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Abstract

Background: Genome-wide gene function annotations are useful for hypothesis generation and for prioritizing candidate genes po-
tentially responsible for phenotypes of interest. We functionally annotated the genes of 18 crop plant genomes across 14 species using
the GOMAP pipeline.

Results: By comparison to existing GO annotation datasets, GOMAP-generated datasets cover more genes, contain more GO terms,
and are similar in quality (based on precision and recall metrics using existing gold standards as the basis for comparison). From
there, we sought to determine whether the datasets across multiple species could be used together to carry out comparative func-
tional genomics analyses in plants. To test the idea and as a proof of concept, we created dendrograms of functional relatedness based
on terms assigned for all 18 genomes. These dendrograms were compared to well-established species-level evolutionary phylogenies
to determine whether trees derived were in agreement with known evolutionary relationships, which they largely are. Where dis-
crepancies were observed, we determined branch support based on jackknifing then removed individual annotation sets by genome
to identify the annotation sets causing unexpected relationships.

Conclusions: GOMAP-derived functional annotations used together across multiple species generally retain sufficient biological signal
to recover known phylogenetic relationships based on genome-wide functional similarities, indicating that comparative functional
genomics across species based on GO data holds promise for generating novel hypotheses about comparative gene function and traits.

Keywords: gene function, ontology, plants, comparative genomics, functional genomics

Background
Phenotypes and traits have long been the primary inspiration for
biological investigation. Phenotypes are the result of a complex
interplay between functions of genes and environmental cues.
In an effort to organize and model gene functions, various sys-
tems of classification have been developed including systems like
KEGG, which is focused on protein function including gene activi-
ties superimposed on metabolic pathways [1]. Other such systems
include the various Cyc databases, MapMan, and the Gene On-
tologies (GO), a vocabulary of gene functions organized as a di-
rected acyclic graph, which makes it innately tractable for com-
putational analysis [2–4].

GO-based gene function annotation involves the association
of GO terms to individual genes. Functions may be assigned to
genes on the basis of different types of evidence for the associ-
ation. For example, functional predictions can be inferred from

experiments (EXP), expression patterns (IEP), and more [5]. Com-
putational pipelines are often used to generate functional predic-
tions for newly sequenced genomes, where the genome is first
sequenced and assembled, then gene structures (gene models)
are predicted, then functions are associated with those gene pre-
dictions. Genome-wide gene function prediction datasets are fre-
quently used to analyze gene expression studies, to prioritize can-
didate genes linked to a phenotype of interest, to design experi-
ments aimed at characterizing functions of genes, and more [6–
8]. How well a gene function prediction set models reality is in-
fluenced by how complete and correct the underlying genome as-
sembly and gene structure annotations are, as well as by how well
the software used to predict functions performs.

GOMAP (the Gene Ontology Meta Annotator for Plants) is a
gene function prediction pipeline for plants that generates high-
coverage and reproducible functional annotations [9]. The sys-
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tem uses multiple functional prediction approaches, including se-
quence similarity, protein domain presence, and mixed-method
pipelines developed to compete in the Critical Assessment of
Function Annotation (CAFA) Challenge [10], a community chal-
lenge that has advanced the performance of gene function pre-
diction pipelines over the course of 5 organized competitions [11].

We previously annotated gene functions for the maize B73
genome and demonstrated that GOMAP’s predicted functions
were closer to curated gene-term associations from the literature
than those of other community functional annotation datasets,
including those produced by Gramene (Ensembl pipeline) and
Phytozome (Interpro2GO pipeline) [12]. Using the newly container-
ized GOMAP system [9], we report here the functional annotation
of 18 plant genomes across the 14 crop plant species listed in Ta-
ble 1 and report comparisons of performance based on compari-
son to gold standard gene function datasets, where possible.

Given these multiple annotations across various plant species,
we next considered whether these datasets could be used together
for comparative functional genomics in plants. We describe here
a simple and crude method by which we used gene function an-
notations to generate dendrograms of genome-level similarity in
function. This idea is similar to that of Zhu et al., who determined
the evolutionary relationships among microorganisms based on
whole-genome functional similarity [50]. Here we expand on that
approach, analyzing genome-wide GO assignments to generate
parsimony and distance-based dendrograms (see Fig. 1 for pro-
cess overview). We compared these with well-established species
phylogenies (Fig. 2) to determine whether trees derived from gene
function show any agreement with evolutionary histories, taking
agreement between generated dendrograms and known evolu-
tionary histories to be evidence that sufficient comparative biolog-
ical signal exists to begin to use GO functional annotations across
multiple plant genomes for comparative functional genomics in-
vestigations.

Results of Analyses
Overview
As shown in Fig. 1, gene function annotation sets were created
and compiled for each genome. For those with existing annota-
tion sets available on Gramene or Phytozome [51, 52], the datasets
were compared. From there, matrices that included genomes as
rows and terms as columns were generated. These were used di-
rectly to build parsimony trees or to create distance matrices for
NJ tree construction [53–55]. In subsequent analyses, jackknifing
was used to remove terms (columns) or to remove genomes (rows)
to map the source of signal for tree-building results [56].

Functional annotation sets produced
Table 2 reports quantitative attributes of each of the annotation
sets. In summary, GOMAP covers all annotated genomes with ≥1
annotation per gene and provides between 3.8 and 12.1 times as
many annotations as Gramene or Phytozome.

Quality evaluation of gene function predictions is not triv-
ial and is approached by different research groups in different
ways. Most often datasets are assessed by comparing the set
of predicted functions for a given gene to a gold standard con-
sisting of annotations that are assumed to be correct. This as-
sumption of correctness can be based on any number of crite-
ria. Here we used as our gold standard dataset all annotations
present in Gramene63 that had a non-IEA (non-inferred by elec-
tronic annotation) evidence code; i.e., we used only annotations

that had some manual curation. This enabled us to assess 10 of
the genomes described in Table 2. It is perhaps noteworthy that
the IEA and non-IEA annotation sets from Gramene63 frequently
contain overlaps, indicating that some of the predicted annota-
tions were manually confirmed afterwards by a curator and that
in such cases, a new annotation was asserted with the new evi-
dence code rather than simply upgrading the evidence code from
IEA to some other code, thus preserving the IEA annotations in
Gramene63 that are produced by the Ensembl analysis pipeline
[57], a requirement for comparing GOMAP-produced IEA datasets
to the IEA datasets produced by the Ensembl pipeline.

A general limitation of using gold standards for quality eval-
uation is that they can never be assumed to be complete, and
therefore false-positive results in the prediction cannot be distin-
guished from false-negative results in the gold standard. In other
words, is gene X, function Y truly a wrong prediction or has it sim-
ply not yet been discovered experimentally? This problem is laid
out in more detail in [58]. As a consequence, the quality of larger
prediction sets will be systematically underestimated compared
to smaller ones, and this effect is exacerbated the more incom-
plete the gold standard is.

There are many different metrics that have been used to evalu-
ate the quality of predicted functional annotations. For the maize
B73 GOMAP annotation assessment in [12], we had used a modi-
fied version of the hierarchical evaluation metrics originally intro-
duced in [59] because they were simple, clear, and part of an ear-
lier attempt at unifying and standardizing GO annotation compar-
isons [60]. In the meantime, Plyusnin et al. published an approach
for evaluating different metrics showing variation among the ro-
bustness of different approaches to quality assessment [61]. On
the basis of their recommendations, we use here the SimGIC2 and
term-centric area under precision-recall curve (TC-AUCPCR) met-
rics. We also evaluated with the Fmax metric, simply because it is
widely used (e.g., by [10]), even though according to Plyusnin et al.,
it is actually a flawed metric [61]. Results of the quality assess-
ments for the 10 genomes where a gold standard was available
are reported in Table 3 and Supplementary Fig. S2. While evalua-
tion values differ between metrics and the scores are not directly
comparable, a few consistent patterns emerge: GOMAP annota-
tions are almost always better than Gramene and Phytozome an-
notations in the cellular component and molecular function as-
pect, with the only 3 exceptions being the molecular function as-
pect for T. aestivum using the TC-AUCPCR and the Fmax metric and
the cellular component aspect for M. truncatula A17 using the Fmax

metric. Conversely, GOMAP predictions achieve consistently lower
quality scores in the biological process aspect with the exception
of B. dystachion, O. sativa, and S. bicolor with the TC-AUCPR metric.
Generally, annotations that are better in 1 aspect are also better
in the other 2 aspects, but the ranking of annotations does not
necessarily hold across metrics. The Phytozome annotation for O.
sativa is an outlier in terms of its comparative quality, potentially
because it is based on a modified structural annotation that dif-
fers substantially from the gold standard and the other annota-
tions under comparison.

Phylogenetic tree analyses
With the comparative quality of gene function predictions in
hand, we approached the question of whether the datasets could
be used together for comparative functional analysis across all
genomes. As a simple first step, we began to work toward under-
standing the degree to which trees built on the basis of gene func-
tions agree with known, well-documented evolutionary related-
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Table 1: Functional annotation sets generated by GOMAP

Species Germplasm/line Assembly/annotation
Dataset

DOI
Genome
reference

Arachis hypogaea Tifrunner Arachis hypogaea assembly 1.0 [13] [14]
Brachypodium distachyon Bd21 Bd21.v3.1.r1 [15] [16]
Cannabis sativa Hemp NCBI Cannabis sativa GCA_900626175.1 [17] [18]
Glycine max Williams 82 Joint Genome Institute (JGI) Wm82.a4.v1 [19] [20]
Gossypium raimondii Cotton D Gossypium raimondii JGI v2.1 [21] [22]
Hordeum vulgare – IBSC_PGSB_r1 [23] [24]
Medicago truncatula R108_HM340 R108: v1.0 [25] [26]
Medicago truncatula A17_HM341 Mt4.0v2 [27] [28]
Oryza sativa Japonica IRGSP 1.0 [29] [30]
Phaseolus vulgaris G19833 DOE-JGI and USDA-NIFA annotation 2.0 [31] [32]
Pinus lambertiana Sugar Pine TreeGenesDB sugar pine assembly v1.5 [33] [34]
Sorghum bicolor BTx623 BTx623.v3.0.1.r1 [35] [36]
Triticum aestivum Chinese Spring IWGSC RefSeq 1.1 [37] [38]
Vigna unguiculata IT97K-499-35 JGI annotation v1.1 [39] [40]
Zea maysa Mo17 Zm-Mo17-REFERENCE-CAU-1.0 [41] [42]
Zea maysa PH207 Zm-PH207-REFERENCE_NS-UIUC_UMN-1.0 [43] [44]
Zea maysa W22 Zm-W22-REFERENCE-NRGENE-2.0

Zm00004b.1
[45] [46]

Zea maysa B73 RefGen_V4 Zm00001d.2 [47] [48]

More information about each dataset including the source of the input to GOMAP can be found at the respective DOI. Latest overview at [49].
aPreviously published in [9].

A

B

Figure 1: Data workflow schema. A. Workflow overview with steps represented as black boxes and the flow of information and processes indicated by
arrows. B. Workflow details. The upper large hatched box shows process detail for a single genome and the lower hatched box represents additional
genomes for which the details of processing are identical. White boxes represent input datasets. Arrows indicate the flow of information and processes.

ness. We constructed neighbor-joining (NJ) and parsimony trees
of the 18 plant genomes and visulized them using iTOL [62]. The
2 tree topologies, rooted at P. lambertiana, were compared to one
another and to the topology of the expected tree (Fig. 2). For both
the NJ (Fig. 3A) and parsimony trees (Fig. 3B), 1 common differ-
ence is noted: S. bicolor is not at the base of the Z. mays clade as
expected and is clustered with B. distachyon instead. Notable dif-
ferences between the NJ and parsimony tree are the following: C.
sativa appears at the base of the eudicots instead of G. raimondii
in the NJ tree, while G. raimondii is grouped with C. sativa and A.
hypogaea is grouped with G. max in the parsimony tree. Second, O.

sativa was expected to be at the base of the Bambusoideae, Ory-
zoideae, and Pooideae (BOP) clade but appears at the base of Z.
mays in the NJ tree, and at the base of all angiosperms in the par-
simony tree. Differences among relationships within the Z. mays
clade constaining B73, PH207, W22, and Mo17 were disregarded
given the high degree of similarity across annotation sets and the
fact that these relationships are not clear given the complex na-
ture of within-species relationships.

Owing to differences between the function-based dendrograms
and the expected tree, jackknifing analysis was carried out by re-
moving terms (columns in underlying datasets) to determine the
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Figure 2: Known phylogenetic relationships among species. Cladogram
is rooted by the gymnosperm Pinus lambertiana (black). Among
angiosperms, eudicots clades include Malvaceae (blue), Rosaceae
(magenta), Dalbergieae (grey), and non-protein amino
acid–accumulating clade (NPAAA; green). Monocots include members of
the BOP (purple) and PACMAD-Panicoideae (red) clades.

degree to which the underlying datasets support specific group-
ings based on functional term assignments. This analysis was car-
ried out for both NJ and parsimony trees. First, trees were gen-
erated by omitting 5%–95% of the dataset in increments of 5 to
determine the threshold at which the tree topologies deviated
from those generated using the full dataset. That threshold was
reached at 45% for both NJ and parsimony; therefore, we used
trees generated with 40% of the data removed for reporting branch
support values for the topology (Fig. 3). Comparing the 2 trees, the
parsimony topology was not as solid as that of the NJ at jackknife
values ≤40%. On the basis of this robustness for NJ tree-building
in general, we carried out all subsequent analyses using NJ tree-
building methods.

We considered investigating the effect of using 1 GO aspect
to generate our NJ tree. In other words, we generated the NJ
trees using cellular component GO terms, molecular function GO
terms, and biological process GO terms separately (Supplemen-
tary Fig. S3). Of the 14,303 total GO terms, 1,524 are cellular com-
ponent terms, 3,926 are molecular function terms, and 8,853 are
biological process terms. Of the 3 single-aspect phylogenetic trees,
the one built using molecular function terms is the closest to our
NJ tree obtained using all GO terms in our datasets (Fig. 3A). The
only difference is that A. hypogaea and G. max are clustered in the
molecular function tree, while they are not in our NJ tree Fig. 3A.
In the cellular component tree, G. raimondii and C. sativa are clus-
tered together when they are not in the NJ tree with all GO aspects
(Fig. 3A). Also, O. sativa is at the base of the monocots just like in
the expected tree, but not in the NJ tree Fig. 3A. In the biological
process tree, O. sativa is at the base of the angiosperms and there is
no clear separation between monocots and dicots. In all 3 single-
aspect phylogenetic trees and our all-aspect NJ tree, A. hypogaea
is never placed at the base of the NPAAA clade. Also, B. distachyon
and S. bicolor are always clustered together. Overall, the topologies
constructed using 1 GO term aspect at a time are close to that of
our NJ tree, such that not one GO term aspect alone restored the
topology of the expected tree.

To map the source of discrepancies to specific gene annotation
sets, we generated various NJ trees excluding 1 genome each time,
an additional tree with both Medicago genomes excluded simulta-

neously, and another with all Z. mays genomes excluded simulta-
neously. To exemplify this, see the monocot clade in Fig. 2 and the
lower (monocot) clade in Fig. 3A. When the NJ tree was generated,
2 species are misplaced: S. bicolor and O. sativa. As shown in Fig. 4a,
removal of O. sativa corrects 1 error (itself) but does not correct the
errant grouping of S. bicolor with B. distachyon. In Fig. 4b, it is shown
that the removal of S. bicolor corrects the errant grouping of itself
and B. distachyon, but O. sativa placement remains incorrect. How-
ever, as shown in Fig. 4c, the removal of B. distachyon generates a
tree where all relationships are in agreement with known species-
level relationships. (Note well: all individual annotation sets were
progressively removed, not just the 3 shown in the example.)

With this observation in hand, we sought to determine the min-
imum number of genomes that could be removed to create a tree
that matched the expected tree topology. All possible combina-
tions of removing 0–5 genomes to restore the topology were tested,
and 10 combinations of minimum amount of genomes to be re-
moved were obtained. The removal of 4 genomes was required
to generate function-based trees consistent with known phylo-
genetic relationships. Of the 10, we selected the 1 that had the
genomes that were most frequently part of a solution (O. sativa, 8;
B. distachyon, 7; C. sativa, 6; A. hypogaea, 5; S. bicolor, 4; G. raimondii,
4; G. max, 4; T. aestivum) to show in this article (the other combina-
tions can be found in our publicly available dataset). To elaborate,
the genomes removed here are O. sativa, B. distachyon, C. sativa,
and A. hypogaea (Fig. 5). Jackknifing analysis was also carried out
for this dataset with support shown. Branch support is generally
higher than that for the full dataset (i.e., branch support is higher
in Fig. 5 than in Fig. 3A), and removing genomes that are causing
variations seems to stabilize the tree.

Potential causes of unexpected groupings
As a first step toward explaining discrepancies between known
evolutionary relationships and those resulting from comparative
analysis of genome-wide gene function predictions, we assessed
the quality of each genome assembly and structural annotation
set using GenomeQC [63]. Tables 4 and 5 and Figs. 6 and 7 rep-
resent the resulting assembly quality, structural annotation mea-
sures of quality, and proportion of single-copy BUSCOs [64] that
were generated. Although these analyses make evident that the
species annotated are comparatively different in both natural
genome characteristics and in assembly and annotation quality
aspects, it is not the case that the 4 species responsible for devia-
tions between the functional annotation dendrograms and known
phylogenetic relationships (i.e., C. sativa, A. hypogaea, O. sativa, and
B. distachyon) create these discrepancies owing to issues of genome
assembly and/or annotation quality. One potential for some ex-
planation is in relation to C. sativa, which is the only genome that
has an assembly length larger than the expected (see Table 4),
and a comparatively large proportion of missing BUSCOs in the
assembly (see Fig. 6). Similarly, for A. hypogaea and O. sativa, there
is a large proportion of missing BUSCOs in the annotations (see
Fig. 7).

Discussion
In this study, we used the GOMAP pipeline to produce whole-
genome GO annotations for 18 genome assembly and annota-
tion sets from 14 plant species [9]. Assessments of the number
of terms predicted, as well as the quality of predictions, indi-
cate that GOMAP functional prediction datasets cover more genes,
contain more predictions per gene, and are of similar quality to



Standardized genome-wide function prediction in plants | 5

Ta
b

le
2:

Q
u

an
ti

ta
ti

ve
m

et
ri

cs
of

th
e

cl
ea

n
ed

fu
n

ct
io

n
al

an
n

ot
at

io
n

se
ts

G
en

om
e

G
en

es
D

at
as

et
G

en
es

A
n

n
ot

at
ed

(%
)

A
n

n
ot

at
io

n
s

M
ed

ia
n

an
n

ot
at

io
n

s
p

er
ge

n
e

C
C

M
F

B
P

A
C

C
M

F
B

P
A

C
C

M
F

B
P

A

A
ra

ch
is

hy
po

ga
ea

67
,1

24
G

O
M

A
P

85
.8

5
84

.6
8

10
0

10
0

15
0,

52
5

13
2,

14
4

49
3,

14
5

77
5,

81
4

2
2

6
10

Br
ac

hy
po

di
um

di
st

ac
hy

on
34

,3
10

G
O

M
A

P
81

.3
3

85
.3

5
10

0
10

0
74

,1
72

69
,2

13
25

5,
39

7
39

8,
78

2
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

21
.5

4
19

.5
3

18
.2

0
26

.6
6

10
,9

85
10

,4
36

11
,1

20
32

,6
73

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
33

.1
2

49
.2

9
38

.2
9

63
.6

0
21

,6
58

36
,3

72
23

,8
99

82
,0

26
1

1
1

3
Ph

yt
oz

om
e1

2
10

.2
5

37
.2

1
26

.8
6

43
.1

1
4,

18
6

18
,5

97
11

,0
70

34
,0

60
0

1
1

2
C

an
na

bi
s

sa
ti

va
33

,6
77

G
O

M
A

P
94

.2
2

95
.4

8
10

0
10

0
85

,7
55

73
,6

14
26

2,
74

1
42

2,
11

0
2

2
6

11
G

ly
ci

ne
m

ax
52

,8
72

G
O

M
A

P
86

.9
5

88
.9

2
10

0
10

0
12

6,
47

0
11

3,
06

8
41

6,
98

9
65

6,
52

7
2

2
6

11
G

os
sy

pi
um

ra
im

on
di

i
37

,5
05

G
O

M
A

P
93

.0
0

92
.3

7
10

0
10

0
95

,4
19

84
,9

10
30

7,
47

0
48

7,
79

9
2

2
6

11
H

or
de

um
vu

lg
ar

e
39

,7
34

G
O

M
A

P
88

.5
7

91
.7

6
10

0
10

0
86

,4
89

79
,7

27
27

2,
42

0
43

8,
63

6
2

2
5

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

28
.2

3
26

.3
0

23
.4

3
35

.6
4

15
,7

34
15

,3
91

15
,2

67
46

,4
14

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
36

.1
9

50
.9

0
41

.7
1

65
.0

3
29

,8
26

44
,7

89
29

,4
25

10
4,

17
8

1
1

1
3

M
ed

ic
ag

o
tr

un
ca

tu
la

A
17

50
,4

44
G

O
M

A
P

83
.7

9
86

.6
9

10
0

10
0

10
4,

90
2

99
,1

55
36

3,
60

8
56

7,
66

5
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

25
.4

5
23

.2
6

21
.5

1
32

.1
2

17
,9

38
18

,4
16

18
,4

61
54

,8
27

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
34

.2
5

50
.8

4
40

.2
6

66
.1

4
32

,7
53

63
,4

70
40

,4
41

13
7,

00
1

1
1

1
3

Ph
yt

oz
om

e1
2

8.
87

36
.0

5
25

.8
3

41
.0

7
5,

31
5

25
,9

50
15

,5
76

47
,0

98
0

1
1

2
M

ed
ic

ag
o

tr
un

ca
tu

la
R

10
8

55
,7

06
G

O
M

A
P

72
.1

0
90

.1
4

10
0

10
0

10
8,

38
8

10
7,

49
9

38
1,

83
1

59
7,

71
8

1
2

5
9

O
ry

za
sa

ti
va

35
,8

25
G

O
M

A
P

79
.7

8
83

.3
1

10
0

10
0

71
,3

06
64

,1
50

24
8,

30
4

38
3,

76
0

2
2

6
9

G
ol

d
St

an
d

ar
d

G
ra

m
en

e
63

(n
o

IE
A

)
29

.9
5

27
.2

9
25

.3
3

37
.5

7
15

,4
92

15
,1

76
16

,5
36

47
,3

39
1

1
1

3

G
ra

m
en

e6
3

(I
EA

on
ly

)
32

.2
1

45
.8

3
36

.7
5

60
.1

3
21

,9
35

37
,4

25
24

,2
55

83
,6

45
1

1
1

3
Ph

yt
oz

om
e1

2
10

.3
1

40
.1

0
29

.1
8

46
.0

9
4,

36
1

20
,8

42
12

,4
51

37
,8

84
0

1
1

2
Ph

as
eo

lu
s

vu
lg

ar
is

27
,4

33
G

O
M

A
P

94
.4

8
93

.0
6

10
0

10
0

70
,9

87
64

,0
22

22
9,

23
0

36
4,

23
9

2
2

6
11



6 | GigaScience, 2022, Vol. 11, No. 1

Ta
b

le
2:

(C
on

ti
nu

ed
)

G
en

om
e

G
en

es
D

at
as

et
G

en
es

A
n

n
ot

at
ed

(%
)

A
n

n
ot

at
io

n
s

M
ed

ia
n

an
n

ot
at

io
n

s
p

er
ge

n
e

C
C

M
F

B
P

A
C

C
M

F
B

P
A

C
C

M
F

B
P

A

Pi
nu

s
la

m
be

rt
ia

na
31

,0
07

G
O

M
A

P
92

.6
7

95
.9

1
10

0
10

0
71

,2
47

68
,3

15
21

2,
24

8
35

1,
81

0
2

2
5

10
So

rg
hu

m
bi

co
lo

r
34

,1
29

G
O

M
A

P
82

.4
4

85
.9

8
10

0
10

0
75

,1
45

69
,6

59
25

9,
00

4
40

3,
80

8
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

34
.4

8
32

.9
1

30
.9

0
42

.8
4

16
,8

37
17

,6
14

17
,8

50
52

,5
93

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
35

.9
1

52
.1

1
42

.3
6

67
.4

1
23

,6
08

39
,4

18
27

,0
74

90
,3

13
1

1
1

3
Ph

yt
oz

om
e1

2
10

.5
4

39
.1

9
27

.9
0

45
.1

0
4,

24
6

19
,7

24
11

,4
32

35
,5

99
0

1
1

2
Tr

it
ic

um
ae

st
iv

um
10

7,
89

1
G

O
M

A
P

88
.5

3
90

.9
8

10
0

10
0

25
9,

31
8

21
7,

46
7

78
5,

05
1

1,
26

1,
83

6
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

2.
98

2.
78

2.
56

3.
82

4,
72

7
4,

51
2

4,
79

3
14

,0
35

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
29

.1
2

58
.6

2
38

.7
2

70
.4

1
47

,5
95

11
1,

88
9

62
,9

77
22

2,
72

1
0

1
1

2
V

ig
na

un
gu

ic
ul

at
a

29
,7

73
G

O
M

A
P

91
.2

1
91

.0
8

10
0

10
0

74
,7

91
67

,7
34

24
2,

84
7

38
5,

37
2

2
2

6
11

Ph
yt

oz
om

e1
2

13
.9

1
45

.6
8

34
.1

4
53

.0
6

5,
10

7
19

,9
62

12
,2

09
37

,5
34

0
1

1
2

Z
ea

m
ay

s
B

73
.v

4
39

,3
24

G
O

M
A

P
93

.1
6

94
.9

2
10

0
10

0
87

,6
48

81
,6

65
27

8,
30

5
44

7,
61

8
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

37
.9

2
34

.7
8

32
.6

7
46

.8
5

22
,5

31
21

,2
92

23
,1

53
67

,2
85

1
1

1
3

G
ra

m
en

e6
3

(I
EA

on
ly

)
39

.1
6

58
.1

6
48

.2
1

73
.8

7
30

,1
89

53
,7

48
35

,2
76

11
9,

27
3

1
1

1
3

Z
ea

m
ay

s
M

o1
7

38
,6

20
G

O
M

A
P

86
.9

8
90

.8
7

10
0

10
0

86
,0

74
78

,6
50

27
7,

39
5

44
2,

11
9

2
2

6
10

G
ol

d
St

an
d

ar
d

G
ra

m
en

e
63

(n
o

IE
A

)
27

.5
6

25
.2

0
23

.7
3

33
.9

8
16

,1
28

15
,3

84
16

,4
89

48
,2

20
1

1
1

3

Z
ea

m
ay

s
PH

20
7

40
,5

57
G

O
M

A
P

86
.5

5
90

.6
1

10
0

10
0

88
,9

62
84

,9
10

28
8,

20
8

46
2,

08
0

2
2

6
10

G
ol

d
St

an
d

ar
d

G
ra

m
en

e
63

(n
o

IE
A

)
28

.1
8

25
.8

2
24

.2
6

34
.6

6
17

,3
70

16
,5

80
17

,7
91

51
,9

84
1

1
1

3

Z
ea

m
ay

s
W

22
40

,6
90

G
O

M
A

P
90

.7
7

92
.5

8
10

0
10

0
93

,6
22

84
,4

50
28

9,
36

4
46

7,
43

6
2

2
6

10
G

ol
d

St
an

d
ar

d
G

ra
m

en
e

63
(n

o
IE

A
)

25
.4

0
23

.1
5

21
.8

0
31

.2
9

15
,5

18
14

,8
18

15
,8

50
46

,4
02

1
1

1
3

C
C

,M
F,

B
P,

an
d

A
re

fe
r

to
th

e
as

p
ec

ts
of

th
e

G
en

e
O

n
to

lo
gy

:c
el

lu
la

r
co

m
p

on
en

t,
m

ol
ec

u
la

r
fu

n
ct

io
n

,b
io

lo
gi

ca
l

p
ro

ce
ss

,a
n

d
an

y/
al

l.
G

O
M

A
P

co
ve

rs
al

l
ge

n
om

es
w

it
h

≥1
an

n
ot

at
io

n
p

er
ge

n
e

an
d

p
ro

vi
d

es
su

b
st

an
ti

al
ly

m
or

e
an

n
ot

at
io

n
s

th
an

G
ra

m
en

e6
3

or
Ph

yt
oz

om
e,

es
p

ec
ia

ll
y

in
th

e
B

P
as

p
ec

t.
T

h
e

to
ta

l
n

u
m

b
er

of
an

n
ot

at
io

n
s

p
er

d
at

as
et

is
vi

su
al

iz
ed

in
Su

p
p

le
m

en
ta

ry
Fi

g.
S1

.
a

H
ow

m
an

y
ge

n
es

in
th

e
ge

n
om

e
h

av
e

≥1
G

O
te

rm
fr

om
th

e
C

C
,M

F,
B

P
as

p
ec

t
an

n
ot

at
ed

to
th

em
?

A
=

H
ow

m
an

y
≥1

fr
om

an
y

as
p

ec
t?

(A
=

C
C

∪M
F∪

B
P)

.
b

H
ow

m
an

y
an

n
ot

at
io

n
s

in
th

e
C

C
,M

F,
an

d
B

P
as

p
ec

t
d

oe
s

th
is

d
at

as
et

co
n

ta
in

?
A

=
H

ow
m

an
y

in
to

ta
l?

A
=

C
C

+
M

F
+

B
P.

c
Ta

ke
a

ty
p

ic
al

ge
n

e
th

at
is

p
re

se
n

t
in

th
e

an
n

ot
at

io
n

se
t.

H
ow

m
an

y
an

n
ot

at
io

n
s

d
oe

s
it

h
av

e
in

ea
ch

as
p

ec
t?

A
=

H
ow

m
an

y
in

to
ta

l?
N

ot
e

th
at

A
�=

C
C

+
M

F
+

B
P.



Standardized genome-wide function prediction in plants | 7

Ta
b

le
3:

Q
u

al
it

at
iv

e
m

et
ri

cs
of

fu
n

ct
io

n
al

an
n

ot
at

io
n

se
ts

p
re

d
ic

te
d

by
G

O
M

A
P,

G
ra

m
en

e,
an

d
Ph

yt
oz

om
e

G
en

om
e

D
at

as
et

S
im

G
IC

2
T

C
-A

U
C

PC
R

F m
ax

C
C

M
F

B
P

C
C

M
F

B
P

C
C

M
F

B
P

Br
ac

hy
po

di
um

di
st

ac
hy

on
G

O
M

A
P

0.
40

41
49

0.
46

41
27

0.
22

38
30

0.
23

34
42

0.
23

07
01

0.
11

85
26

0.
74

13
61

0.
74

08
97

0.
52

68
81

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

31
78

01
0.

42
08

59
0.

34
94

06
0.

12
91

63
0.

19
25

07
0.

11
13

61
0.

69
10

16
0.

73
85

42
0.

65
03

25
Ph

yt
oz

om
e1

2
0.

37
02

64
0.

37
05

21
0.

35
22

06
0.

11
25

82
0.

13
68

32
0.

08
56

28
0.

71
77

59
0.

69
70

76
0.

66
06

03
H

or
de

um
vu

lg
ar

e
G

O
M

A
P

0.
40

00
87

0.
47

00
12

0.
23

81
77

0.
23

72
31

0.
26

13
99

0.
13

07
84

0.
74

52
72

0.
75

02
13

0.
56

00
96

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

30
61

19
0.

42
66

01
0.

38
10

10
0.

15
73

52
0.

22
87

97
0.

13
60

02
0.

68
09

96
0.

74
26

38
0.

66
56

96
M

ed
ic

ag
o

tr
un

ca
tu

la
A

17
G

O
M

A
P

0.
37

17
95

0.
45

12
58

0.
21

34
07

0.
27

28
09

0.
28

26
50

0.
13

90
32

0.
73

08
38

0.
72

69
91

0.
53

14
06

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

32
96

00
0.

43
72

74
0.

34
35

61
0.

17
64

97
0.

26
58

87
0.

13
35

03
0.

70
10

93
0.

74
99

00
0.

65
42

97
Ph

yt
oz

om
e1

2
0.

35
83

11
0.

36
72

57
0.

36
30

13
0.

14
42

47
0.

17
08

63
0.

11
03

86
0.

71
73

07
0.

69
84

29
0.

66
12

33
O

ry
za

sa
ti

va
G

O
M

A
P

0.
40

89
45

0.
48

26
50

0.
24

82
07

0.
29

85
02

0.
30

33
84

0.
15

97
24

0.
75

11
21

0.
75

71
81

0.
55

92
21

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

32
87

61
0.

42
31

91
0.

34
11

93
0.

16
76

19
0.

26
54

10
0.

13
54

51
0.

71
13

09
0.

73
87

32
0.

64
38

27
Ph

yt
oz

om
e1

2
0.

04
99

75
0.

04
10

07
0.

04
42

79
0.

00
00

03
0.

00
00

03
0.

00
00

02
0.

47
01

34
0.

26
66

28
0.

23
92

56
So

rg
hu

m
bi

co
lo

r
G

O
M

A
P

0.
40

48
52

0.
46

67
08

0.
22

40
11

0.
31

68
73

0.
33

73
80

0.
16

98
83

0.
74

65
40

0.
74

20
01

0.
53

42
58

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

32
30

37
0.

40
02

41
0.

35
31

35
0.

17
70

38
0.

26
01

98
0.

15
41

57
0.

71
11

07
0.

71
21

70
0.

65
35

91
Ph

yt
oz

om
e1

2
0.

35
60

91
0.

34
82

64
0.

34
01

24
0.

15
19

47
0.

17
75

79
0.

11
04

83
0.

71
57

14
0.

67
51

47
0.

64
15

35
Tr

it
ic

um
ae

st
iv

um
G

O
M

A
P

0.
41

05
82

0.
48

98
81

0.
22

92
71

0.
05

07
62

0.
03

06
10

0.
01

93
60

0.
73

64
76

0.
76

24
20

0.
53

38
97

G
ra

m
en

e6
3

(I
EA

on
ly

)
0.

36
24

52
0.

47
66

85
0.

39
51

12
0.

04
09

92
0.

04
37

01
0.

02
78

72
0.

73
77

69
0.

76
20

59
0.

67
09

53
Z

ea
m

ay
s

B
73

.v
4

G
O

M
A

P
0.

41
74

55
0.

46
73

39
0.

24
53

73
0.

30
27

61
0.

29
03

71
0.

15
30

11
0.

75
95

04
0.

74
68

70
0.

56
47

07
G

ra
m

en
e6

3
(I

EA
on

ly
)

0.
30

32
31

0.
41

63
01

0.
34

63
08

0.
17

57
35

0.
25

00
75

0.
13

82
75

0.
66

29
87

0.
73

28
60

0.
64

77
25

Z
ea

m
ay

s
M

o1
7

G
O

M
A

P
0.

39
95

21
0.

46
42

65
0.

22
56

32
0.

23
62

09
0.

23
95

98
0.

12
55

99
0.

74
43

60
0.

74
30

26
0.

53
74

89
Z

ea
m

ay
s

PH
20

7
G

O
M

A
P

0.
39

44
81

0.
43

62
66

0.
22

42
26

0.
22

17
09

0.
22

12
66

0.
11

70
86

0.
74

31
11

0.
71

89
33

0.
53

30
92

Z
ea

m
ay

s
W

22
G

O
M

A
P

0.
39

76
02

0.
46

34
99

0.
22

35
11

0.
21

01
98

0.
21

76
09

0.
11

32
62

0.
74

37
83

0.
74

23
41

0.
53

55
72

T
h

is
ta

b
le

is
vi

su
al

iz
ed

in
Su

p
p

le
m

en
ta

ry
Fi

g.
S2

.



8 | GigaScience, 2022, Vol. 11, No. 1

A neighbor-joining tree B parsimony tree
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Figure 3: Neighbor-joining and parsimony trees. Phylograms are colored and rooted as described in Fig. 2. For both neighbor-joining (A) and parsimony
(B), node values represent the jackknifing support values derived by removing 40% of GO terms in the dataset. Dashed lines mark deviations from
known phylogenetic relationships. Tree scales are shown above each, with NJ showing distances and parsimony showing changes in character state.

prediction datasets produced by other systems, thus supporting
the notion that these high-coverage datasets are a useful addi-
tion for researchers who are interested in genome-level analyses,
including efforts aimed at prioritizing candidate genes for down-
stream analyses. Given that we can now produce high-quality,
whole-genome functional annotations for plants in a straightfor-
ward way, we intend to produce more of these over time (indeed
we recently annotated Vitis vinifera [76], Brassica rapa [77], Musa
acuminata [78], Theobroma cacao [79], Coffea canephora [80], Vaccinium
corymbosum [81], Solanum lycopersicum [82], and Solanum pennellii
[83]).

With 18 genome functional annotations in hand, we sought to
determine whether and how researchers could use multispecies
GO annotation datasets to perform comparative functional ge-
nomics analyses. As a proof of concept, we adapted phyloge-
netic tree-building methods to use the gene function terms as-
signed to genes represented by the genomes to build dendrograms
of functional relatedness and hypothesized that if the functions
were comparable across species, the resulting trees would closely
match evolutionary relationships. To our delight and surprise, the
NJ and parsimony trees (Fig. 3) did resemble known phylogenies,
but were not exact matches to broadly accepted phylogenetic re-
lationships.

After removing the minimum number of genomes that re-
sulted in restoration of the expected evolutionary relationships,
we found that the individual species that may be responsible for
the discrepancies observed in Fig. 3 were C. sativa, A. hypogaea, O.
sativa, and B. distachyon. We hypothesize that the following could
account for such errant relationships:

(1)Quality of sequencing and coverage assembly: genomes of
similarly high sequence coverage that have excellent gene
calling would be anticipated to create the best source for
functional annotation. Genomes of comparatively lower, or
different, character would be anticipated to mislead tree-
building and other comparative genomics approaches.

(2)Shared selected or natural traits: species that have been se-
lected for, e.g., oilseeds may share genes involved in synthe-

sis of various oils. Other shared traits would be anticipated
to cause similarities for species with those shared traits.

(3)Lack of good representation of diverse plant biology aspects
in the GO graph: most plant-specific GO terms were de-
rived from functional analysis of 1 model species, Arabidop-
sis thaliana. This single source for presence of plant-specific
functions limits the graph from containing unique func-
tional aspects of plant biology represented in other species’
genomes. In addition, this limitation could lead to the as-
signment of unknown or errant functions based on a lack of
closely related and/or plant-specific terms.

(4)Use of a simple method of tree-building based on the pres-
ence or absence of gene function terms: the method that
we devised and describe here is not sophisticated enough to
make full use of information in the GO graphs such that we
recover the full detail of the species’ evolutionary histories
from the simple method.

To consider the first of these, we looked at genome assembly
and annotation quality metrics (see Tables 4 and 5 and Figs. 6 and
7). For B. distachyon we could find no compelling evidence that as-
sembly structural or functional annotation quality differed sig-
nificantly from all others, except in the case of C. sativa, where we
noted that the assembly length exceeded the predicted genome
size based on C-values for genome sizes reported previously [67].
In this case, the fact that the C. sativa line sequenced is not inbred
[84] may be responsible for the inflated assembly size relative to
what is expected. This means that in the assembly, there are likely
regions where alleles between chromosomes do not align, which
would inflate the overall length of the assembly. In addition, the
assembly misses a large proportion of BUSCO genes compared to
most other genomes included in this analysis. Indeed, the compar-
atively low-quality assembly for Cannabis genome has been noted
by others [85], and our preliminary investigations indicate that the
assembly length is in fact longer than expected.

In an attempt to better understand conflicting phylogenetic
signals that could be caused by the second potential cause, i.e.,
shared selected or natural traits, we mapped all GO terms that
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Figure 4: Restoring monocot relationships. Phylograms are colored and
rooted as described in Fig. 2. Dashed lines mark deviations from known
phylogenetic relationships. Monocot topology changes with removal of a
single species: (A) O. sativa, (B) S. bicolor, and (C) B. distachyon. Tree scale is
shown above.

exist in our binary matrix and traced character history (pres-
ence/absence) on the nodes and leaves of our expected evolution-
ary tree using the software Mesquite version 3.61 [86]. These data
summarize the gain or loss of each GO term across the species
described in this article and can be found in our GitHub repos-
itory. We carried out a number of simple experiments to reveal
which terms could be causal for errant relationships (e.g., drop-
ping all unique terms from the B. distachyon dataset, reconstruct-
ing the term states at nodes that should be where B. distachyon
should occur) and could not identify any biologically compelling
patterns. (Because these analyses were not fruitful, they were not
specifically included in our Methods section, although we do in-
clude the input datasets here in section “Availability of Source
Code and Supporting Data,” for others to consider and peruse in-
dependently.)

A likely limitation in this analysis is the effect of the third
potential cause of discrepancies between our generated phylo-
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Figure 5: Restoring known phylogentic relationships to the NJ tree via
removal of a minimal number of species. Phylograms are colored and
rooted as described in Fig. 2. Node values represent the jackknifing
support values derived by removing 40% of GO terms in the dataset.
Four genomes have been removed: C. sativa, O. sativa, B. distachyon, and
A. hypogaea. Tree scale is shown above.

genetic trees and the expected topology: a deficiency of terms
that describe diverse gene functions across the diversity of plant
species. Because most GO terms specific to plant biology are likely
derived from Arabidopsis, a model dicot species, gene functions
unique to other species are expected to be missing from the GO
graphs [87]. This source of error will only be corrected over time
as gene functions unique to diverse plant species are populated
into the GO graph.

We consider the most likely explanation for observed discrep-
ancies between the known evolutionary phylogenies and dendro-
grams created on the basis of GO terms describing gene func-
tion to be a result of the fourth explanation: the simplicity of the
tree-building models and methods we used for these analyses.
Because the tree-building and analytics described in this article
were based on the presence/absence of GO terms, novel terms are
highly influential on the outcomes of the analysis and the number
of times a term is used does not influence the outcome at all. In
contrast, plant genomes are notable for having many duplicated
genes as a result of whole-genome and segmental duplications
over evolutionary history, so these duplications are in fact a fea-
ture of and marker for what happened to that genome over time.
Therefore, using presence/absence of GO terms where the counts
of term occurrences are not weighted may be too simple to get
at the genuine biological complexities represented in any given
plant genome. Our simplistic demonstration of the utility of GO
datasets for comparative functional genomics shows that more
sophisticated methods are promising for comparative functional
genomics analyses.

It should be noted that comparative analyses using gene func-
tions are not completely absent from the literature—although
they are absent for large genome comparisons in plants. An exam-
ple of such existing comparative use of GO is one where a given
tree topology was used to look for gains and losses of functions
mapped to independently derived trees, which was reported by
Schwacke et al. [88]. They report, as an example of their method,
an analysis of gene loss in Cuscuta, a parasitic plant, based on
analysis using the Mapman ontology. In their work, they showed
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Figure 6: Assembly BUSCO plot generated using GenomeQC. Genomes analyzed are shown across the X-axis and are ordered to match the occurrence
of species shown in Fig. 2. Percentages of BUSCO genes across 4 gene categories are stacked, with each adding up to 100% (Y-axis).

considerable loss of genes, which is a hallmark of the parasitic
lifestyle. Our efforts differ in that we used the functions directly
to infer tree structures as a demonstration that sufficient biolog-
ical signal is present in GO-based datasets of genome-wide func-
tion prediction to reproduce known biological relationships. The
method that we used was quick and dirty, and we anticipate that
refinements in approach that consider multiple copies of genes,
as well as using different types of graph and network representa-
tions beyond tree structures, are logical next steps for refining the
use of GO terms for comparative functional genomics analyses in
plants. With that in mind, we look forward not only to developing
systems to support GO-based comparative functional genomics
tools but also to seeing the tools that other research groups will
develop to approach the use of these datasets to formulate novel
comparative functional genomics hypotheses.

Methods
Acquiring input datasets
For each of the 18 genomes listed in Table 1, information on how to
access input annotation products is listed by DOI. For each, 1 rep-
resentative translated peptide sequence per protein-coding gene
was selected and used as the input for GOMAP, a gene function
prediction tool for plants that is actively maintained, updated,
and versioned. Details of how GOMAP annotations are derived in-
cluding the specificity of component datasets and which terms
are retained are described elsewhere [9, 12]. In brief, GOMAP an-
notations are a combination of the annotations from multiple
sources. GOMAP combines the annotations from all the sources

and removes the less specific annotations that could be inferred
from the more specific annotations, keeping only the most specific
terms for each gene that cannot be inferred from other terms (i.e.,
only leaf terms). Unless the authors of the genome provided a set
of representative sequences designated as canonical, we chose the
longest translated peptide sequence as the representative for each
gene model. In general, non-IUPAC characters and trailing aster-
isks were removed from the sequences, and headers were sim-
plified to contain only non-special characters. The corresponding
script for each dataset can be found at the respective DOI. On
the basis of this input, GOMAP yielded a functional annotation
set spanning all protein-coding genes in the genome. Using the
Gene Ontology version releases/2020-10-09, this functional anno-
tation set was cleaned up by removing duplicates, annotations
with qualifiers (NOT, contributes_to, colocalizes_with; column 4 in
the GAF 2.1 format), and obsolete GO terms. Any terms contain-
ing alternative identifiers were merged to their respective main
identifier, uncovering a few additional duplicates, which were also
removed. Supplementary Table S2 shows the number of annota-
tions removed from each dataset produced.

To compare the quality of GOMAP predictions to currently
available functional predictions from Gramene and Phytozome,
we downloaded IEA annotations from Gramene (version 63) [51,
89] and Phytozome (version 12) [52, 90] for each species with func-
tional annotations of the same genome version. These datasets
were cleaned as above. Similarly cleaned non-IEA annotations
from Gramene63 served as the gold standard wherever they were
available. More detailed information on how these datasets were
accessed can be found at [91].
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Figure 7: Annotation BUSCO plot generated using GenomeQC. Genomes analyzed are shown across the X-axis and are ordered to match the
occurrence of species shown in Fig. 2. Percentages of BUSCO genes across 4 gene categories are stacked, with each adding up to 100% (Y-axis).

Quantitative and qualitative evaluation
The number of annotations in each clean dataset was determined
and related to the number of protein-coding genes (based on tran-
scripts in the input FASTA file). This was done separately for each
GO aspect as well as in total.

The ADS software version published in [61] is available from
[92]. We used version b6309cb (also included in our code as a
submodule) to calculate SimGIC2, TC-AUCPCR, and Fmax qual-
ity scores. To provide the information content required for the
SimGIC2 metric, the Arabidopsis GOA from [93] was used in ver-
sion 2021-02-16.

Cladogram construction
For clustering, we first collected all GO terms annotated to any
gene in each genome into a list and removed the duplicates, yield-
ing a 1D set of GO terms for each genome (T). Next, we added
all parental terms for each term in this set (connected via is_a
in the ontology), their respective parental terms and higher, re-
cursively continuing up to the very root of the ontology. Then we
once again removed the duplicates, yielding a set S containing the
original terms from set T as well as all terms proximal to them
in the GO directed acyclical graph. These sets with added ances-
tors served as a starting point of our tree-building analyses: pair-
wise distances between the genomes were calculated using the
Jaccard distance as a metric of the dissimilarity between any 2 sets
a and b.

dab = 1 − |Sa ∩ Sb|
|Sa ∪ Sb|

(1)

An NJ tree was constructed on the basis of the generated pair-
wise distance matrix using PHYLIP (PHYLIP, RRID:SCR_006244)
[53]. Additionally, term sets S of all genomes were combined into a
binary matrix (with rows corresponding to genomes and columns
corresponding to GO terms, values of 0 or 1 indicating whether a
term is present or absent in the given set). PHYLIP pars was used
to construct a parsimony tree from this binary matrix.

P. lambertiana, a gymnosperm, was included in the dataset as
an outgroup to the angiosperms to separate between the monocot
and eudicot clades. iTOL (iTOL, RRID:SCR_018174) [94] was used to
visualize the trees using their Newick format, and root them at P.
lambertiana. Moreover, a cladogram representing the known phy-
logeny of the included taxa was created by hand based on known
evolutionary relationships [95–99]. This was used to compare the
generated phylogenetic relationship based on functional similar-
ity with the evolutionary relationships of the plant genomes.

Jackknifing analysis was carried out for both parsimony and NJ
trees to assess the support for each clade on the basis of the pro-
portion of jackknife trees showing the same clade. To this end,
40% of the terms in T were randomly removed, ancestors of the
remaining terms were added, and trees constructed as above. The
majority rule consensus tree of 100 individual trees was calcu-
lated with the jackknife values represented on each branch. The
tree was then visualized using iTOL using its Newick format, and
rooted again at P. lambertiana.

Genome quality evaluation
Genome size was estimated from the C-values obtained from the
Plant DNA C-values data resource from the Kew Database [100].

https://scicrunch.org/resolver/RRID:SCR_006244
https://scicrunch.org/resolver/RRID:SCR_018174
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The mean C-value for a given species was used for calculating
genome size estimates in base pairs using the method of [101]. In
brief,

Genome size (bp) = C-value (pg) ∗ 0.978 ∗ 109 bp
pg

.

The estimated genome size (listed in Table 4) was used as an
input for GenomeQC [63, 102] to calculate quality metrics. For
genomes that were too large to submit through the GenomeQC
webtool or had missing exon information, modified scripts of
those found in GitHub of GenomeQC (commit e6140ee [103]) were
applied to calculate the assembly and structural annotation met-
rics in Tables 4 and 5. BUSCO version 5.2.2 (BUSCO, RRID:SCR_0
15008) [104] was used to calculate the assembly and annotation
BUSCO scores, shown in Figs. 6 and 7. inputs for assembly BUSCO
scores were chromosome sequences, whereas inputs were tran-
script/messenger RNA/CDS sequences for the annotation BUSCO
scores. For the lineage parameter, the lineage datasets used were
as follows: Eudicots for C. sativa and G. raimondii, Fabales for A. hy-
pogaea, M. truncatula A17 and R108, P. vulgaris, G. max, and V. unguic-
ulata, and Poales for B. distachyon, O. sativa, T. aestivum, H. vulgare,
S. bicolor, and Z. mays B73, Mo17, W22, and PH207.

Data Availability
All data and source code generated are freely available at [105]
under the terms of the CC0 license (also archived at [106]). All
software requirements and dependencies are packaged into a Sin-
gularity container (now renamed as Apptainer) so no other set-
up is required to reproduce our results (container available at
[107]; download and use instructions are included in the repos-
itory README).

An up-to-date list of all available annotation sets can be found
at [49], and the GOMAP software used to generate them is avail-
able at [108].

Additional Files
Supplementary Table S1: Additional assembly statistics from
GenomeQC.
Supplementary Table S2: Number of removed annotations during
clean-up.
Supplementary Figure S1: Number of total annotations in each
GO IEA dataset analyzed, colored by GO aspect (cellular compo-
nent in green, molecular function in orange, and biological pro-
cess in blue). Species are ordered on the basis of the number of
GO terms in the GOMAP dataset, with the species producing the
most GO terms (Triticum) on top and the least (Pinus) on bottom.
Supplementary Figure S2: Quality scores of the predicted anno-
tation visualized as a gray-scale heat map. Each row represents a
single species from a single data source. Input gene model dataset
origin is indicated: blue for GOMAP, yellow for Gramene63, and or-
ange for Phytozome12. Across the top are the 3 metric types used
to assess the annotation quality. Across the bottom are subgraph
indicators: C is cellular component, F is molecular function, and
P is biological process. Darker cells indicate a higher (better) score
whereas lighter cells indicate a lower score. Note that scales are
different for each metric type (meaning that comparisons across
the 3 metric types are not meaningful). Rows are clustered by pair-
wise correlation/similarity across all metrics. The dendrogram at
left retraces clustering.
Supplementary Figure S3: Neighbor-joining trees built on anno-
tation subsets per GO aspect. Phylograms are colored and rooted

as described in Fig. 2. For each tree, only the annotations from the
respective aspect of the Gene Ontology were used.
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