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Abstract: To match the current life-style, there is a huge demand and market for the processed food
whose manufacturing requires multiple steps. The mounting demand increases the pressure on the
producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard
consumers’ health. In the multistep process of food processing, there are several chances that the food-
spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity
to comprehend, implement, and monitor the levels of contaminants by utilizing various available
methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-
based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the
advancements in these methods for the detection of food-borne contaminants and pathogens.

Keywords: food-borne pathogens; aflatoxin; pesticides; aptasensor; biosensor; omics

1. Introduction

With the growing population, there is a dire need to address the food quantity, quality
and safety issues [1–3]. Food is considered to be spoilt when any change occurs in the
product quality, making it unacceptable for consumption by humans. Product quality
and organoleptic properties of food material can be changed by a wide range of phys-
ical and chemical reactions. Some reactions and changes are also introduced because
of specific enzymatic activity or due to the presence of microorganisms [4]. Apart from
cross-contamination during the processes of harvesting or slaughter, specific properties of
the food itself cause its spoilage, such as sensitivity to oxygen and light and the presence
of various metabolites and endogenous enzymes. Primary changes in fresh food include
oxidation of lipids and pigments, resulting in toxic and off-odor compounds, microbial
contamination causing changes in pH, smell, and taste rendering the food unfit for con-
sumption. The underlying mechanisms of spoilage are not well understood; therefore,
many biochemical and chemical indices are set to estimate the spoilage and depreciated
the food quality but still, the first analysis of spoilage is sensory assessment [5].

In one of its reports, FAO has stated that only two-thirds of the food produced is
utilized for human consumption, and the other one-third is either spoiled or remains
unused. This qualifies food spoilage as a global problem that needs to be addressed
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immediately [6]. Environmental and health issues further create more stress. For example,
in the current scenario, it is estimated that the COVID-19 pandemic has created more
stress on the population, and more people are undernourished than in the prior COVID-19
scenario. Additionally, healthy diets are costly and available to a limited population. More
than 1.5 billion people are unable to get the basic level of essential nutrients [7]. Moreover,
starting from producers to consumers, the spoilage of food results in food insecurity,
leading to substantial economic losses to all the people involved in the chain.

Microbial contamination is one of the most common reasons for food spoilage. Ubiq-
uitous and majorly microscopic microorganisms contaminate food products and remain
unnoticed. High water-containing food gets spoilt by bacteria, while low water-containing
food gets spoilt by molds and yeast. The shelf life of food is minimized by factors con-
tributing more towards spoilage [8].

Spoilt food can be detected by employing multiple techniques, ranging from sensory
detection to sensitive detection, for measuring even the low concentration of the contami-
nant. Many of the latest advancements have been made in food-contaminants detection,
such as nanobiosensor, DNA biosensors, smartphone-based biosensors, aptasensor, DNA
microarray, and single-cell droplet microfluidic systems. These techniques have been
discussed in detail for the detection of biological and chemical contaminants.

2. Spoilage of Food by Adventitious Agents
2.1. Microorganisms

Foods with high protein and moisture content, such as milk, dairy products, poultry,
fish, meat, and others, are nutritious, slightly acidic, or neutral in pH and, therefore,
often become a breeding ground for the growth of microorganisms. The growth of these
microorganism cause food spoilage, which gives the food industry a major economic
loss, but, if these products reach the consumers, it causes significant health issues [4,9,10].
The microorganisms responsible for spoilage can be classified into broad categories, such
as Gram-positive spore-forming bacteria, Gram-positive bacteria, Gram-negative rod-
shaped bacteria, lactic acid bacteria, yeasts, and molds (Table 1). Norovirus, Salmonella,
and Escherichia coli (E. coli) are the most common microorganisms responsible for different
outbreaks and diseases.

Table 1. Types of contaminants in food.

Organism/Chemical Name Food-Borne Diseases and
Problems High-Risk Foods

Gram-Positive bacteria

Listeria monocytogenes Food borne-listeriosis;
Diarrhea

Meat-related products (Deli or
ready-to-consume),such
ascold smoked-fishery items,
meat, sausages, etc.

Bacillus cereus Emetic and diarrheal
syndrome

Pasteurized milk and dairy
products,
red meat, beef, lamb, vension

Bacillus licheniformis, B.
coagulans, Geobacillus
stearothermophilus,
Clostridium algidixylanolyticum,
C. algidicarnis, C. gasigenes, C.
frigidicarnis and C.
estertheticum

Inflammatory bowel disease,
Crohn’s disease

Dry milk, and tomato juice
(low-acid)

Lactobacillus lactis,
Leuconostoc spp.

Diarrhea, wounds and urinary
tract infection, bacteremia,
pneumonia, and cerebral
hemorrhage

Fermented food and
beverages, wine, beer, and
fruit juices, vacuum packaged
meat, fish, and poultry
products
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Table 1. Cont.

Organism/Chemical Name Food-Borne Diseases and
Problems High-Risk Foods

Staphylococcus aureus

Suppurative infection,
septicemia, pneumonia,
sepsis, pericarditis,
pseudomembranous colitis

Meat, milk, fish and their
products, eggs, and cold food
savory

Clostridium botulinum
Respiratory and muscle
relaxation paralysis, botulism,
blurred vision

Cured meat and Canned
products

Gram-Negative bacteria

Pseudomonas
Cystic fibrosis, respiratory and
urinary infections, pneumonia
as hospital-acquired disease

Vegetables and fruits, red
meat, poultry, fish, milk, and
milk products

Enterobacteriaceae

Diarrheal disease, septicemia;
bacteremias, respiratory
disease; wound and burn
infections; urinary tract
infections; and meningitis due
to its pathogenicity

Raw meat, chicken and beef,
fresh cream desserts

Salmonella typhimurium

Stomach pain, typhoid fever,
diarrhea, nausea, headache,
gastroenteritis, fever, chills,
septicemia

Raw forms ofdairy produce,
egg, raw or less cookedmeat,
poultry, and seafood.
Unprocessedsalads and
chocolate.

Escherichia coli
Nausea, diarrhea, stomach
pain, fever, headache, and
chills

Raw forms of dairy products,
raw or less cooked meat,
poultry products, such asegg,
and seafood

Campylobacter Nausea, Diarrhea, Stomach
pain, fever, and headache

Raw milk, raw or
undercooked meat and
poultry

Shigella Bacterial dysentery Raw and cooked food

Cronobacter
Neonatal meningitis,
necrotizing colitis and
bacteremia

Milk powder and infant feed

Fungus Aspergillus, Fusarium,and
Penicillium

Athlete’s foot, ringworm,
aspergillosis, histoplasmosis
and coccidiodomycosis

Fresh seafood, packaged
meats, delicatessen salads

Parasite

Trematode
(Opisthorchisspp; Clonorchisspp;
Paragonimusspp; Fasciolaspp)

Trematodiases, Clonorchiasis,
fascioliasis, opisthorchiasis,
Paragonimiasis, severe lung
and liver problem; fever;
nausea

Infected raw vegetables,
aquatic vegetables, raw fish or
raw meat of animals feeding
on these, crabs

Toxoplasma gondii Toxoplasmosis Beef, pork, shellfish, fruits,
vegetables

Giardia lamblia Giardiasis Shellfish

Entamoeba histolytica Acute dysentery, Ameboma,
perianal ulceration Raw fruits and vegetables

Trypanosoma cruzi Chagas disease Raw fruits and vegetables
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Table 1. Cont.

Organism/Chemical Name Food-Borne Diseases and
Problems High-Risk Foods

Viruses

Hepatitis A virus Fever, malaise, anorexia,
nausea, jaundice

Vegetables, fruits, shellfish,
iced drinks, milk, and dairy
produce

Norovirus Diarrhea, vomiting, nausea,
muscle and stomach cramps

Contaminated drinking water,
raw salads, raw shellfish or
oysters, berries, and frozen
food products

Heavy metals Arsenic
Lung and bladder diseases,
skin infections, heart
disorders

Contaminated drinking water,
cereals, vegetables

Pesticides

Chlorpyrifos
Neuromuscular disorders,
nausea, headache, acute
poisoning

Contaminated farm produce

Carbaryl pesticide

Reproductive and
developmental toxicity,
cholinesterase inhibition,
intestinal agenesis

Contaminated farm produce

2.1.1. Gram-Negative Rod-Shaped Bacteria

Due to gram-negative rod-shaped bacteria, food spoilage occurs mainly through the
non-protein nitrogen (NPN) fraction of food product [11]. The NPN fraction of the food
product is utilized first by the bacteria, followed by the metabolism of fatty acids and
amino acids. Foods get spoilt owing to the release of certain enzymes resulting in the
off-flavors and off-odors, the appearance of pigmented colonies, and slime. NPN can be
efficiently utilized by Pseudomonas, Aeromonas, Photobacterium, Shewanella, and Vibrio [12].
Vibrio presents a unique feature where its halophilic nature causes the spoilage of cured
meat and seafood [13].

It is also observed that the high moisture-containing food products (such as poultry,
red meat, fish, milk, and dairy products) stored at natural pH under aerobic conditions are
majorly affected by Pseudomonas spp. These pseudomonad strains belong to psychrotrophic
organisms with a wide range of food sources that can be contaminated and utilized as
substrate [11,14–16]. It forms a small proportion of fresh food initial microbial load (41%)
and causes cystic fibrosis, respiratory and urinary infections, pneumonia as a hospital-
acquired disease [17–19]. Spoilage at temperatures above 5 to 10 ◦C Enterobacteriaceae is
more responsible as compared to Pseudomonas. Possible fecal contamination, inadequate
processing, and post-processing contamination are the primary cause of Enterobacteriaceae
members’ presence in spoilt food. Furthermore, due to its high pathogenicity, it causes
multiple diseases, such as diarrhea, septicemia, bacteremia, respiratory disease, wound
and burn infections, urinary tract infections, and meningitis [20].

2.1.2. Gram-Positive Spore-Forming Bacteria

Microorganisms that survive chilling temperatures equivalent to 5 ◦C or less are
capable of surviving the process of pasteurization or heating (Bacillus and Clostridium
spp.) [21]. Gram-positive spore-forming bacteria grow slowly but are more resistant to
high temperatures as compared to Gram-negative bacteria. Clostridium sp. That does not
survive refrigeration temperatures (lower than 5 ◦C) are common contaminants in dairy
products. At temperatures higher than 5 ◦C, they yield gas leading to the late blowing of
the hard cheese during maturation [22,23]. However, apart from temperature, the pH and
salt concentration of milk affects the bacterial spore germination, reproduction, and gas
production capacity. In the case of C. tyrobutyricum strains, they do not produce gases at
temperatures below 15 ◦C; hence, the spoilage does not occur below 15 ◦C [21,24].
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C. pasteurianum strains spoilage was observed in different food products and was
reported for the first time in figs, canned tomatoes, pears, pineapples, and peaches [25–27].
It is responsible for spoilage of acid foods because of its tolerance to the high amount of
salt and sugar concentration even at acidic pH. It is also capable of spoiling shelf-stable
apple juice [28]. These strains are heat resistant and, therefore, survive the heat treatment
step of packaging. The optimum temperature for the growth of these bacteria is 35 ◦C, and
maintaining the juice below pH 4.0 with mild heating during packaging can prevent the
spoilage of apple juice [29–31].

Psychrotrophic and psychrophillic bacteria of clostridial species are responsible for
spoilage of venison, lamb, and beef, rendering them inedible and causing financial losses to
the producer. Psychro-clostridial species, such as Clostridium algidixylanolyticum, C.algidicarnis,
C. gasigenes, C. frigidicarnis, and C. estertheticum, are known as the significant spoilers of
red meat. These bacteria spoil the red meat during storage as they can grow at storage
temperatures of −1.5 ◦C. Spoilt meat gets softened, produces foul odors, and also produces
large amounts of drip exudates. Some bacteria also lead to gas production, as is the case
for C. estertheticum and C. gasigenes [32]. Few Clostridial species were first found to be
the causal organism for the spoilage of red meat in the fresh, chilled, vacuum-packaged,
and sous-vide cooked form [33,34], having the main species C. estertheticum [35]. During
processing, the spores of clostridial species enter vacuum packages where these spores
germinate and lead to spoilage of food [36]. Therefore, it is also essential to understand
that the quality of packaging material and the process shall also be monitored to mitigate
the chances of contamination.

Bacteria belonging to Bacillus spp. are primarily aerobic and grow at 0 to 2 ◦C [32].
Spoilage of milk as bitty cream and sweet curdling may occur due to strains of Bacillus
which grow at temperatures upto 5 ◦C, or even less [12,23,37]. Many Bacillus species are
responsible for the spoilage of dairy products, but B. cereus is the only bacteria that causes
food poisoning. B. cereus and B. licheniformis are the most prevalent species present in
raw milk [38,39]. B. licheniformis causes spoilage of milk, affecting its organoleptic and
functional properties, but does not qualify as a human pathogen [40,41]. It is capable of
causing spoilage by the release of certain enzymes, but it does not produce biofilm, which
is why it is found prevalently in the milk powders that are known to have a low spore
count [42,43]. Another species, B. sporothermodurans, is found in Ultra High Temperature
(UHT) processed milk and its products [44,45], and the enzymes released by it led to the
spoilage of dairy products [46].

2.1.3. Lactic Acid Bacteria

Lactic acid bacteria produce slime and CO2 as by-products in addition to producing
lactic acid. Apart from the formation of foul odor, the flavors of food products, especially
proteinaceous food items, such as vacuum-packed meat, poultry, and fish products, get
spoilt [47]. They form a part of the initial microbial load but are not majorly responsible for
their harmful impact on proteinaceous foods. These lactic acid-producing gram-positive,
non-sporing rods bacteria are psychrotrophs cocci that include Lactobacillus, Pediococcus,
Leuconostoc, Streptococcus, Globicatella, Alloiococcus, Aerococcus, Dolosigranulum, Carnobac-
terium, Enterococcus, Lactococcus, Tetragenococcus, Oenococcus, Weissella, and Vagococcus [48].
They act as a major spoiler in fermented food and beverages. Cloudiness in wine, fruit
juices, and beer can be attributed to the lactic acid bacteria [49]. Some bacteria, such as
Lactobacilli, are non-pathogenic, but, the others, such as Lactobacillus lactis, cause severe
diarrhea, wounds, and urinary tract infection. Leuconostoc has been the cause of bacteremia,
pneumonia, and cerebral hemorrhage in some clinical reports [50,51].

2.1.4. Yeast and Molds

Yeasts and molds are organisms that can survive on multiple sources of nutrition, such
as carbohydrates, pectin, organic acids, proteins, lipids, benzoate, propionate, and sorbate,
and, therefore, are ubiquitous. They are resistant to extreme and unfavorable growth con-
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ditions, such as low pH, moisture, temperature, and in the presence of preservatives [52].
Contamination of yeast and mold has been reported [53] in packaged meats, fresh seafood,
deli-type salads [54–56], and fresh vegetables [57]. The creation of slime and acids, pig-
mented growth on the surface of food products, and bad taste are major spoilage indicators
due to infection by yeast and molds. Spoilage of food products by molds results in the
release of mycotoxins by the mold that produces multiple toxic effects. [58]. Other fungal
strains produce mycotoxins. Mycotoxin production in spoilt food is mainly due to the
action of three fungal genera: Aspergillus, Fusarium, and Penicillium [59]. These mycotoxins
cause oxidative stress-mediated DNA damage, ultimately decreasing cell viability [60].
Mycotoxins present in food products cause spoilage and major loss to the economy. The
early detection of mycotoxins is crucial because of their infinitesimal concentration (parts
per billion and nanograms) present in food products. They cause major clinical symptoms
that often generate the need for high-cost treatments [61–63].

Spoilage of food due to physical or chemical methods is difficult to segregate because
of similar characters of spoilage it produces, including oxidation and lipolysis. The chemical
methods that cause spoilage have different levels to which it can spoil food products and
different ranges of products that it can affect.

2.2. Non-Biological Contaminants

Contamination in food can be caused due to contaminants other than biological
contaminants. The contaminants introduced in food can either be natural or artificial or
introduced during processing, packaging, transportation, and storage. Food-borne illness
owing to these contaminants, such as cadmium, polychlorinated biphenyl (PCB), and lead,
ranges from gastroenteritis to fatal disease and death cases [64].

Heavy metals deplete the essential nutrients present in the body in different forms
and deter the host defenses. Contamination of heavy metal is known to cause malnutrition
and an increased number of gastrointestinal diseases [65]. Industrial areas are more
contaminated by heavy metals. Chemical food contaminants being toxic to a greater
extent have been observed to act as carcinogens [66]. PCBs negatively affect neurological
and immune system development in children [67]. Organic pollutants usually present in
the waste produced by some industries and cause food spoilage are pesticides, such as
chlordane, aldrin, DDT, by-products from the industry dibenzofurans and dibenzodioxins,
and industrial chemicals, such as PCBs and HCBs [68,69]. The side effects of contamination
by these species include an effect on reproductive systems, immune systems, and increased
risk of diseases, such as cancer [70]. Besides organic pollutants, radioactive materials are
also the cause of food spoilage [71]. They enter into soil, water bodies, and air and deplete
their quality. The plants growing in the contaminated soil and the sea animals being utilized
as food items often contain radionucleotides. Seafood contamination and drinking water
contaminated with radioactive compounds have also been observed [72–75]. Regulatory
bodies have decided the acceptable limits of these radionucleotides in different food
products, and several studies are conducted by experimenting with specific experimental
models to assess the safety in ingestion pathways [76].

Another source of contamination and spoilage of food is the food packaging material
used for packaging and storing foods. The packaging types used are usually harmful
plastics that are either previously contaminated with contaminants or the contaminants
and toxins leach through the packaging. The leached products are known as migrants, and
these contaminants led to specific, acute, or toxic effects. The risk posed by contaminants
from plastic material is low, but the risk varies with temperature changes and contact
time [77]. The shelf life of the product depends on the packaging method involved, and,
among meat products, maximum shelf-life is in the case of modified atmosphere packaged
meat [14]. The reason for increased shelf-life and decreased contamination by aerobic
spoilage microorganisms is that the bags utilized for vacuum/ modified packaging are
poorly permeable to oxygen and other gases.
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3. Methods of Detection of Adventitious Agents in Food

The majority of food-borne illnesses are caused by Salmonella, Cyclospora, Listeria
monocytogenes, E. coli, Hepatitis A, Vibrio, Burkholderia cepacia, and Brucella [78]. Food
materials over a wide array can get contaminated by these adventitious agents, and
proper understanding of them can help limit the contamination. One of the crucial factors
preventing food spoilage is identifying the source/cause of the illness [47]. Many different
detection methods have been utilized, and, with advancements made in technology and
research, the detection methods are improved, as discussed below [79,80].

3.1. Single Cell Droplet Microfluidic System

Detection of a single cell in any bio-analytical process is crucial because every single
droplet acts as an independent microreactor. Droplet microfluidics technology has the ad-
vantages of being high-throughput, parallelization, and integration. Droplet microfluidics
have been utilized widely in microbial research and for the biological detection of biologi-
cal entities, such as cancer biomarkers, exosomes, microbial extracellular products, and
many more. Droplet-based microfluidic systems have been assessed for the cultivation and
detection of microorganisms. Considering the utility of single-cell microfluidic technology,
the detection of pathogens has been analyzed.

Microfluidic systems for detecting Bacillus coagulans, Escherichia coli, and Listeria mono-
cytogenes have also been used to detect Salmonella [81–84]. Specific detection methods, such
as enzyme-linked immunosorbent assay, colorimetric assays, nucleic acid-based assays, and
SERS, are critical, time-consuming, costly, and tedious [85–90]. The latest sensitive detection
methods include a droplet-based digital PCR method used for high sensitivity [81].

Detection of B. coagulans was performed by a microfluidic method where a flow-
focusing microfluidic chip was used. Water in oil microdroplet was formed where cell
suspension makes up the aqueous phase. Low polydispersity microdroplets were generated
using the flow-focusing microfluidic device. The system gave 22% successful single-cell
microdroplets. The growth pattern of the bacteria in the microfluidic system was also
studied [81] (Figure 1).

Similarly, another study demonstrated a high throughput screening system that detects
high lactic acid-producing bacteria B. coagulans. Cells were encapsulated in water-in-oil-in-
water droplets followed by an analysis of high lactic acid producing microdroplets using a
fluorescent reporter detecting the pH changes. The system also consists of sorting these
high lactic acid-producing microdroplets by FACS analysis [82].

In specific pathogens, such as Salmonella, the detection methods should be rapid,
portable, and reliable, so, researchers explored a single-cell analysis microfluidic system.
This protocol includes encapsulation of Salmonella into single-cell microdroplets containing
growth medium with resazurin fluorescent dye, which aids in fluorescent detection of the
pathogen within 5 h of microdroplet generation, collection, and incubation in culture. The
detection limit of this system is 50 colony-forming units per ml within 5 h (Figure 2). The
detection of the pathogen using this single-cell microfluidic method was performed in
specific food samples, such as milk. For droplet generation, Salmonella was introduced with
resazurin dye, milk sample, and growth medium. The detection time has been reduced
from 24 h to 5 h. This method opens new avenues for researchers to increase the efficacy of
detecting adventitious agents in food samples.
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Figure 2. Single-cell droplet microfluidic system for the detection of Salmonella. The process has three steps: (a) Droplet
generation and single-cell encapsulation of Salmonella through microfluidic system, (b) cell culture of collected droplets, and
(c) analysis of fluorescent signal in the droplets. It is adapted from Reference [79] with permission from Elsevier (License
Number 5184891131438), 2021.

3.2. Analytical Devices-Based Onmicrofluidic Paper System

Microfluidic paper-based analytical devices (µPADs) were first explored in the year
2007 [91], and it is a boon for the developing nations because it provides a portable
technology, with low risk and low-cost technology for disease screening in these areas. In
contrast to the microfluidic analytical devices, which were designed using glass, silicon
is designed in combination with super-polymer, µPADs which are designed using paper
which reduces their cost [92–100]; thus, µPADs can be successfully applied in monitoring
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the disease condition, as well as in monitoring environmental contaminants [101,102].
These devices were also employed to measure the semi and/or quantitatively amount of an
analyte by utilizing the standard, as well as sample, solutions. However, they cannot detect
a meager amount of sample as it cannot be analyzed in the ppb or even ppt range [103].

3.3. Aptasensing for Detecting Microbes Their Toxins and Other Impurities

An emerging class of synthetic molecules includes single-stranded oligonucleotides
usually synthesized using Systematic evolution of ligands by exponential enrichment
(SELEX) and the class of molecules known as aptamer and can be utilized for the formation
of biosensors with broad applicability [104–107]. Aptamers are more advantageous as
compared to antibodies with properties, such as high thermal and chemical stability and
low cost of production [108–110]. The sensors based on aptamers, called aptasensors, are
often utilized for multiple applications, such as detecting certain toxins and contaminants
in the food. Aspergillus flavus and Aspergillus parasiticus often produce toxins during their
growth on food and feed, and such mycotoxins are named aflatoxins (AF) [111–113]. There
are mainly six different types of aflatoxins [113,114].

With great technological advancements, many new techniques/assays are employed
to detect and analyze aflatoxin. Aflatoxin, such as aflatoxin B1 (AFB1), has been detected by
using techniques, such as high-performance liquid chromatography (HPLC), coupled with
tandem mass spectroscopy (HPLC-MS/MS) [115], enzyme-linked immunosorbent assay
(ELISA) [116], and HPLC, coupled with a fluorescence detector (HPLC-FLD) [117]. Develop-
ment of an aptasensor for the detection of AFB1 utilizing RGO/MoS2/PANI@AuNPs-based
electrochemical aptasensor exhibited advantageous properties, such as good stability, good
selectivity, rapid response, and high sensitivity limits. It can be extended to determine
the mycotoxins by controlling the functioning of the aptamer. The detection range for the
aptasenso ris from 0.01 fg/mL to 1.0 fg/mL [118].

Aptamer recognition, coupled with molecular imprinting (MIP) recognition, was
utilized as a double recognition method in aptasensor development [119]. The sensing
interface involved in the aptamer is Au nanorod, which is helpful for its covalent immobi-
lization with MIP. It was found that its recognition abilities were enhanced and were better
than both aptamer recognition and MIP recognition alone.

Selective detection of oxytetracycline, an antibiotic that can be a part of the food
chain in edible products, was improved by synthesizing anew aptasensor, a sandwich-type
electrochemical system. The aptasensor was based on a nanocomposite of graphene-three-
dimensional nanostructure gold (GR3D-Au). In this sensor, the signal was amplified using
nanoprobes of aptamer-AuNPs-horseradish peroxidase (HRP), and it improves the transfer
of electrons and the loading capacity of the biomolecules. In coordination with the HRP
modified gold nanoparticles, the aptamer leads to an excellent detection of oxytetracycline.
The novel aptasensor has been applied to detect oxytetracycline in food samples, such as
honey, and can be utilized for other food samples, as well [120].

In either organic or inorganic form, Arsenic is a typical heavy metal contaminant that
acts as a toxin in multiple environmental sources, such as water, soil, various food stuff,
vegetables, and cereals [121]. Amongst the different states of arsenic, As(III) is more toxic
than As(V) or compounds of organic-As by a factor of 60 [122–124]. Health problems, such
as skin damage, cardiac diseases, lung, and urinary bladder diseases, are witnessed in
people consuming contaminated water [121,125–127]. This makes the detection of arsenic
in water samples a very crucial element.

Detection of As (III) has been improved by the introduction of various analytical
methods, including HPLC [128], atomic fluorescence spectrometry [129], atomic absorp-
tion spectrometry [130,131], and electrochemical methods [132,133]. Electrochemical ap-
tasensors have been used widely because of the advantageous properties that they offer.
Another aptasensor was synthesized to detect arsenite As(III), which was based on3D
reduced graphene oxide modified gold nanoparticles (3D-rGO/AuNPs). Additionally, a
5′-thiolate aptamer was synthesized and organized to detect As (III). It was assembled on
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a glassy-carbon-electrode, which is firstly modified with 3D-rGO/AuNPs, leading to the
formation of Aptamer/3D-rGO/AuNPs/GCE. A covalent bond formation facilitates the
modification between Au and S. If As (III) is present in any given sample, then, the ssDNA
and the target interact to yield a G-quadruplex interaction, which produces a blockage
for the transfer of electron. After the initial synthesis of these aptamers, the signals of the
electrochemical impedance spectroscopy (EIS) were increased. Different parameters and
conditions were optimized to advance the sensitivity of the aptasensor. This aptasensor
was used for different water samples to detect As(III), specifically. The detection range of
the aptasensor was 3.8× 10–7–3.0× 10–4 ng mL−1 [134]. Apart from detecting heavy metals
and chemical contaminants in spoilt food, biological contaminants can also be detected
using electrochemical aptasensors.

Death due to medical sepsis is a significant problem, and the causative molecule
is lipopolysaccharide (LPS). Electrochemical biosensor remains the method that can be
used to identify the LPS best. Detection of lipopolysaccharide from Escherichia coli 055:B5
was enhanced by using an electrochemical aptasensor. The first step was the synthesis
of rGO and gold nanocomposite (rGO-Au). Aptamer chains were then reacted with the
rGO-Au nanocomposite and were immobilized on GCE. The modified electrode was
characterized by using the voltammetry techniques, such as cyclic, square wave, and EIS.
The designed electrochemical electrode was used to analyze serum of patients and healthy
persons for the presence of LPS. It was found that it has higher sensitivity than the other
designed electrochemical electrodes, and the specificity of the electrode is very high [107].
If Mg/CODs are used, that further increases the method’s sensitivity [107]. These sensitive
techniques can be easily employed for raw materials and the detection of LPS in processed
and packaged foods.

3.4. Electrochemical Biosensor Devices

Microbiological techniques used for conventional culturing of microorganisms are
hectic, time-consuming, and slow. These techniques have been overpowered by high
end-techniques, which involve the detection of food pathogens by incorporating biosensors
that are fast, reliable, accurate, and specific. Biosensors enable real-time observation of a
biological receptor compound (nucleic acid, enzyme, antibody, etc.) by incorporating a
transducer. Biosensors are specific, leading to the detection of specific compounds from
complex mixtures and complex food samples. Six major biosensors include mass biosen-
sor, optical biosensor, magnetic biosensor, micromechanical biosensor, electrochemical
biosensor, and thermal biosensor [135–143].

Chlorpyrifos is majorly available and the most crucial organophosphorus pesticide.
The maximum residue limit has been defined in different food products for almost all the
organophosphorus pesticides. If present in concentration more than the maximum residue
limit, chlorpyrifos in food exhibits toxicity in humans. For detecting chlorpyrifos direct
competitive-immunoassay can be used. In one study, gold nanoparticles (AuNPs) were
used to fabricate the glassy carbon electrode (GCE), followed by binding with BSA and
Antibody [144]. The chlorpyrifos was detected by the strategy of enzymatic biocatalytic
precipitation amplification (BCP). Chlorpyrifos standards and the HRP-BSA complex were
dropped onto the fabricated GCE at room temperature for half an hour. The formed
electrode was then incubated in 1 mM 4-chloro-1-naphthol and 1 mM H2O2 mixture for
15 min. Impedimetric and cyclic voltammetry determination was performed. Cyclic
voltammetry was determined within a voltage range of −0.20 and 0.60 V with a50 mV s−1

scan rate. The determination by the impedimetric method was performed at 0.22 V,
alternating voltage of 10 mV and 10−2 to 106 Hz as the frequency range (Figure 3) [1]. This
method helped determine the pesticide in cabbage and lettuce and could be developed to
determine other pesticides.
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Electrochemical biosensors can be utilized for the detection of a wide array of molecules.
One molecule that has been detected well using the electrochemical biosensor is dopamine.
Graphene oxide and Nile blue were drop coated onto the glassy carbon electrode surface,
forming GO/NB/GCE. AuNPs were electrodeposited onto the GO/NB/GCE by employ-
ing a one-step co-reduction treatment in conjunction with scanning using cyclic voltam-
metry. The electrodeposition of AuNPs caused the reduction of graphene oxide, resulting
in rGO/NB/AuNPs/GCE formation. Along with this, the 5′-SH-terminated aptamer of
dopamine was made to react with AuNPs in rGO/NB/AuNPs/GCE by the formation of
bonds between Au and S, leading to the formation of aptamer-rGO/NB/AuNPs/GCE sys-
tem. It was found that dopamine binds with the aptamer specifically; hence, the synthesized
biosensor can be utilized to detect dopamine in patients (Figure 4). Apart from detecting
specific clinical molecules, pesticides present in the food samples can also be analyzed [145].
In this case, the electrochemical cell was used for direct analysis of the pesticide. Carbaryl
insecticide has been used extensively in agriculture for warding off an extensive range of
insects. Carbaryl poisoning in humans can cause inhibition of cholinesterase, resulting
in carbaryl poisoning [146]. For detecting these harmful components, the co-reduction of
metal precursors was performed to synthesizeAuxRh1-x nanocrystals in the presence of
oleylamine. The synthesized Au42Rh58 and, after characterizations, the Au42Rh58 nanocrys-
tals modified electrode was made in two steps, by first making ink of Au42Rh58 reacting
with carbon powder. The ink was then loaded as a thin film onto a glassy carbon electrode.

During the detection of carbaryl, the C-O bond gets cleaved, which leads to the forma-
tion of its hydrolysis product 1-naphthol. The hydrolysis product thus formed undergoes
electrocatalytic oxidation, which is then detected electrochemically. The specificity is very
high, as can be seen with no interference from the presence of metal ions, organophosphate
pesticides, glycine, serine, and aspartic acid. The electrocatalytic capabilities of AuxRhx−1
of the bimetallic system were much higher than the monometallic systems, both Au and
Rh. Out of the three different bimetallic compositions, Au61Rh39, Au42Rh58, and Au26Rh74,
Au42Rh58 has the best electrocatalytic capabilities [146] (Figure 5).
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This bimetallic system of detection can be used to determine the extent of pesticides
in various processed foods.
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from the Royal Society of Chemistry (Order no: 1160543), 2021.

Salmonella typhimurium has been detected by an in-situ method [147]. It is a selective
method, and it measures the oxygen mediated cathodic peak current during bacterial
proliferation in cyclic voltammograms [147]. Bacterial pathogens can also be detected by
the electrochemical biosensors, utilizing the presence of specific marker enzymes. The
presence of coliform bacteria in water samples was analyzed by detecting the enzymes, such
as β-D-glucuronide glucuronosohydrolase (GUS) and β-Dgalactosidase (β-GAL) [148,149].



J. Funct. Biomater. 2021, 12, 67 13 of 30

3.5. Omics Tools for Detection: PCR-Based and LAMP-Based Detection

Omics encompasses areas of study, such as genomics, transcriptomics, proteomics,
and metabolomics, which can be utilized for the rapid detection and take control mea-
sures of biological contaminants [150]. Omics has been applied for resolving the contam-
ination by aflatoxins [151]. Omics tools analyze the biological contaminants present in
any food sample by the analysis of the cellular RNA, DNA, proteins, and primary and
secondary metabolites that are a part of the biological entity and facilitates the cellular
pathways [150,152]. Array-based techniques have been introduced for the analysis of myco-
toxin [150,153,154]. Initially, single mycotoxins were detected using the simple techniques
of thin-layer chromatography (TLC); however, the detection of multiple mycotoxins was
initiated using different techniques, such as HPLC, GC-MS, GC-MS/MS, LC-MS, LC-NMR-
MS, and LC-MS/MS [155,156]. Metabolomics tools have been utilized to detect mycotoxin
accumulation in different crops and food products [157–159].

The limit of quantification of different aflatoxins has been analyzed in different food
samples, although aflatoxin levels may vary with the substrate on which the fungus
is growing. The limit of detection for aflatoxin B1 and aflatoxin B2 is 3.0 µg/kg and
10.0 µg/kg, respectively. For aflatoxin G1, aflatoxin G2, and aflatoxin M1, the detection
limit is around 10.0 µg/kg. Ochratoxin A and B’s detection levels are 15.0 µg/kg and
9.9 µg/kg, respectively [160].

The first genomic analysis of Aspergillus flavus identified more than 7000 unique
Expressed Sequence Tags (EST) [161], and, subsequently, the functional genomes of the
scale of ~12,000 were identified [162]. These bioinformatics tools deciphered the gene
sequences responsible for the production of aflatoxin [163], and the presence of these genes
in a particular sample can be determined by microarray analysis, quantitative reverse
transcriptase (qRT-PCR) etc. [164–166]. Furthermore, around 240 different A. flavus strains
were isolated from peanut seeds, and genome sequencing of all these strains was performed
by next-generation sequencing analysis. The isolated strains were distributed into nine
clades, and, out of them, three clades were non-aflatoxigenic, five were aflatoxigenic, and
one belonged to A. parasiticus [167].

Besides genomics, the transcriptomics analysis is also imperative to analyze if the
genes produce the relevant enzymes or not [168,169]. For transcriptome quantification,
high-throughput tools, such as transcriptome shotgun sequencing (WTSS) and microar-
rays, are used [170–173]. For detecting mycotoxins, apart from microarrays, other high-
throughput tools used were RT-qPCR and RNA-seq [174]. Transcriptome analysis of the
fungus gives information about the interaction and relationship between the fungus and
the host organism. In one of the studies, Aspergillus flavus isolated from Zea mays was put
to RNA sequencing, which revealed the interaction and relationship between the fungus
and the plant and helped build the interactome of the host and pathogen with mycotoxin
production [175,176]. The presence of secondary metabolites also helped to develop detec-
tion systems [177]. Studies of different toxins explain that transcriptomic studies do not
clarify the modes of actions of the toxins, so, classical toxicology and omics studies that
explain the modes of action should also be performed [178,179]. It is important to mention
that these studies of omics and metabolomics could help to detect the levels of infection in
any food product with some limitations.

Moreover, another technique, the PCR reaction, for detecting fungal aflatoxins is not
very specific as the structure of these toxins is complex and requires multiple genes for this
purpose. The structural genes involved in the PCR are often those that also express other
toxins (sterigmatocystin) produced by A. versicolor and A. nidulans. The DNA target region
that can be used instead to identify the aflatoxin is the ribosomal DNA, such as internal
transcribed spacer regions 1 and 2. Other DNA target regions include the 28S ribosomal
DNA, majorly its 5′-end. The genes that are promisingly utilized for the detection of
aflatoxins are nor-1, omt-A, and ver-1 [180].

Another technique that can be used to detect is loop-mediated isothermal amplification
(LAMP) [181], and one of the significant advantages of LAMP assays is that it is unaffected
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by inhibitors from the growth media or food matrix [182]. LAMP involves four primers
that bind specifically to DNA and helps in better amplification of the DNA with enhanced
reaction speed [183]. Six different binding sites enable specific amplification of target DNA.
PCR and LAMP assays are species-specific and pose certain challenges for the detection of
minor species. The nor-1 gene-specific LAMP assay was utilized for the detection of certain
species, and, utilizing it for 128 fungal species of 28 genera, synonyms of A. flavus and A.
parasiticus were discovered, which were aflatoxigenic in nature [184]. Positive reactions are
detected using neutral red during daylight to avoid unambiguity. The conidia of Aspergillus
parasiticus was detected with a limit of ~210 conidia per reaction. The samples of nuts,
dried figs, rice, spices, and raisins have been analyzed for the presence of aflatoxinogenic
species in it. Detection of bacteria, protists, viruses, fungi, plants, and animals was also
performed using the LAMP assay [185–187]. Aspergillus spp. producing aflatoxin was
detected by developing a specific LAMP assay [188–190]. Rice samples were also analyzed,
and it was found that rice can act as a relevant source of aflatoxin contamination [184,191].
Campylobacter in poultry carcasses has been detected using the LAMP method [192,193].
Mycotoxin contamination was detected in wheat grains using strategies of multiplex PCR
and LC/MS/MS. Out of 34 samples assessed for mycotoxin contamination, many samples
were found contaminated with Fusarium and Aspergillus species. The mycotoxins commonly
found in food samples include aflatoxin B1, deoxynivalenol, and fumonisins [194].

3.6. Elisa-Based Detection

ELISA is another tool to detect the presence of pesticides, as well as food-borne
pathogens. Carbaryl pesticide was analyzed in water and soil samples using ELISA.ELISA
was also applied in case of detection of carbaryl pesticide in grains. The carbaryl present in
some products, such as almonds, sweet potato, and peaches, is very low, and the sensitivity
of this method is 460–1150 µg kg−1. The ELISA methods that were used were competitive
homologous and heterologous ELISA methods. A heterologous CD-ELISA was used to
detect carbyl, and sensitivity was increased by 12-fold compared to the homologous ELISA
method. This method was applied in multiple food sources, and the sensitivity increased
by ~75-fold. Furthermore, a 10-fold improved detection of carbaryl in food samples was
performed using ELISA, coupled with chemiluminescence (ECL) [195].

Carbaryl pesticide present in rice samples can be detected using a capillary electrophoresis-
based competitive immunoassay (CEIA), coupled with a detector of laser-induced fluo-
rescence (LIF). The use of this method has enhanced the equilibrium and reduced the
detection time within 8 min. CEIA can be coupled to ELISA, and, using the CEIA-ELISA
method, the detection limit of carbaryl was found to be 0.05 ng/mL [196], and, comparing
the CEIA-ELISA versus CEIA-LIF, the sensitivity of ELISA was 14 times less. Determi-
nation of the amount of carbaryl in spiked rice samples was performed with a simple
pretreatment. The spiked rice samples were tested for recovery of carbaryl by using the
CEIA-LIF detector [197].

Organophosphorus pesticides (OPs) can also be detected using the modern methods
of ELISA. A competitive impedimetric immunoassay technique was developed for the
detection of chlorpyrifos. This assay utilizes the particular affinity of immunoassay, along
with an enzyme-based biocatalytic precipitation amplification approach. The Electro-
deposited nanogold surface was modified with the help of a glassy carbon electrode. The
chlorpyrifos antibody was anchored onto the modified electrode by gold-NH2 bond and
gold-SH bonds. The reactivity of the electrode was improved by anchoring the appropriate
concentration of antibody against chlorpyrifos. HRP (horseradish peroxidase) enzyme and
bovine serum albumin-chlorpyrifos (BSA-CPF) were made to react with gold nanoparticles
to yield the analyte competitor HRP-AuNP-BSA-CPF. Competitive immunoassay occurred
between chlorpyrifos and HRP-AuNP-BSA-CPF to react with the CPF antibody. The
immunoassay has been utilized to detect chlorpyrifos in vegetable samples (Chinese
cabbage, Lettuce) [120]. The analysis of acetylcholinesterase electrochemical biosensor
cannot estimate low concentrations of organophosphate pesticides present in food samples,
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such as vegetables and fruits, drinking water, and soil samples. The method is not sensitive
and selective enough [198].

Salmonella in animal samples, such as pork, beef, and chicken, can be detected using a
sandwich immunosensor assay [199]. For the Escherichia coli O157:H7 strain, rapid detection
was developed where the enzyme-antibody conjugate mixture was used to label the cells.
These labeled cells were taken on a 0.2 µm filter, and then the filter was placed on the
electrode to measure the enzyme-substrate interaction [200,201]. Another immunosensor
based on amperometric was developed [202]. It was based on the activity of β-galactosidase,
and coliform bacteria were analyzed. Disposable screen-printed electrodes were used for
simultaneous analysis of multiple samples [202]. In this case, the specificity was obtained
by using the electrodes that are coated with the antibody specific for a particular bacterium.
Different bacterial strains were optimized and analyzed, along with bacteriophages, and the
enzymes that were analyzed include p-aminophenyl-α-D-glucopyranoside (pAP-α-GLU)
for B. cereus and pAP-β-D-GLU(p-AP-β-GLU) for Mycobacterium smegmatis [148,149].

3.7. Microextraction and Chromatographic Techniques

Many different chromatographic techniques, such as TLC and HPTLC, have been
employed to analyze diverse contamination in food products. Aspergillus flavus releases
aflatoxins, which contaminate nuts, rice, beans, barley, food sources for fishes, etc. Aflatox-
ins can be detected by a series of steps, including sampling, purification, and concentration
of the extract, followed by TLC and HPTLC. For the quantitative and qualitative detec-
tion of certain selected pesticides in wastewater and lake; RP-HPTLC and NP-TLC Gas
chromatography-mass spectroscopy (GCMS) was utilized. A dispersive liquid-liquid mi-
croextraction method was sensitized for the same purpose. The disperser and extraction
solvent were optimized by applying a univariate approach and box-behnken design was
incorporated to analyze elements. The results described that the method was accurate and
could be applied to a wide variety of samples [203].

Gas chromatography and liquid chromatography have been employed for detecting
organic and inorganic contaminants. [204,205]. Besides this, different compounds have
been quantitated using gas chromatography-mass spectrometry (GC-MS) [206]. Different
techniques, such as solidified floating organic drop microextraction (SFODME) [186,207],
switchable solvent liquid-phase microextraction (SS-LPME) [208], dispersive solid-phase
microextraction based on magnetic nanoparticles (d-SPE-MNP) [209], hollow fiber liquid-
phase microextraction (HF-LPME) [210], single drop microextraction (SDME) [211], and
solid-phase microextraction (SPME) [212], have been utilized for enhancement of detection
power. Rezaee et al. devised a method to extract polycyclic aromatic compounds by disper-
sive liquid-liquid microextraction (DLLME) [213]. This method is more accurate and can
be used to detect contaminants at very low concentrations [214]. Certain microextraction
techniques and DLLME have utilized non-toxic chemicals, making the procedure green
and environmentally friendly [215].

3.8. Biosensors

Biosensors are the analytical devices that are utilized for the estimation of chemical
and biological analytes. The main components of the biosensor include the detector to
detect the analyte, which also acts as a signal generator, signal transducer and a reading
and amplifying device. Biosensors can be classified into many types depending on the
contaminant they detect, the detector system, and the transducer system they possess.

3.8.1. Nanobiosensor

Nanobiosensors are biosensors that have nano-scale entities attached with the tran-
ducer of the biosensor. Previously, techniques, such as Surface Enhanced Raman Spec-
troscopy (SERS), have been used to detect contaminants in many food samples, fishes,
and melamine in milk. This technique was then modified to synthesize standing AuNR
arrays. Introduction of standing AuNR arrays induced a potent electromagnetic field, but it
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made the system capable of analyzing milk, orange juice, and grapefruit juice for carbaryl.
Contaminants can be detected as low as 50 ppb by this modified method, which can be
used in different food samples [216]. Magnetic nanoparticles can also be used for detecting
various analytes. These have been thoroughly studied and have a wide range of appli-
cations ranging from functioning as a glucose sensor [217], for quantified estimation and
removal of rhodamine [218], for the diagnosis of malaria [219], and for enzyme immune
assay atrazine sensor [220,221].

3.8.2. DNA Biosensor

The DNA biosensor is based on the concept that a specific nucleotide sequence called
a probe is immobilized onto a chosen transducer based on its complementarity bind and de-
tects specific nucleic acid sequence in a sample. Detection of specific nucleic acid sequences
is initiated by a hybridization reaction between the probe and nucleic acid in a sample.
DNA hybridization can be detected using electrochemical transducers, which are more
robust and sensitive [222–228]. To increase the efficacy of the detection, DNA biosensors
have been coupled to PCR. Different pathogenic bacteria can be detected simultaneously
by using a disposable electrochemical low-density genosensor array [223,226–228].

In another study, a screen-printed array of gold electrodes, which were modified
using thiol-tethered single-strand DNA probes, was used for detecting bacteria present in
different samples [80]. The surface-tethered and biotinylated signaling probes were bound
to the samples containing the bacteria of interest by the sandwich hybridization technique.
The hybrids formed were bound to a streptavidin–alkaline phosphatase conjugate. The con-
jugate was further exposed to an α-naphthyl phosphate solution, and the signal generated
was detected by differential pulse voltammetry. These systems can further be improved
to develop a strain-specific assay in which the probe can be a sequence of a specific gene
encoding a toxin produced by the bacterial strain. This would help to differentiate if the
contamination is toxic or not.

On the same lines, target oligonucleotides can be immobilized onto carbon paste
electrode, and the hybridization can be detected by chronopotentiometry. These electrodes
were utilized for simultaneous and fast analysis of Lysteria monocytogenes, Cryptosporidium,
Salmonella enterica, S. aureus, Giardiaspp, E. coli 0157:H7, and Mycobacterium tuberculosis. The
electrodes have been coupled with primers with magnetic moieties for the electrochemical
detection of multiple pathogens in food samples [229]. In another attempt, a DNA target
hybridized to both biotinylated capture and digoxienin probe was used as a sensor. It
was further attached to streptavidin-modified magnetic beads and was isolated using a
graphite-epoxy composite-based magneto electrode system. Anti-digoxigenin horseradish
peroxidase (HRP) was used as the electrochemical detector. PCR- amplified DNA samples
were also estimated using this method. The assay has been tested for Salmonella spp. [230].
Interdigitated gold array electrodes (IDA electrodes) were also utilized for the estimation of
different compounds very sensitively. The IDA electrode lies in the nanometer range, and
capture probes immobilized on it were thiol-modified oligonucleotides. RNA hybridization
can be improved by adding three additional molecules in adjacent proximity to the place
of interaction. The RNA bound to the electrode can be hybridized with a biotin-labeled
detector oligonucleotide, enabling the binding of the conjugates of avidin-linked alkaline
phosphatase. A multi-potentiostat detected the electrical signal generated. The sensitivity
of these systems can be enhanced by 60% by changing the hybridization patterns. PCR-free
methods have also been devised for the analysis of food contaminants, and, in this regard,
an RNA-biosensor was devised for detection of E. coli in water samples, which makes this
technology rapid, specific, and sensitive [231].

In a separate study, an isothermal NASBA technique was used to estimate, prepare,
and amplify the sample. A DNA/RNA-based biosensor was utilized for the estimation of
the amplified RNA. The samples can be detected as low as 5 fmol per sample and 40 E. coli
CFU mL−1 [80].
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3.9. Smartphone-Based Biosensing

Looking at the increased demand of technology and the latest technological advance-
ments, smartphones have become an inevitable part of our lives. They have built in sensors,
better connectivity, portability, and operability. Food evaluation can be made easy and
widely available by linking the biosensors with smartphones. These user-friendly and
portable detectors are capable of detecting toxins, allergens, contaminants, and pathogens.
Food products get contaminated during the entire processing, retail, storage, and consump-
tion protocol [232,233]. Smartphone-based biosensors have replicated the conventional
methods of detection but are more powerful [234–238].

Biosensors have a very high potential for detecting pathogens in food samples. Biosen-
sors are also compatible with portable devices and are, therefore, easily incorporated into
portable devices for the detection of food contaminants [232,235,239,240]. The latest oper-
ating systems, sensors, transducers, and data processors have enabled smartphones to act
as excellent data processors [235,241,242]. In healthcare diagnosis, smartphones have been
utilized for particular colorimetric and fluorescence assays. Smartphones have also been
utilized for the evaluation of food quality and environmental monitoring [243–245]. By
2018, 67% of the global population utilized mobile services [246]. On-site sensing devices
and systems have changed drastically by the introduction of smartphones at this front.

3.9.1. Smartphone-Based Optical Biosensors

Smartphones can be made compatible with multiple biosensors for a wide range of
applications. Smartphones combined with optical biosensors, such as colorimetry, fluores-
cence, etc., can be utilized for real-time food analysis. 3D design of the solid phase latex
microsphere immunochromatography platform (SIAP) in the smartphone for detecting the
presence of zearalenone in cereals and feed has been utilized [247]. One example of food
analysis is the microfluidic biosensor designed for E. coli O157:H7 [243,244,247,248]. In this
microfluidic biosensor, gold nanoparticles were analyzed for their aggregation owing to E.
coli in the samples (Figure 6b) [249]. Magnetic nanoparticles with specific antibodies can
also be used to analyte separation, density, and detection of food pathogens [244,247,250].
Another biosensor was also developed for the presence of Salmonella typhimurium. The
detection was performed using a fluorescent detector (Figure 6c) [251].

Similarly, a multichannel fluorescence detector was utilized to detect four types of
cyanotoxins (Figure 6d) [252]. Aptamer-based dye assay is used in the multichannel
detector to generate fluorescent or colorimetric responses. Different light sources excite
the fluorophores, and the change in the fluorescence can be detected by the smartphone
camera [244,251,253].

3.9.2. Smartphone-Based Electrochemical Biosensor

Electrochemical biosensors have also been incorporated into smartphones apart
from optical biosensors. Smartphones have been incorporated with electrochemical
techniques, including amperometric [254,255], potentiometric [240], and impedimetric
method [256,257]. Integrated exogenous antigen testing (iEAT) has been initiated for on-
site detection of food allergens [258] (Figures 6 and 7).
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with permission from Reference [247], copyright (2018) Elsevier (License number 5184930674381). 
(b) Colorimetric biosensor for detecting E. coli O15:H7 adapted from Reference [248] with permis-
sion from copyright (2019) Elsevier (License number 5184910590426). (c) Salmonella typhimurium 
detection adapted from Reference [250] with permission from copyright (2019) Elsevier (License 
number 5184910825826). (d) Multiple compound detection using fluorescent aptasensor adapted 
with permission from Reference [251], copyright (2019) American Chemical Society. 

The components involved were smartphone, electronic reader, mini display screen, 
microcontroller unit (MCU) for signal processing, rechargeable battery, Bluetooth com-
munications module, c card-edge connector, and a disposable allergen extraction kit. It 
includes a disposable allergen extraction device, electronic reader, and application for 
smart phone. Allergens are captured through immunogenic enrichment, and a signal is 
generated in the presence of HRP and a chromogenic electron mediator (Figure 7a). The 
biomedical analysis involved using a smartphone-based electrochemiluminescence sys-
tem that linked optical analysis with electrochemical excitation [242,255]. Serial 
bus-based and camera-based imaging methods were involved (Figure 7c) [242]. The de-
tection of E. coli was performed by using platinum and indium tin oxide electrodes [241].  

Chloropyrifos, malathion, and diazinon can be detected using fluorophore-quencher 
nano-pairs, coupled with fluorescent aptamer-based lateral flow biosensor (apta-LFB) 
[259–261]. In the lateral flow biosensor, instead of antibodies, aptamers have been used as 
recognition elements. They exhibit better specificity and stability as compared to the bi-
osensor utilizing antibodies. Detection limit of malathion and chlorpyrifos was in the 
range of ~0.7 ng/mL, and, for diazinon, it was around 6.7 ng/ mL [262].  

Figure 6. (a) 3D design of the solid phase latex microsphere immunochromatography platform
(SIAP) in the smartphone for detecting the presence of zearalenone in cereals and feed. Obtained
with permission from Reference [247], copyright (2018) Elsevier (License number 5184930674381).
(b) Colorimetric biosensor for detecting E. coli O15:H7 adapted from Reference [248] with permis-
sion from copyright (2019) Elsevier (License number 5184910590426). (c) Salmonella typhimurium
detection adapted from Reference [250] with permission from copyright (2019) Elsevier (License
number 5184910825826). (d) Multiple compound detection using fluorescent aptasensor adapted
with permission from Reference [251], copyright (2019) American Chemical Society.

The components involved were smartphone, electronic reader, mini display screen,
microcontroller unit (MCU) for signal processing, rechargeable battery, Bluetooth com-
munications module, c card-edge connector, and a disposable allergen extraction kit. It
includes a disposable allergen extraction device, electronic reader, and application for
smart phone. Allergens are captured through immunogenic enrichment, and a signal is
generated in the presence of HRP and a chromogenic electron mediator (Figure 7a). The
biomedical analysis involved using a smartphone-based electrochemiluminescence system
that linked optical analysis with electrochemical excitation [242,255]. Serial bus-based and
camera-based imaging methods were involved (Figure 7c) [242]. The detection of E. coli
was performed by using platinum and indium tin oxide electrodes [241].

Chloropyrifos, malathion, and diazinon can be detected using fluorophore-quencher nano-
pairs, coupled with fluorescent aptamer-based lateral flow biosensor (apta-LFB) [259–261]. In
the lateral flow biosensor, instead of antibodies, aptamers have been used as recognition
elements. They exhibit better specificity and stability as compared to the biosensor utilizing
antibodies. Detection limit of malathion and chlorpyrifos was in the range of ~0.7 ng/mL,
and, for diazinon, it was around 6.7 ng/ mL [262].
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Elsevier. Adapted with permission from Elsevier (License Number 5184940510188). (d) Food 
spoilage detection by a wireless badge, adapted from Reference [232] with permission American 
Chemical Society, 2021. 
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of detection. 
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croorganisms can be eliminated [263]. Gene chip arrays have been designed for studying 
the food contaminants by targeting virulent pathogenic genes [264–266]. 

A large number of genes can be analyzed quantitatively at the same time. It has the 
benefits of accuracy and rapid bioanalysis at low cost. Various types of microarray have 
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2. In-situ synthesis technology produces chips by photolithography with probes of 

only 25 mer length. Multiple probes have been used to avoid misjudgment for a 
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3. Micro bead placement method of microarray preparation where nucleic acid probes 
are put loaded on micro particles on a particular slide. 

4. qPCR array where RT-PCR primer and probe were synthesized in well plates mi-
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Figure 7. Evaluation of food samples using smartphone-based electrochemical biosensors. (a) Pocket
size detector. Adopted from Reference [257] with permission from the American Chemical Society. (b)
Gloves compatible with Smartphone-based biosensor, adapted from Reference [260] with permission
from American Chemical Society. (c) Electrochemiluminescence system based on smartphones for
Escherichia coli detection, adapted from Reference [241] with permission from Elsevier. Adapted with
permission from Elsevier (License Number 5184940510188). (d) Food spoilage detection by a wireless
badge, adapted from Reference [232] with permission American Chemical Society, 2021.

3.10. DNA Microarray

The obsolete and slow detection methods have been surpassed by the advancement
and introduction of DNA microarrays. DNA microarrays have enabled the detection of
pathogens in multiple samples in a single go, improving the efficacy, specificity, and time
of detection.

Microarray technology has enhanced the specificity by incorporating multiple specific
probes; thus, the false positives often resulting from the cross-contamination of microor-
ganisms can be eliminated [263]. Gene chip arrays have been designed for studying the
food contaminants by targeting virulent pathogenic genes [264–266].

A large number of genes can be analyzed quantitatively at the same time. It has the
benefits of accuracy and rapid bioanalysis at low cost. Various types of microarray have
been synthesized, but, majorly, they can be divided into the following types [193]:

1. Longer probe length and increased specificity chip was designed by Stanford Univer-
sity, but it has a disadvantage of low chip density.

2. In-situ synthesis technology produces chips by photolithography with probes of only 25
mer length. Multiple probes have been used to avoid misjudgment for a single gene.

3. Micro bead placement method of microarray preparation where nucleic acid probes
are put loaded on micro particles on a particular slide.

4. qPCR array where RT-PCR primer and probe were synthesized in well plates mi-
crofluidic disk, and the detection was carried out by quantitative PCR.

In one example, the toxicity due to Shiga toxin produced by E. coli (STEC) O104: H7
and the toxicity produced by Salmonella strains isolated animal products were analyzed by
DNA microarray [267,268].
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4. Conclusions

Spoilage of food results in food insecurity around different regions of the world,
leading to huge economic losses both all the people involved in the chain, starting from
the producers to the consumers. Diverse methods and strategies have been used for the
detection of contaminants in food samples. Some of these are PCR-based, either simplex
or multiplex, with some using a real-time format, microextraction and chromatographic
techniques, and omic tools biosensors based on DNA or nanotechnology. Techniques
involving biosensors are reliable, safe, and specific, and they can be used during food
manufacturing processes to monitor the inline processes. Spectroscopic techniques provide
accurate analysis of the chemical contaminants in food, whereas techniques involving
detection of molecules, such as DNA and proteins, include biosensors. The latest technolo-
gies, such as using smartphone-based biosensors for the detection of contaminants, have
a lot to offer, and the research on food spoilage will take a different course when these
technologies are available widely to the masses.
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