and pachytene chromosome lengths

Fig 3. Integration of three rice maps; from left to right: Nucleotide numbers, linkage map, meiotic pachytene chromosome map, and mitotic

prometaphase chromosome map. The length ratios among 12 chromosomes were adjusted to the ratios of pachytene chromosomes. Bar shows 1%

region for all the maps. Designation of the chromosome number and short/long arms of somatic chromosomes follows the IRGSP-1.0 database32. As

a result, chromosome number and assignment of long and short arms sometimes do not follow their actual length order.

https://doi.org/10.1371/journal.pone.0195710.g003
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(F). Thus, the regression line is calculated as a straight line passed through origin. Then the

95% confidence intervals (dashed line) and the 95% prediction intervals (dotted lines) are

drawn using the same procedure.

All the chromosome arms are positioned within the 95% prediction interval area. The spe-

cific chromosome condensations are different among chromosome arms, as the range is 0.09–

0.18 μm/Mb in somatic chromosomes, and 0.49–1.73 μm/Mb in pachytene chromosomes. It is

possible that chromosome arm length could be determined to be directly proportion to the

nucleotide number, for instance, by overviewing the entire somatic and pachytene chromo-

some arms as shown in S1B and S1C Fig, respectively. There are no characteristic differences

between somatic chromosomes and pachytene chromosomes in regard to their lengths (F),

although chromosome 10S and 4S arms are highly condensed in comparison to the other

chromosomes.

Fig 4 shows six straightened pachytene Chromosome 4 arranged in the length order during

pachytene stage. Red and green fluorescence signals show centromere and terminal position of

the long arm of Chromosome 4, respectively. White triangles indicate centromeric positions

(Δ) and the three tertiary constrictions are indicated by white, gray, and blank circles from the

proximal region of the centromere. By using these five landmarks, pachytene Chromosome 4

is divided into five regions, one is whole short arm (I), and four regions (II-V) belong to long

arm. This compartmentalization enables revealing the local dynamics in condensation ratio.

The maximum condensation was observed at the regions III with 65.6% reduction from the

longest stage, and the least condensation was the region IV with 15.8% reduction, respectively.

It is thus, obvious that even among the dispersed regions (III, IV and V), condensation rates

during the pachytene stage are not uniform among these.

Histone H3K9 dimethylation on rice pachytene chromosomes

Finally, we examined the histone H3K9me2 distribution pattern on the pachytene Chromo-

some 11 by immunostaining using the anti-histone H3K9me2 antibody. Histone H3K9

dimethylation (H3K9me2) is one of the well-known heterochromatin markers in plant chro-

mosomes [43]. H3K9me2 is known as the marker indicating inactivation of the gene [63]. The

fluorescent signals were specifically located at heterochromatic regions of individual chromo-

meres (Fig 5a). There are seven and twelve chromomeres on respective short and long arms.

Among 19 chromomeres in total, 16 show prominent FITC signals at the condensed regions

within the chromomeres. The peaks of fluorescence profiles of H3K9me2 and DAPI-stained

chromomeres of these 16 chromomeres also corresponded to each other (Fig 5b), indicating

Fig 4. Differential condensation of chromosome 4 during the pachytene stage. Chromosome 4 is represented by

four different marks of centromere (Δ, red fluorescence), distinctive regions of long arm (white, gray, and black

circles), and telomere (green fluorescence) in order to reveal the differential condensation dynamics occurring at all

chromosomal regions.

https://doi.org/10.1371/journal.pone.0195710.g004
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the tendency of gene distributions along whole chromosome. We did not use the centromere

repeat FISH method because morphological identification of centromeric positions was easy

to do in this case. Centromere repeat FISH would be an effective method to identify the posi-

tion of rice chromosomes [20].

Discussion

Integration of physical, linkage and chromosome maps

In this study, we developed a quantitative pachytene chromosome map and explored the inte-

gration of the physical, linkage, and two chromosome maps. The integration revealed the fol-

lowing characteristics of rice chromosomes (Fig 3). 1) The chromosome lengths are basically

determined by the DNA length. 2) Rice chromosomes consists of two types of chromosomes,

large and decondensed chromosomes, and small and condensed chromosomes. Chromosome

1 and 3, are large decondensed chromosome, while Chromosome 2 is the condensed chromo-

some 3) Chromosome 11 is the somatic chromosome that has two heavily condensed regions,

but no condensed regions in the pachytene chromosome. Short arms of Chromosome 9 have

lower recombination values caused by the abundant ribosomal RNA genes.

We analyzed detailed cytological characteristics of rice pachytene chromosomes, and for-

mulated them into the pachytene chromosome map with the positions of chromosome-spe-

cific BAC/PAC clones, 45S and 5S rDNA, and a TrsA. We used late pachytene chromosomes

for image analysis, because with late pachytene chromosomes it was relatively easy to obtain

individual chromosome images, and the regions of individual chromomeres were relatively

distinct compared to the other pachytene stages. The distinct chromomeres unique to each

chromosome were arrayed in a linear manner along the rice chromosomes and some of the

chromomeres located at highly condensed heterochromatic regions (Fig 2). These chromo-

mere distribution patterns are quite different from Arabidopsis, where heterochromatic

regions are exclusively confined to pericentromeric regions (chromocenter) of all the pachy-

tene chromosomes with the rest of euchromatic regions in both the terminal regions [64].

Chromomere distribution through rice chromosomes served not only as good landmarks to

distinguish each chromosome, but also as the local markers within a chromomere useful to

address each fine region. It should be pointed out that the chromomeres were distributed

Fig 5. Fluorescence patterns of pachytene chromosome with DAPI and immunostaining of histone H3K9

dimethylation. a: Chromosomal Image. Bar shows 5 μm. b: Two curves are the fluorescence profiles indicating

fluorescence intensities of DAPI-stained chromosome and immunostaining of H3K9me2. Straightened chromosome

images show DAPI, FITC (H3K9me2), and merged images. Arrowheads indicate centromeres.

https://doi.org/10.1371/journal.pone.0195710.g005
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more or less evenly on pachytene chromosomes, however, recombination values were quite

different between the regions. Non-random distribution of recombination values across chro-

mosomes has been observed in many plant species including rice, and recombination is usu-

ally suppressed in heterochromatic regions [12, 37, 65, 66], although this tendency was not

very clear in our case.

Genes on pericentromeric regions would be difficult to precisely map on a linkage map,

and might be difficult for breeders to use them in breeding programs because of little informa-

tion on recombination values. Therefore, FISH method is valuable to determine the precise

locations of target genes on pachytene chromosomes. The mapping resolution of FISH

depends on species, cytological targets (e.g., interphase nuclei, somatic and meiotic chromo-

somes, and DNA fibers) and structure of chromosomes [67]. Previous reports showed that the

resolution of rice pachytene FISH is ~100 kb in euchromatic region [68], while the resolution

of somatic chromosomes is 2–5 Mb [69, 70]. In tomato, the resolution of pachytene FISH is

120 kb and 1.2 Mb in the euchromatic and heterochromatic regions, respectively [42]. In Ara-
bidopsis, pachytene FISH can resolve 60 and 140 kb in the euchromatin and heterochromatin

regions, respectively. It is also reported that early pachytene chromosomes have higher resolu-

tion, which are two times longer than the late ones [38]. The pachytene map developed in this

study serves as the basic map of FISH signals with the resolution of 43–136 kb on average, but

has a similar resolution to Arabidopsis. For this research, the condensation of Chromosome 4

during pachytene stage changed dynamically based on the pachytene chromosome condensing

stages. This means FISH markers on chromosome are important for the ideogram to develop

the accurate genetic information.

The linkage and physical maps are beneficial to determine the positions of genes and spe-

cific DNA sequences. Linkage map based on recombination values has limitation, because it is

assumed that genetic recombination occurs at random across all the chromosomes and chro-

mosomal regions. Therefore, the integration of linkage and chromosome physical maps is

important for the accurate positioning of genes and specific DNA sequences [12]. Overall,

chromosomal condensation showed similar patterns between them. For example, Chromo-

some 4 at both of prometaphase and pachytene stage had highly condensed heterochromatic

regions at the entire short arm, and the proximal region of long arm. Pachytene Chromosomes

9 and 11, having condensed chromomeres on their long arms also had heterochromatic

regions on the long arm of the prometaphase chromosome, which could be related to the posi-

tions of rDNA. Recombination ratios relatively co-lineate along the pachytene chromosome

length. Chromosome 1 and 3 whose DNA densities were relatively low in pachytene stage have

no heavily condensed regions in prometaphase chromosomes [1, 8].

Formation of heterochromatin

In general, heterochromatin is composed of repetitive sequences such as transposable elements

and other types of repetitive elements [71]. Heterochromatin plays a significant role in repress-

ing activities of genes and transposable elements. Large blocks of heterochromatin surround

functional chromosome regions as centromeres, whereas, smaller heterochromatic domains

are interspersed throughout the chromosome in rice. DNA methylation, histone modification,

and recruitment of specific protein complexes are known to be responsible for heterochroma-

tin formation and maintenance [72]. In Arabidopsis, histone H3K9me2 has been known as

one of the epigenetic markers of heterochromatic regions in somatic nuclei and pachytene

chromosomes [73]. This heterochromatin specific histone modification is partially conserved

among plant species. Houben et al. [74] proposed two types of distribution patterns of histone

H3K9me2 in somatic nuclei, depending on their genome size. The species with a genome size
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of 500 Mbp or less showed high level of histone H3K9me2 at heterochromatic regions, whereas

the species with a larger genome size, such as, maize showed a dispersed distribution pattern

of histone H3K9me2 throughout the nucleus. In maize pachytene chromosomes, histone

H3K9me2 marked both the euchromatin and heterochromatin [8] that is different from maize

mitotic nuclei [74], and from Arabidopsis pachytene chromosomes [73]. The rice genome (390

Mb genome size) has no distinct heterochromatic chromocenters in the nucleus like Arabidop-
sis, but has heterochromatic regions in pachytene chromosomes. The signals of rice histone

H3K9me2 were dispersed all over the nucleus with strong foci, but were enriched at hetero-

chromatic regions in pachytene chromosomes, indicating the correlation between H3K9me2

and heterochromatin in rice. In this study, we also compared fluorescent profiles of DAPI-

stained chromomeres and H3K9me2 signals, and found both the peaks were located at the

same positions. This result suggests that H3K9me2 likely plays important roles in formation of

chromomeres in rice pachytene chromosomes. A mutant of Caenorhabditis elegans with

reduced H3K9me2 is defective for meiotic recombination and chromosome segregation [75]

and a study reported the impact of histone H3 acetylation on meiotic crossing over formation

in Arabidopsis [76]. H3K9me is believed to be an obligate characteristic of heterochromatin,

and the presence of H3K9me at specific loci in Arabidopsis correlates with heterochromatic

silencing [77].

Chromosome structure and transcriptional activity

Now an interesting question arises as to how chromosomal structure is associated with tran-

scriptional activity. Several studies showed that transcriptionally active regions coincided with

euchromatic regions in pachytene chromosomes [78]. More interestingly, uneven patterns of

transcriptional activity in the heterochromatic regions of the entire short arm and the proxi-

mal part of long arm of Chromosome 10 was consistent with chromomeric patterns: the tran-

scriptional activity is reduced in condensed regions in each chromomere, but not in their

flanking decondensed regions [78]. Transcriptional activity associated with chromosomal

architecture seems to be stage- and tissue-specific, and depends on the developmental stages

and tissues [62, 79]. It is provable that the gene expression is related to chromosomal architec-

ture, especially the degree of its condensation, which is regulated by histone modification. For

example, it is reported that vernalization [80, 81], submergence-inducible genes expression

[82] and osmotic/salt stress [83] are controlled through histone modifications.

Conclusions

Gene-based chromosome research combined with cytology is still in the developing stage. A

comprehensive view of interactive relationships among epigenetics, chromosomal structure,

transcriptional activity relating to cell differentiation and development, has not been fully

uncovered yet. It is interesting to know what is a general- or specific-role of heterochromatin

or euchromatin from a genetic point of view, as well as how chromosome structure is actually

organized and involved in the transcriptional activity of genes. It is believed that the high-reso-

lution chromosome map, including the information of histone methylation region, and the

chromatin condensation can contribute to plant genetics. Detailed quantitative analyses of

chromosomes at both, the somatic prometaphase and pachytene stages are necessary to shed

light on knowledge gaps in the relationship between chromosomal structure and transcrip-

tional activity, as well as plant epigenetics. CHIAS was used for the chromosome study of vari-

ous cultivated crops such as rice, sugarcane, soybean, red clover and Brassica [56, 84, 85]. We

believe that this study would contribute to a better understanding of rice chromosomes, and

possibly lead to further discovery of chromosome functions and structure.
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Supporting information

S1 Fig. Comparison of various lengths with nucleotide physical length. Black dots indicate

individual chromosome arms. 1) Physical length, linkage value, and somatic length are based

on IRGSP 1.0 (Kawahara et al., 2013) [32], RGP (http://rgp.dna.affrc.go.jp/E/publicdata/

geneticmap2000/index.html), and Fukui and Iijima (1996) [1], respectively. 2) Values of repeat

units and gene length are obtained from IRGSP 1.0 database (Kawahara et al., 2013) [32]. ��)

Lengths in 9S arm are not included satellite region (ribosomal RNA gene).

(TIF)

Acknowledgments

We would like to thank Prof. Dr. Yasuo Ukai for useful discussions and suggestions. This

work was supported in part by the grants from “Japan Society for the Promotion of Science

(JSPS)” (KAKENHI Grant Number JP 20580006) to NO, and (KAKENHI Grant Number JP

21248040 and 25252064) to KF, and the Female Researcher Training Systems: Reform and

Acceleration Fund and “Active Aging research Hub” to NO.

Author Contributions

Conceptualization: Kiichi Fukui.

Data curation: Nobuko Ohmido, Seiji Kato, Toshiyuki Wako.

Formal analysis: Nobuko Ohmido, Seiji Kato, Toshiyuki Wako.

Funding acquisition: Nobuko Ohmido, Kiichi Fukui.

Investigation: Nobuko Ohmido, Aiko Iwata, Seiji Kato, Toshiyuki Wako.

Methodology: Nobuko Ohmido, Aiko Iwata, Seiji Kato, Toshiyuki Wako.

Resources: Nobuko Ohmido.

Software: Seiji Kato.

Writing – original draft: Nobuko Ohmido, Aiko Iwata, Seiji Kato, Toshiyuki Wako, Kiichi

Fukui.

Writing – review & editing: Nobuko Ohmido, Seiji Kato, Toshiyuki Wako, Kiichi Fukui.

References
1. Fukui K and Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet

81: 589–596. https://doi.org/10.1007/BF00226723 PMID: 24221372

2. Iijima K, Kakeda K and Fukui K (1991) Identification and characterization of somatic rice chromosomes

by imaging methods. Theor Appl Genet 81: 597–605. https://doi.org/10.1007/BF00226724 PMID:

24221373

3. Kurata N and Omura T (1978) Karyotype analysis in rice I. A new method for identifying all chromosome

pairs. Jpn J Genet 53: 251–255.

4. Fukui K and Mukai Y (1988) Condensation pattern as a new image parameter for identification of small

chromosomes in plants. Jpn J Genet 63: 359–366.

5. Wu J, Mizuno H, Sasaki T and Matsumoto T (2008) Comparative analysis of rice genome sequence to

understand the molecular basis of genome evolution. Rice 1: 119–126.

6. Wu HK, Chung MC and Chen MH (1985) Karyotype analysis of cultivar IR36. Rice Genet Newsl 2: 54–

57.

7. Khush GS and Kinoshita T (1991) Rice karyotype, marker genes, and linkage groups. In: Khush G.,

Toenniessen GH, editor editors. Rice biotechnology. Wallingford: CAB International and International

Rice Research Institute. pp. 83–108.

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195710.s001
http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/index.html
http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/index.html
https://doi.org/10.1007/BF00226723
http://www.ncbi.nlm.nih.gov/pubmed/24221372
https://doi.org/10.1007/BF00226724
http://www.ncbi.nlm.nih.gov/pubmed/24221373
https://doi.org/10.1371/journal.pone.0195710


8. Fukui K (1996) Advances in rice chromosome research, 1990–95. In: G. S. Khush, editor editors. Rice

Genetics III, Proc 3rd Intl Rice Genet Symp. Manila Intl.: Rice Res. Inst. pp. 117–130.

9. Szinay D, Bai Y, Visser R and de Jong H (2010) FISH applications for genomics and plant breeding

strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129: 199–210. https://doi.

org/10.1159/000313502 PMID: 20628252

10. Wang CJ, Harper L and Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybrid-

ization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:

529–544. https://doi.org/10.1105/tpc.105.037838 PMID: 16461583

11. Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, et al. (2004) Satellite repeats in the functional cen-

tromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113: 276–283.

https://doi.org/10.1007/s00412-004-0315-3 PMID: 15480726

12. Künzel G, Korzun L and Meister A (2000) Cytologically integrated physical restriction fragment length

polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–

412. PMID: 10628998

13. Fukui K and Kakeda K (1990) Quantitative karyotyping of barley chromosomes by image analysis meth-

ods. Genome 33: 450–458.

14. Fukui K, Kamisugi Y and Sakai F (1994) Physical mapping of 5S rDNA loci by direct cloned biotinylated

probes in barley chromosomes. Genome 37: 105–111. PMID: 8181730

15. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A,

et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:

711–716. https://doi.org/10.1038/nature11543 PMID: 23075845

16. Endo TR (1986) Complete identification of common wheat chromosomes by means of the C-banding

technique. Jpn J Genet 61: 89–93.

17. Zhang P, Li W, Fellers J, Friebe B and Gill BS (2004) BAC-FISH in wheat identifies chromosome land-

marks consisting of different types of transposable elements. Chromosoma 112: 288–299. https://doi.

org/10.1007/s00412-004-0273-9 PMID: 14986017

18. Lapitan NL, Sears RG and Gill BS (1984) Translocations and other karyotypic structural changes in

wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet 68: 547–554. https://doi.org/10.

1007/BF00285012 PMID: 24257829

19. Albini S and Schwarzacher T (1992) In situ localization of two repetitive DNA sequences to surface-

spread pachytene chromosomes of rye. Genome 35: 551–559.

20. Cheng Z, Buell CR, Wing RA, Gu M and Jiang J (2001) Toward a cytological characterization of the rice

genome. Genome Res 11: 2133–2141. https://doi.org/10.1101/gr.194601 PMID: 11731505

21. Khush GS, Singh RJ, Sur SC and Librojo AL (1984) Primary trisomics of rice: Origin, morphology, cytol-

ogy and use in linkage mapping. Genetics 107: 141–163. PMID: 17246212

22. Nishimura Y (1961) Studies on the reciprocal translocation in rice and barley. Bull Natl Inst Agr Sci Ser

D9: 171–235

23. Kurata N, Omura T and Iwata N (1981) Studies on centromere, chromomere and nucleolus in pachy-

tene nuclei of rice, Oriyza sativa, microsporocytes. Cytorogia 46: 791–800.

24. Iwata N and Omura T (1975) Studies on the trisomics in rice plants (Oryza sativa L.). 111. Relation

between trisomics and genetic linkage groups. Jpn J Breed 25 363–368.

25. Werner JE, Endo TR and Gill BS (1992) Toward a cytogenetically based physical map of the wheat

genome. Proc Natl Acad Sci U S A 89: 11307–11311. PMID: 1360666

26. Fukui K (1986) Standardization of karyotyping plant chromosomes by a newly developed chromosome

image analyzing system (CHIAS). Theor Appl Genet 72: 27–32. https://doi.org/10.1007/BF00261449

PMID: 24247766

27. Fukui K (1985) Identification of plant chromosome by image analysis method. The Cell (Tokyo) 17:

145–149.

28. Kuwada Y (1910) A cytological study of Oryza sativa L. Bot Mag (Tokyo) 24: 267–280.

29. Kato S, Ohmido N and Fukui K (2003) Development of a quantitative pachytene chromosome map in

Oryza sativa by imaging methods. Genes Genet Syst 78: 155–161. PMID: 12773815

30. IRGSP (2005) The map-based sequence of the rice genome. Nature 436: 793–800. https://doi.org/10.

1038/nature03895 PMID: 16100779

31. Sakai H, Lee SS, Tanaka T, Numa H, Kim J, et al. (2013) Rice Annotation Project Database (RAP-DB):

an integrative and interactive database for rice genomics. Plant Cell Physiol 54: e6. https://doi.org/10.

1093/pcp/pcs183 PMID: 23299411

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 16 / 19

https://doi.org/10.1159/000313502
https://doi.org/10.1159/000313502
http://www.ncbi.nlm.nih.gov/pubmed/20628252
https://doi.org/10.1105/tpc.105.037838
http://www.ncbi.nlm.nih.gov/pubmed/16461583
https://doi.org/10.1007/s00412-004-0315-3
http://www.ncbi.nlm.nih.gov/pubmed/15480726
http://www.ncbi.nlm.nih.gov/pubmed/10628998
http://www.ncbi.nlm.nih.gov/pubmed/8181730
https://doi.org/10.1038/nature11543
http://www.ncbi.nlm.nih.gov/pubmed/23075845
https://doi.org/10.1007/s00412-004-0273-9
https://doi.org/10.1007/s00412-004-0273-9
http://www.ncbi.nlm.nih.gov/pubmed/14986017
https://doi.org/10.1007/BF00285012
https://doi.org/10.1007/BF00285012
http://www.ncbi.nlm.nih.gov/pubmed/24257829
https://doi.org/10.1101/gr.194601
http://www.ncbi.nlm.nih.gov/pubmed/11731505
http://www.ncbi.nlm.nih.gov/pubmed/17246212
http://www.ncbi.nlm.nih.gov/pubmed/1360666
https://doi.org/10.1007/BF00261449
http://www.ncbi.nlm.nih.gov/pubmed/24247766
http://www.ncbi.nlm.nih.gov/pubmed/12773815
https://doi.org/10.1038/nature03895
https://doi.org/10.1038/nature03895
http://www.ncbi.nlm.nih.gov/pubmed/16100779
https://doi.org/10.1093/pcp/pcs183
https://doi.org/10.1093/pcp/pcs183
http://www.ncbi.nlm.nih.gov/pubmed/23299411
https://doi.org/10.1371/journal.pone.0195710


32. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. (2013) Improvement of

the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data.

Rice 6: 1–10.

33. Fukui K, Kakeda K, Hashimoto J and Matsuoka S (1987) In situ hybridization of 125 I labelled rRNA to

rice chromosomes.

34. Kamisugi Y, Nakayama S, Nakajima R, Ohtsubo H, Ohtsubo E, et al. (1994) Physical mapping of the

5S ribosomal RNA genes on rice chromosome 11. Mol Gen Genet 245: 133–138. PMID: 7816019

35. Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND and Fukui K (2002) Cell cycle-dependent

and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol Biol 49:

645–653. PMID: 12081372

36. Feng Q, Zhang Y, Hao P, Wang S, Fu G, et al. (2002) Sequence and analysis of rice chromosome 4.

Nature 420: 316–320. https://doi.org/10.1038/nature01183 PMID: 12447439

37. Zhao Q, Zhang Y, Cheng Z, Chen M, Wang S, et al. (2002) A fine physical map of the rice chromosome

4. Genome Res 12: 817–823. https://doi.org/10.1101/gr.48902 PMID: 11997348

38. Cheng Z, Buell CR, Wing RA and Jiang J (2002) Resolution of fluorescence in-situ hybridization map-

ping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA

fibers. Chromosome Res 10: 379–387. PMID: 12296520

39. Heslop-Harrison JS and Schwarzacher T (2011) Organisation of the plant genome in chromosomes.

Plant J 66: 18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x PMID: 21443620

40. Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, et al. (1999) Short communica-

tion: the cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant

mitotic chromosomes. Plant J 18: 675–679. PMID: 10417719

41. Mukai Y, Nakahara Y and Yamamoto M (1993) Simultaneous discrimination of the three genomes in

hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated

DNA probes. Genome 36: 489–494. PMID: 18470003

42. de Jong H, Fransz P and Zabel P (1999) High resolution FISH in plants—techniques and applications.

Trends Plant Sci 4: 258–263. PMID: 10407441

43. Fuchs J, Demidov D, Houben A and Schubert I (2006) Chromosomal histone modification patterns—

from conservation to diversity. Trends Plant Sci 11: 199–208. https://doi.org/10.1016/j.tplants.2006.02.

008 PMID: 16546438

44. Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Turner BM, et al. (1998) Comparative

analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a decon-

volution system. Anal Chim Acta 365: 9–17.

45. Bernatavichute YV, Zhang X, Cokus S, Pellegrini M and Jacobsen SE (2008) Genome-wide association

of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:

e3156. https://doi.org/10.1371/journal.pone.0003156 PMID: 18776934

46. Kato S, Ohmido N, Hara M, Kataoka R and Fukui K (2009) Image analysis of small plant chromosomes

by using an improved system, CHIAS IV. Chromosome Science 12: 43–50.

47. Wako T, Kato S, Ohmido N and Fukui K (2014) Advances in imaging methods on plant chromosomes.

In: Dutta Gupta S. and Ibaraki Y., editors. Plant Image Analysis. Fundamentals and Applications. pp.

299–327.

48. Kato S and Fukui K (1998) Condensation pattern (CP) analysis of plant chromosomes by an improved

chromosome image analysing system, CHIAS III. Chromosome Res 6: 473–479. PMID: 9865786

49. Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, et al. (2002) Functional rice centromeres are

marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–1704.

https://doi.org/10.1105/tpc.003079 PMID: 12172016

50. Shishido R, Sano Y and Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene

order in rice genomes. Mol Gen Genet 263: 586–591. PMID: 10852479

51. Fukui K, Ohmido N and Khush G (1994) Variability in rDNA loci in the genus Oryza detected through

fluorescence in situ hybridization. Theor Appl Genet 87: 893–899. https://doi.org/10.1007/BF00225782

PMID: 24190522

52. Ohtsubo H, Umeda M and Ohtsubo E (1991) Organization of DNA sequences highly repeated in tan-

dem in rice genomes. Jpn J Genet 66: 241–254. PMID: 1910873

53. Ohmido N and Fukui K (1997) Visual verification of close disposition between a rice A genome-specific

DNA sequence (TrsA) and the telomere sequence. Plant Mol Biol 35: 963–968. PMID: 9426615

54. Ohmido N, Akiyama Y and Fukui K (1998) Physical mapping of unique nucleotide sequences on identi-

fied rice chromosomes. Plant Mol Biol 38: 1043–1052. PMID: 9869410

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/7816019
http://www.ncbi.nlm.nih.gov/pubmed/12081372
https://doi.org/10.1038/nature01183
http://www.ncbi.nlm.nih.gov/pubmed/12447439
https://doi.org/10.1101/gr.48902
http://www.ncbi.nlm.nih.gov/pubmed/11997348
http://www.ncbi.nlm.nih.gov/pubmed/12296520
https://doi.org/10.1111/j.1365-313X.2011.04544.x
http://www.ncbi.nlm.nih.gov/pubmed/21443620
http://www.ncbi.nlm.nih.gov/pubmed/10417719
http://www.ncbi.nlm.nih.gov/pubmed/18470003
http://www.ncbi.nlm.nih.gov/pubmed/10407441
https://doi.org/10.1016/j.tplants.2006.02.008
https://doi.org/10.1016/j.tplants.2006.02.008
http://www.ncbi.nlm.nih.gov/pubmed/16546438
https://doi.org/10.1371/journal.pone.0003156
http://www.ncbi.nlm.nih.gov/pubmed/18776934
http://www.ncbi.nlm.nih.gov/pubmed/9865786
https://doi.org/10.1105/tpc.003079
http://www.ncbi.nlm.nih.gov/pubmed/12172016
http://www.ncbi.nlm.nih.gov/pubmed/10852479
https://doi.org/10.1007/BF00225782
http://www.ncbi.nlm.nih.gov/pubmed/24190522
http://www.ncbi.nlm.nih.gov/pubmed/1910873
http://www.ncbi.nlm.nih.gov/pubmed/9426615
http://www.ncbi.nlm.nih.gov/pubmed/9869410
https://doi.org/10.1371/journal.pone.0195710


55. Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, et al. (2010) Integration of cytogenetic and genetic

linkage maps of Lotus japonicus, a model plant for the legume. Chromosome Res 18: 287–299. https://

doi.org/10.1007/s10577-009-9103-5 PMID: 20076998

56. Fujii K and Ohmido N (2011) Stable progeny production of the amphidiploid resynthesized Brassica

napus cv. Hanakkori, a newly bred vegetable. Theor Appl Genet 123: 1433–1443. https://doi.org/10.

1007/s00122-011-1678-5 PMID: 21861174

57. Hasezawa S and Nagata T (1991) Dynamic organization of plant microtubules at the three distinct tran-

sition points during the cell cycle progression of synchronized tobacco BY-2-cells. Botanica Acta.

58. Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, et al. (1998) Rice (Oryza sativa) centromeric

regions consist of complex DNA. Proc Natl Acad Sci U S A 95: 8135–8140. PMID: 9653153

59. Ohmido N, Kijima K, Ashikawa I, de Jong JH and Fukui K (2001) Visualization of the terminal structure

of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers. Plant

Mol Biol 47: 413–421. PMID: 11587512

60. Fukui K and Iijima K (1992) Manual on rice chromosomes. Misc Pub Natl Inst Agrobiol Resour 4: 1–25.

61. Levan A, Fredga K and Sandberg AA (1964) Nomenclature for centromeric position on chromosomes.

Hereditas 52: 201–220.

62. Jiao Y, Jia P, Wang X, Su N, Yu S, et al. (2005) A tiling microarray expression analysis of rice chromo-

some 4 suggests a chromosome-level regulation of transcription. Plant Cell 17: 1641–1657. https://doi.

org/10.1105/tpc.105.031575 PMID: 15863518

63. Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, et al. (2004) Dimethylation of histone

H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromo-

soma 112: 308–315. https://doi.org/10.1007/s00412-004-0275-7 PMID: 15014946

64. Koornneef M, Fransz P and de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome

Res 11: 183–194. PMID: 12769286

65. Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, et al. (2006) An integrated map of Oryza sativa L. chro-

mosome 5. Theor Appl Genet 112: 891–902. https://doi.org/10.1007/s00122-005-0191-0 PMID:

16365756

66. Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y, et al. (2003) Physical maps and recombination

frequency of six rice chromosomes. Plant J 36: 720–730. PMID: 14617072

67. Jiang J and Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in

plant genome research. Genome 49: 1057–1068. https://doi.org/10.1139/g06-076 PMID: 17110986

68. Cheng Z, Presting GG, Buell CR, Wing RA and Jiang J (2001) High-resolution pachytene chromosome

mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere loca-

tion and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157: 1749–

1757. PMID: 11290728

69. Trask BJ (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping.

Trends Genet 7: 149–154. PMID: 2068787

70. Raap AK (1998) Advances in fluorescence in situ hybridization. Mutat Res 400: 287–298. PMID:

9685683

71. Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin AV, et al. (1997) The chromosomal dis-

tributions of Ty1-copia group retrotransposable elements in higher plants and their implications for

genome evolution. Genetica 100: 197–204. PMID: 9440273

72. Fransz P, ten Hoopen R and Tessadori F (2006) Composition and formation of heterochromatin in Ara-

bidopsis thaliana. Chromosome Res 14: 71–82. https://doi.org/10.1007/s10577-005-1022-5 PMID:

16506097

73. Jasencakova Z, Soppe WJ, Meister A, Gernand D, Turner BM, et al. (2003) Histone modifications in

Arabidopsis- high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:

471–480. PMID: 12581305

74. Houben A, Demidov D, Gernand D, Meister A, Leach CR, et al. (2003) Methylation of histone H3 in

euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33: 967–973.

PMID: 12631322

75. Reddy KC and Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence

for initiation of meiotic recombination. Cell 118: 439–452.

76. Perrella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, et al. (2010) Histone hyper-

acetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62:

796–806. https://doi.org/10.1111/j.1365-313X.2010.04191.x PMID: 20230492

77. Tariq M and Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20: 244–251.

https://doi.org/10.1016/j.tig.2004.04.005 PMID: 15145577

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 18 / 19

https://doi.org/10.1007/s10577-009-9103-5
https://doi.org/10.1007/s10577-009-9103-5
http://www.ncbi.nlm.nih.gov/pubmed/20076998
https://doi.org/10.1007/s00122-011-1678-5
https://doi.org/10.1007/s00122-011-1678-5
http://www.ncbi.nlm.nih.gov/pubmed/21861174
http://www.ncbi.nlm.nih.gov/pubmed/9653153
http://www.ncbi.nlm.nih.gov/pubmed/11587512
https://doi.org/10.1105/tpc.105.031575
https://doi.org/10.1105/tpc.105.031575
http://www.ncbi.nlm.nih.gov/pubmed/15863518
https://doi.org/10.1007/s00412-004-0275-7
http://www.ncbi.nlm.nih.gov/pubmed/15014946
http://www.ncbi.nlm.nih.gov/pubmed/12769286
https://doi.org/10.1007/s00122-005-0191-0
http://www.ncbi.nlm.nih.gov/pubmed/16365756
http://www.ncbi.nlm.nih.gov/pubmed/14617072
https://doi.org/10.1139/g06-076
http://www.ncbi.nlm.nih.gov/pubmed/17110986
http://www.ncbi.nlm.nih.gov/pubmed/11290728
http://www.ncbi.nlm.nih.gov/pubmed/2068787
http://www.ncbi.nlm.nih.gov/pubmed/9685683
http://www.ncbi.nlm.nih.gov/pubmed/9440273
https://doi.org/10.1007/s10577-005-1022-5
http://www.ncbi.nlm.nih.gov/pubmed/16506097
http://www.ncbi.nlm.nih.gov/pubmed/12581305
http://www.ncbi.nlm.nih.gov/pubmed/12631322
https://doi.org/10.1111/j.1365-313X.2010.04191.x
http://www.ncbi.nlm.nih.gov/pubmed/20230492
https://doi.org/10.1016/j.tig.2004.04.005
http://www.ncbi.nlm.nih.gov/pubmed/15145577
https://doi.org/10.1371/journal.pone.0195710


78. Li L, Wang X, Xia M, Stolc V, Su N, et al. (2005) Tiling microarray analysis of rice chromosome 10 to

identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol 6: R52.

https://doi.org/10.1186/gb-2005-6-6-r52 PMID: 15960804

79. Yin BL, Guo L, Zhang DF, Terzaghi W, Wang XF, et al. (2008) Integration of cytological features with

molecular and epigenetic properties of rice chromosome 4. Mol Plant 1: 816–829. https://doi.org/10.

1093/mp/ssn037 PMID: 19825584

80. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, et al. (2004) Vernalization requires epige-

netic silencing of FLC by histone methylation. Nature 427: 164–167. https://doi.org/10.1038/

nature02269 PMID: 14712277

81. Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ and Trevaskis B (2009) Vernalization-induced flower-

ing in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc

Natl Acad Sci U S A 106: 8386–8391. https://doi.org/10.1073/pnas.0903566106 PMID: 19416817

82. Tsuji H, Saika H, Tsutsumi N, Hirai A and Nakazono M (2006) Dynamic and reversible changes in his-

tone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant

Cell Physiol 47: 995–1003. https://doi.org/10.1093/pcp/pcj072 PMID: 16774928

83. Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C, et al. (2015) Osmotic stress induces phos-

phorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl

Acad Sci U S A 112: 8487–8492. https://doi.org/10.1073/pnas.1423325112 PMID: 26100864

84. Ha S, Moore PH, Heinz D, Kato S, Ohmido N, et al. (1999) Quantitative chromosome map of the poly-

ploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods.

Plant Mol Biol 39: 1165–1173. PMID: 10380803

85. Ohmido N, Sato S, Tabata S and Fukui K (2007) Chromosome maps of legumes. Chromosome Res

15: 97–103. https://doi.org/10.1007/s10577-006-1109-7 PMID: 17205385

Development of a quantitative pachytene chromosome map in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0195710 April 19, 2018 19 / 19

https://doi.org/10.1186/gb-2005-6-6-r52
http://www.ncbi.nlm.nih.gov/pubmed/15960804
https://doi.org/10.1093/mp/ssn037
https://doi.org/10.1093/mp/ssn037
http://www.ncbi.nlm.nih.gov/pubmed/19825584
https://doi.org/10.1038/nature02269
https://doi.org/10.1038/nature02269
http://www.ncbi.nlm.nih.gov/pubmed/14712277
https://doi.org/10.1073/pnas.0903566106
http://www.ncbi.nlm.nih.gov/pubmed/19416817
https://doi.org/10.1093/pcp/pcj072
http://www.ncbi.nlm.nih.gov/pubmed/16774928
https://doi.org/10.1073/pnas.1423325112
http://www.ncbi.nlm.nih.gov/pubmed/26100864
http://www.ncbi.nlm.nih.gov/pubmed/10380803
https://doi.org/10.1007/s10577-006-1109-7
http://www.ncbi.nlm.nih.gov/pubmed/17205385
https://doi.org/10.1371/journal.pone.0195710

