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Abstract

Background: The marine model organism Rhodopirellula baltica SHIT was the first Planctomycete
to have its genome completely sequenced. The genome analysis predicted a complex lifestyle and
a variety of genetic opportunities to adapt to the marine environment. Its adaptation to
environmental stressors was studied by transcriptional profiling using a whole genome microarray.

Results: Stress responses to salinity and temperature shifts were monitored in time series
experiments. Chemostat cultures grown in mineral medium at 28°C were compared to cultures
that were shifted to either elevated (37°C) or reduced (6°C) temperatures as well as high salinity
(59.5%0) and observed over 300 min. Heat shock showed the induction of several known
chaperone genes. Cold shock altered the expression of genes in lipid metabolism and stress
proteins. High salinity resulted in the modulation of genes coding for compatible solutes, ion
transporters and morphology. In summary, over 3000 of the 7325 genes were affected by
temperature and/or salinity changes.

Conclusion: Transcriptional profiling confirmed that R. baltica is highly responsive to its
environment. The distinct responses identified here have provided new insights into the complex
adaptation machinery of this environmentally relevant marine bacterium. Our transcriptome study
and previous proteome data suggest a set of genes of unknown functions that are most probably
involved in the global stress response. This work lays the foundation for further bioinformatic and
genetic studies which will lead to a comprehensive understanding of the biology of a marine

Planctomycete.
Background Microorganisms are known to be the 'gatekeepers' of these
Marine ecosystems, covering approximately 71% of the  processes, and insight into their lifestyle and fitness
Earth's surface, host the majority of biomass and contrib- ~ enhances our ability to monitor, model and predict the

ute significantly to global cycles of matter and energy.  course and effect of global changes. Nevertheless, specific
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knowledge about their functions is still sparse. The
'genomic revolution' [1] has opened the door to investiga-
tions targeting their genetic potential and activity on the
molecular level.

A particularly interesting representative of the marine
picoplankton community is Rhodopirellula baltica SH1T, a
free-living bacterium which was isolated from the water
column of the Kiel Fjord (Baltic Sea) [2]. R. baltica belongs
to the phylum Planctomycetes, a broadly distributed group
of bacteria, whose members can be found in terrestrial,
marine and freshwater habitats [3-7], but also in extreme
environments like hot springs [8], marine sponges [9] and
the hepatopancreas of crustaceans [10].

In terms of cell biology all Planctomycetes share several
morphologically unique properties, such as a peptidogly-
can-lacking proteinaceous cell wall [11,12], intracellular
compartmentalization [13] and a mode of reproduction
via budding. The latter results in a cell cycle that is charac-
terized by motile and sessile morphotypes similar to Cau-
lobacter crescentus [14-17]. A specific holdfast substance
produced by sessile cells allows R. baltica to attach to mac-
roscopic detrital aggregates (marine snow) [3,7].

At present, four planctomycete genomes are currently
available [18]. Of these, the genome of R. baltica is the
only one completely closed [16]. The genome was found
to be 7,145,576 bases in size and codes for 7325 open
reading frames (ORFs) plus 72 RNA genes. Originally,
only 45% of the ORFs were assigned particular functions
[16]. Thus, over 55% of all proteins in the genome remain
functionally uncharacterized. These were referred to as
'hypothetical proteins' with or without the affix 'con-
served' contingent on wider phylogenetic distribution
[19]. A subset of these conserved hypothetical proteins is
specific for Planctomycetes [18]. It seems likely that some of
these genes code for the unique planctomycetal cellular
characteristics and metabolic traits.

The availability of the genome information triggered sev-
eral key post-genomic studies including studies of the pro-
teome [20-24], enzyme activity [25] and protein
crystallization [26].

In summary, these studies confirmed the hypothesis of
Glockner et al. that R. baltica is a polysaccharide degrader
[16]. It appears R. baltica is gaining carbon and energy
from the decomposition of complex heteropolysaccha-
rides originally produced by algae in the photic zone
while slowly sedimenting with the marine snow.

Marine microorganisms like R. baltica are exposed to rap-
idly changing environmental conditions such as varying
temperature, salinity, irradiance and oxygen concentra-
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tion. Typically, sudden changes of these environmental
conditions induce a stress response in the exposed plank-
tonic community characterized by a distinct change in
their gene expression pattern. This stress response enables
the organisms to protect vital processes and to adapt to
the new condition. Such responses have been described
for a set of organisms from different environments includ-
ing Shewanella oneidensis [27,28], Pseudomonas aeruginosa
[29], Desulfovibrio vulgaris Hildenborough [30], Xylella fas-
tidiosa [31], Synechocystis sp. [32] and Yeast [33].

To gain insights into the stress responses of R. baltica with
respect to salinity and temperature the first whole genome
array for R. baltica - also the first Planctomycete microarray
- was established and applied. The reported data will serve
as a resource to expand our understanding of the physio-
logical and transcriptional response of R. baltica to the
wide range of changing environmental conditions a free-
living marine bacterium is exposed to.

Results and Discussion

Overview

54 distinct, total RNA samples were analyzed by whole-
genome microarray hybridization. Differential expression
of 2372, 922 and 1127 genes was noted during heat
shock, cold shock and salt stress, respectively, at one or
more of the five time points when compared to reference
samples (FIGURE 1i; ii &1iii). With only 45% of the genes
in R. baltica's genome functionally annotated, it is not sur-
prising that most of the differentially expressed genes were
hypothetical or conserved hypothetical proteins. The
complete list of the differentially expressed genes for each
shift experiment and time point is available in the ADDI-
TIONAL FILE 1.

Only 32% of the regulated genes in the heat and cold
shock experiments could be assigned with a COG func-
tion (FIGURE 2i &2ii) while 37% were assignable in the
salt stress experiment (FIGURE 2iii). This is in line with
the 36% (2661 genes) of COG functional class designa-
tions in R. baltica. A striking feature of the expression pro-
files displayed is the stereotypical response of a large
fraction of the genome to all three stress conditions. In
summary, 152 genes are up- or down-regulated at any
time point for all stressors. Of these 152 genes, 62 are
induced and 90 are repressed (TABLE 1 and TABLE 2).
49% of the induced and 61% of the repressed genes were
annotated as hypothetical proteins. The Venn diagrams
shown in FIGURE 3 provide an overview of the specific
and common genes of the three stress-specific responses.
To identify co-regulated patterns of gene expression, we
classified all differentially expressed genes of all three
stress expressions into 30 k-means clusters based on their
expression log ratio. To determine the necessary number
of clusters a figure of merit was generated. 30 clusters were
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Table I: Shared stress response to heat, cold and high salinity: Results for induced genes are shown

ID AA Product IEP Strand Potentially involved in/Comments
RB170 96 Transposase 1S3/IS91 | 0.1+

RB370 553  nitrate transporter substrate-binding protein 4.6 +

RB521 63 hypothetical protein 10.7 - [24,66]

RB723 60 hypothetical protein 7.3 +

RB934 375  Putative transposase 9.9 -

RB1394 78 hypothetical protein 0.1 - regulatory mechanism
RB1395 319  secreted protein similar to DNA-binding protein 5.5 + regulatory mechanism
RB1789 243  conserved hypothetical protein 9.4 + regulatory mechanism
RB1872 38 hypothetical protein 123+

RB2186 433 I1SXo8 transposase 9.4 -

RB2268 282  peptide methionine sulfoxide reductase 9.9 - [22]

RB3596 144 nitrogen fixation protein (NifU protein) 4.3 +

RB4299 96 Transposase IS3/IS91 | 9.9 +

RB4347 156  conserved hypothetical protein 4.7 + [24,66]

RB4397 55 protein containing DUF1560 10.5 +

RB4429 89 conserved hypothetical protein 4.9 + stress response
RB4433 162  Ferritin and Dps 4.3 +

RB4438 160  Pyridoxamine 5'-phosphate oxidase- 44 +

RB4510 49 hypothetical protein 9 -

RB5238 73 hypothetical protein 10.6 +

RB5551 663  hypothetical protein 5.7 + DVL-domain

RB5888 96 Transposase 1S3/IS91 | 0.1 -

RB5938 370  hypothetical protein- 5.6 - [66]

RB6928 160  hypothetical protein 4.1 +

RB7389 375  Putative transposase 9.9 +

RB8409 97 hypothetical protein 8.9 +

RB8527 330 protein containing DUFI559 6.6 + stress response
RB8987 48 hypothetical protein 9.1 -

RB9230 107 hypothetical protein 9.9 + next to transposase
RB9907 433  ISXo8 transposase 9.4 +

RB9955 452  secreted protein containing DUF1552 5.6 - regulatory mechanism
RB9999 281  conserved hypothetical protein- 4.6 - regulatory mechanism
RB 10049 217  RNA polymerase ECF-type sigma factor 10.1  +

RB10378 144 Thioredoxin 4.6 -

RB10727 276  manganese-containing catalase 5 + [24,66]

RB10728 132 secreted protein 9.9 + stress response
RB10896 161  secreted protein 10 - stress response
RB10954 143 hypothetical protein 104 -

RB10956 117 hypothetical protein 4.8 + [24]

RB10957 99 conserved hypothetical protein 5.6 + regulatory mechanism
RB10958 158  hypothetical protein 5.4 +

RBI1176 153 protein containing DUF442 4.8 - [24] stress response
RBI1260 121 dnaK suppressor protein, 5.2 -

RBI 1475 57 conserved hypothetical protein 4.7 + next acyltranscferase, short protein
RBI1504 72 conserved hypothetical protein 10.7 - short protein,
RB11505 199  conserved hypothetical protein, secreted 7.5 -

RBII515 74 conserved hypothetical protein 1.7 +

RBI1566 195  hypothetical protein 108 +

RBI1749 96 Transposase 1S3/IS91 | 0.1+

RBI1750 292  integrase 10 +

RBI1802 96 Transposase IS3/IS91 | 0.1+

RB11855 101 conserved hypothetical protein 125 -

RBI1918 134 protein containing DUF971 6.1 -

RBI1977 196  conserved hypothetical protein 9.5 +

RB12066 135 hypothetical protein 10 +

RB12239 433  ISXo8 transposase 9.4 +

RB12247 74 conserved hypothetical protein 6.3 -

RBI12936 580 conserved hypothetical protein 53 - DUF 444

RB12940 96 Transposase IS3/IS91 | .1 +

RB13222 208 SOUL heme-binding protein 8.7 -

RB13241 167 RNA polymerase ECF-type sigma factor 8.8 -
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considered as adequate. The cluster data are available in
the ADDITIONAL FILE 2. Clusters 1, 3 and 4 show a sim-
ilar response to the specific environmental changes, called
environmental stress response (ESR) over all experiments.
Clusters 2, 4, 5, 7, 15 and 22 describe genes reacting to a
specific environmental factor.

Experimental design and array data quality assessment
The experimental conditions used were chosen to mimic
the natural environment of R. baltica; however, stress con-
ditions were constrained by the detection limit of the
microarray technology used and, hence, were required to
elicit a sufficiently pronounced response from the organ-
ism. In contrast to steady-state or single-time-point stud-
ies, time series experiments can show the dynamic of gene
expression.

The negative, positive and stringency controls printed on
the array gave no indications for unspecific hybridiza-
tions. Co-hybridizations of two cDNA samples prepared
from the same total cellular RNA (self-self hybridization)
suggested that genes with an expression log ratio value
greater than 1.5 and smaller than -1.0 for heat and cold
shock, respectively, could be regarded as differentially
expressed. Salt stress log ratio values over 1.2 and below -
1.0 were considered as significant.

Effect of stress on Rhodopirellula baltica

No growth was detectable during stress conditions nor
were any obvious morphological changes by microscopic
investigation. Under optimal conditions R. baltica has a
doubling time of 10-12 hours [21], suggesting physiolog-
ical effects are not measurable during the short stress
period of, at maximum 5, hours.

Specific results of the shift experiments

Heat shock

In their natural environment R. baltica cells can be regu-
larly exposed to higher temperatures, for example, due to
irradiation at the water surface. Therefore, R. baltica cells
were rapidly shifted from 28°C to 37°C and observed
over a period of 300 min in the first experiment. This is
approximately 9°C above the optimal growth tempera-
ture reported by Schlesner et al. [2]. Employing a higher
temperature is very likely to kill the cells. The time series
reveals a quick response of R. baltica to sudden tempera-
ture up-shifts. In total 2372 genes are regulated out of
which 1140 genes encode hypothetical proteins. 390
genes (5%) were regulated after 10 min. This number
increased to 750 genes (10%) after 300 min (FIGURE 1i).
The COG classes containing the translation [J] and amino
acid transport and metabolism [E| were the largest down-
regulated classes. Up-regulated genes were assigned to the
COG classes of replication, recombination and repair [L],
post-translation modification, protein turnover and chap-
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erons [O], transcription [K], secondary metabolites bio-
synthesis, transport and catabolism [Q], cell envelope
biogenesis, outer membrane [M] and general function
prediction [R] (FIGURE 2i).

Taking a closer look at the response of R. baltica to thermal
stress revealed the induction of many known heat shock
proteins (Hsp): ClpB (RB6751), GroEL (RB8970), DnaJ
(RB8972), GrpE (RB8974), Hsp20 (RB10279, RB10283),
dnaK (RB9105), as well as the ATP-dependent protease
ClpP (RB9103). Also up-regulated were the chaperonins
Cpn10 (RB10627 and RB8969) and Cpn60 (RB8966) as
well as the cell division protein FtsH (RB2966) (Cluster 4
in ADDITIONAL FILES 2). Previous proteomic studies
found the proteins of these genes as well, except FtsH,
DnaJ and Hsp20 [22,24].

The regulation of the heat shock response in R. baltica
involves many transcriptional regulators. TetR (RB838)
and GntR (RB1862, RB8695) showed an up-regulation,
which affirms their important role in early heat shock
response [34]. A gene encoding for GntR was also found
in the environment on the planctomycete fosmid 3FN
from a Namibian coast metagenome study [18]. In E. coli
the induction of the majority of heat shock genes results
from a rapid and transient increase in the cellular level of
an alternative 32-kDa sigma factor (sigma32) encoded by
rpoH along with the alternative sigma factors E and 54,
encoded by rpoE (RB2302) and rpoN (RB6491), respec-
tively [27]. Although, all genes are present in the R. baltica
genome, they were not observed to be regulated, suggest-
ing a significantly different response cascade.

R. baltica also showed an extracytoplasmic stress response.
The gene coding for SecA (RB11690), belonging to the Sec
system, was induced. This indicated an activation of pro-
tein translocation, most probably from the riboplasma to
the paryphoplasm or medium. Proton channels were
induced and motility was inhibited as the flagellar motor
switch protein (FliG - RB12502) was down-regulated after
20 min. This was followed by the inhibition of the type 4
fimbrial assembly protein (pilC - RB11597) after 40 min.

Cold Shock

To investigate the response to cold shock, R. baltica cells
were shifted from the optimal growth temperature 28°C
[35] to 6°C and observed for a period of 300 min. 6°C
was chosen for this study as this is a common temperature
in the Baltic Sea. Sudden temperature chances occur natu-
rally due to turbulences between water layers. Further, the
temperature difference of 22°C is generally regarded as
standard for cold shock studies with bacteria [27,36].
Compared to heat shock only one third (922) of the reg-
ulated genes were differentially expressed. Out of these
922 regulated proteins, 391 genes (42%) encode for
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Table 2: Shared stress response to heat, cold and high salinity: Results for repressed genes shown

ID AA Product IEP  Strand Potentially involved infComments
RBé6I 58 hypothetical protein 9.6 +

RB314 309  malonyl CoA-acyl carrier protein transacylase 44 +

RB318 8l Acyl carrier protein 37 +

RB319 95 hypothetical protein 102+ fatty acid process
RB767 311 conserved hypothetical protein, secreted 5.7 +

RB825 117 hypothetical protein 7.8 -

RB951 234  protein containing DUF1596 123 -

RBI129 895  conserved hypothetical protein 5.8 - (S) bombinin, defense response
RB1233 206  30S ribosomal protein S4 12 -

RB2105 470  membrane protein 9.6 -

RB2306 41 hypothetical protein 9 +

RB2479 273  conserved hypothetical protein 5.5 -

RB3277 221 hypothetical protein 104 -

RB3362 87 hypothetical protein 1.9 -

RB3366 78 hypothetical protein 5.6 +

RB3394 36 hypothetical protein 10.5 +

RB3399 65 hypothetical protein 9.7 -

RB3575 152 membrane protein 0.1+ [21]
RB3603 344  secreted protein 4.6 -

RB3675 742 secreted protein 84 +

RB3688 53 hypothetical protein 9.3 -

RB3880 82 hypothetical protein 10.7 -

RB3953 857  hypothetical protein 5.2 -

RB3981 161  hypothetical protein 4.1 +

RB3994 191 hypothetical protein 4.1 +

RB4097 733 conserved hypothetical protein 6.2 +

RB4145 90 hypothetical protein 12 -

RB4194 53 hypothetical protein 14 - next to a seronine/threonine kinase
RB4269 282  glutamic acid specific endopeptidase 5.6 -

RB4358 123 hypothetical protein 6.5 - [24,66]
RB4373 109  hypothetical protein 48 -

RB4657 123 hypothetical protein 122+

RB4951 95 hypothetical protein 2.1+

RB5262 95 membrane protein 6.3 +

RB5409 97 hypothetical protein 127  +

RB5415 62 hypothetical protein 123+

RB5745 130 hypothetical protein 10.7 - genetic information processing
RB6092 361  Peptidase M50 9.6 +

RB6158 142 hypothetical protein 6 -

RB6174 69 hypothetical protein 10.6 -

RB6276 105  Histone-like bacterial DNA-binding protein 104 -

RB6634 365  protein containing DUF1559 53 +

RB6699 47 hypothetical protein In.r  +

RB6766 55 hypothetical protein 12 +

RB6849 101 hypothetical protein 128 -

RB7042 9l hypothetical protein 104 +

RB7116 59 hypothetical protein 1.7 + ribosomal machinery
RB7117 181  Ribosomal protein L35 14 -

RB7557 327  von Willebrand factor type A domain protein 4.9 +

RB7646 62 hypothetical protein 10.5 +

RB7647 73 hypothetical protein 74 +

RB7837 286  Ribosomal protein L2 1.8 +

RB7838 89 Ribosomal protein SI9/S15 108 +

RB7839 119 Ribosomal protein L22/L17 I +

RB7840 236  30S ribosomal protein S3 104 +

RB784I 138 Ribosomal protein L16 .+

RB7849 108  Ribosomal protein SI17 10 +

RB7850 122 Ribosomal protein L14b/L23e I +

RB7852 196  50S ribosomal protein L5 104 +

RB7854 6l Ribosomal protein S14 1.8 +
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Table 2: Shared stress response to heat, cold and high salinity: Results for repressed genes shown (Continued)

RB7856 181 50S ribosomal protein L6

RB7857 149  Ribosomal protein L18P/L5E

RB7859 177  Ribosomal protein S5

RB7894 398 translation elongation factor EF-Tu
RB7899 141 50S ribosomal protein L11

RB8I19 142 hypothetical protein

RB8457 113 hypothetical protein

RB85%94 41 hypothetical protein

RB8669 37 hypothetical protein

RB9343 59 hypothetical protein

RB9417 103 hypothetical protein

RB9460 79 hypothetical protein

RB9872 67 hypothetical protein

RB1058I1 384  secreted protein containing DUF1559
RBI1287 75 hypothetical protein

RBI1392 148  conserved hypothetical protein

RB11490 181  conserved hypothetical protein, membrane
RBI1707 83 conserved hypothetical protein

RBI1766 129 hypothetical protein

RB12193 36 hypothetical protein

RB12251 567  RNA polymerase specialized sigma factor
RB12327 686  TGF-beta receptor, type /Il extracellular region
RB12329 110 conserved hypothetical protein, membrane
RB12396 57 hypothetical protein

RB12454 199  hypothetical protein

RBI12818 163  conserved hypothetical protein

RB12821 117 Ribosomal protein LI19

RB12824 146  Ribosomal protein S16

RB12837 65 hypothetical protein

RB12839 225 Ribosomal protein LI

10 +

1.6 +

10.6 +

5.2 + [24,66]

9.6 +

0.+

.5 -

9.2 +

1.5 + ribosomal machinery
14 +

10.5 +

103 -

5.4 + cell division related
6.2 + [24]

9.1 +

5 +

10.3  +

9.8 + stress function

104 + [46]

7.5 - overlapping with asnB (RB12191)
9.4 -

4.5 -

4 +

.3 -

10.3 -

1.7 - ribosomal machinery
. -

5.3 -

9.8 + ribosomal machinery
9.8 +

hypothetical proteins. The cold shock response reached its
peak after 20 min with 419 differentially expressed genes
(6%) and decreased thereafter (FIGURE 1ii). In contrast to
the heat shock experiment, it seemed that R. baltica
needed approximately one hour to adapt to cold condi-
tions. Like other bacteria, R. baltica responded to cold con-
ditions with the up-regulation of genes coding for stress
response [COG class O], cell envelope and transport [M],
transcription factors and solute uptake. Genes for amino
acid biosynthesis [E] as well as protein fate and synthesis
[J] were down-regulated (FIGURE 2ii) [28].

Transcriptional activity was regulated by the up-regulation
of diverse RNA polymerase sigma factors, such as rpoD
(RB6780) and sigk (RB1392). A homolog of rpoD
(RB6780) was also found on the planctomycete fosmid
13FN [18]. 20 min after the exposure of R. baltica to cold
stress conditions it started to express genes implicated in
the modification of cytoplasmic membrane composition,
fluidity as well as morphology. The alteration of the lipid
composition in the cold has been previously reported in
other microorganisms [37]. In R. baltica genes coding for
cell envelope (RB6114 and RB6895), transport (RB4870),
lipid metabolism (RB316) and 18 genes coding for mem-
brane proteins were repressed after 20 min.

Furthermore, R. baltica repressed genes involved in sporu-
lation oppB (RB12861) and O-antigen flippase (RB2503),
flaA (RB4454) and pilus assembly (RB4061 and RB5478),
leading to reduced motility and budding ability. Genes
associated with amino acid biosynthesis, especially with
synthesis and fate of glutamine (RB4269) and glutamate
(RB5653) were also affected. The latter have been shown
to be translated [22,24]. A glycosyltransferase (RB12831)
and glycosidases (RB2988, RB2990 and RB2991) were up-
regulated at 300 min probably to aid in cell wall remode-
ling.

Although, incorrect protein folding at low temperature is
less expected than at high temperatures, chaperons and
proteases are required to deal with intracellular protein
perturbations [28,38]. Here, this was observed in the
induction of GroEL (RB8970) [22,24] and htrA-protease
(RB12752). One of the most prominent responses of
microorganisms to cold shock is the induction of cold
shock proteins. However, the two annotated cold shock
proteins of class I (CspA - RB4681 and Cspl - RB10009)
[39,40] were not observed to be regulated. One may
hypothesize that the stabilization of RNA in R. baltica
employs a different protein compliment than observed in
E. coli.
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(white) regulated genes per assigned COG-category according to the NCBI database (cut off e-value e-4). i) heat shock, ii) cold
shock and iii) high salinity; Columns: [C] Energy production and conversion, [D] Cell division and chromosome partitioning, [E]
Amino acid transport and metabolism, [F] Nucleotide transport and metabolism, [G] Carbohydrate transport and metabolism,
[H] Coenzyme metabolism, [I] Lipid metabolism, [J] Translation, ribosomal structure and biogenesis, [K] Transcription, [L]
DNA replication, recombination and repair, [M] Cell envelope biogenesis, outer membrane, [N] Cell motility and secretion,
[O] Posttranslational modification, protein turnover, chaperones, [P] Inorganic ion transport and metabolism, [Q] Secondary
metabolites biosynthesis, transport and catabolism, [R] General function prediction only, [S] Function unknown, [T] Signal
transduction mechanisms
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High salinity

As a marine organism, R. baltica must adjust to the haline
stratification of the Baltic Sea [41,42]. While moving
through the water column R. baltica cells are exposed to
variable concentrations of dissolved salts. In general, an
osmotic up-shift forces bacteria to change their physiol-
ogy by activating or deactivating specific enzymes or trans-
porters, in order to maintain osmotic balance [43]. To
gain an understanding of the genetic events that occur
during the early stages of salt adaptation, R. baltica cells
were subjected to salt up-shock from 17.5%o salinity (Bal-
tic Sea) to 59.5%o (hyper saline environment). Previous
experiments have shown that R. baltica is able to grow
between salinities of 4.2%o and 59.5%o0 [2] and does not
grow at salinities over 90%o (Wohlrab, unpublished
data).

In total, 1127 genes showed differences in gene expres-
sion over the whole time series. 656 of these genes (58%)
were annotated as hypothetical proteins. The salt up-
shock results indicated an increase in the number of regu-
lated genes over time. After 10 min, 61 genes (1%) were
regulated. The largest number (543 - 8%) was observed at
300 min (FIGURE 1iii). R. baltica cells seem to adapt
slowly to high salt concentration. This might be a result of

the cell compartmentalization and resulting ability of R.
baltica to temporarily resist higher salt concentration with-
out notable cellular responses.

The response of R. baltica to salt stress includes repression
of genes associated with the following COG classes:
induction of amino acid transport and metabolism [E],
lipid metabolism [I], transcription [K], translation process
[J]. Induced genes were involved in classes of the heat
shock experiment (discussed above): [O], [M] and [L]. In
addition, genes in the energy production [C] and cell divi-
sion and chromosome partitioning [D] classes were
induced (FIGURE 2iii). Similar to other bacteria, R. baltica
accumulated glutamate and trehalose as cytoplasmic
osmoprotectants in response to osmotic stress [44]. Gluta-
mate dehydrogenase (RB6930) showed an up-regulation
after 10 min and was also present in the proteome [24].
Trehalose synthetase treS (RB519) was induced after 60
min. Cysteine, as a general protective component, was
only needed in the first hour in elevated salt concentra-
tions and was repressed afterwards (RB4386).

The accumulation of compatible solutes is a widely dis-
tributed mechanism used in coping with changing salinity
concentrations [44,45]. In R. baltica 74 planctomycetes-
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group-specific genes are annotated as hypothetical pro-
teins carrying a Domain of Unknown Function
(DUF1559) [18]. This domain belongs to a new family of
solute binding proteins (PF07596) [46] and was also
found on the planctomycete fosmid 8FN [18]. Nine of
these genes were up-regulated during the first hour of the
cold and salt shock experiments. During the heat shock
experiment, 16 of these genes were down-regulated. In
vitro experiments have shown that some of these compat-
ible solutes also possess general protein stabilization
properties in addition to their osmoprotective property
[47]. These homologous proteins do not play an integral
role in the transport process per se, but probably serve as
receptors that trigger or initiate translocation of solutes
through membranes by binding external sites of the inte-
gral membrane proteins of the efflux system. In addition,
some solute-binding proteins function in the initiation of
sensory transduction pathways [46].

R. baltica up-regulated an efflux pump (RB7603) and a
Na+*/H+ antiporter (RB1433) 300 min after salt shift. Both
may play a role in the active export of salt ions out of the
cells. Quinone oxidoreductase-like protein (RB10967),
induced after 40 min, had been implicated in respiration-
coupled Na+ efflux as also shown in D. vulgaris [30]. Reg-
ulatory proteins like sigma-54 factor rpoN (RB6491), rpoA
(RB12626) and rfaY (RB12251) were down-regulated.
rpoN and rpoA were found to be translated [22,24]. R. bal-
tica inhibited the genes for cell division (soj - RB2291) and
chromosome segregation (SMC - RB6065) after 60 min
salt stress, as well as diverse transferases (RB12080,
RB8898, RB12690, RB2498, RB8222, RB9617) involved
in the cell envelope modification. Interestingly, the pilin
transport apparatus and the thin-pilus basal body (pilM -
RB2860 and pilT - RB12773) were induced after one hour
as were principle pilus associated adhesion (pilC -
RB12781) and pilB (RB12774). Genes coding for biopol-
ymer transport proteins (exbB - RB12053 and exbD -
RB12055) were also induced. A homolog to exbD was
annotated on the planctomycete fosmid 3FN [18]. It is
known from studies of other organisms that genes encod-
ing the flagellar and chemotaxis systems are up-regulated
to move away from the stressful cations [30]. However,
none of the flagellar genes were regulated and the genome
does not harbor any essential chemotaxis genes except
cheY [16]. Notably, the survival protein (SurE - RB10258)
and two genes coding for the mechanosensitive ion chan-
nel (MscS - RB12279 and RB10255) were induced. The
latter provides protection against hypo-osmotic shock,
responding both to stretching of the cell membrane and
to membrane depolarization [48]. Genes in Cluster 22
(ADDITIONAL FILE 2) seemed to be significantly affected
by salt stress only.
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Common stress response

R. baltica showed a common stress response to all three
tested environmental factors. Several known general stress
genes were induced, such as genes coding for the manga-
nese-containing catalase (RB10727), which is also present
in the proteome [21,22,24]. Ferritin and Dps (RB4433) or
pyridoxamine 5'-phosphate oxidase (RB4438) belong to a
general stress cluster (RB4432-4438) and were initially
described by Hieu et al. [24]. Thioredoxin (RB10378)
could serve as an electron donor for the up-regulated
methionine sulfoxide reductase gene (msrB - RB2268)
[49,50]. The genes could be regulated via rpoN found on
the proposed upstream sigma 54-dependent promoter
(RB10378) [51].

Perhaps to cope with reactive oxygen species (ROS), typi-
cally present under stressful conditions [50], the nitrogen
fixation protein (nifU - RB3596) was induced. NifU is
involved in the biosynthesis and repair of ROS scavenging
iron-sulfur clusters. Finally, the peptidase M50 (RB6092)
may have been induced to regulate stress response, sporu-
lation, cell division, and cell differentiation [52].

Genes involved in R. baltica's fatty acid metabolism - for
example, oA-acyl carrier protein transacylase (fabD -
RB314), the acyl carrier protein (acpP - RB318) and the
fabB (RB320) gene - were repressed under all conditions.

Interestingly, the machinery for the rearrangement and
interchange of genetic material was induced under all
three stressful conditions. It seems to play an important
role in the organism's long-term adaptation. R. baltica har-
bors 81 non-randomly distributed transposases in its
genome. Notably, under heat stress three times more
transposase genes were up-regulated than under cold
stress and twice as many as under salt stress. Shared induc-
tion shows five IS3/1S911, three ISX08, two putative trans-
posases (RB170, RB5888, RB11749, RB11802, RB12940,
RB2186, RB9907, RB12239, RB934 and RB7389), and
one integrase (RB11750). Rearranging the genome to
select the most efficient gene combination has been
described as a common way to adapt quickly to extreme
environments [34]. Relaxed DNA may also be required to
get better access to the gene regions for increased expres-
sion. Here, DNA relaxation is suggested by the repression
of histone-like DNA-binding protein (RB6276).

In line with an alternative global sensing and regulation
system initially proposed by Gloéckner et al. [16], a com-
mon pattern concerning sensing and regulation response
was detected. R. baltica contains 37 genes belonging to the
extracytoplasmic function (ECF) subfamily of sigma 70
[53]. The genes RB138, RB13241 and RB10049 are up-reg-
ulated under all three stress conditions. Studholme et al.
[46] suggests that ECF-factor RB10049 is the regulator for
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the conserved hypothetical protein RB10051. The con-
served domain belongs to a new group of proteins that
share novel domains referred to as planctomycete-specific
(PSD) or planctomycete-specific cytochrome C (PSC).
RB10051 contains the PSD1 (DUF1553 - PF07587) and
PSC2 (DUF1549 - PF07583) domains, suggesting a func-
tion in redox reactions [46]. Each domain is represented
41 times in the whole genome of R. baltica [18].

Additionally, at 300 min the ECF-sigma factor RB138 was
up-regulated together with serine/threonine protein
kinase (RB140). Protein kinases are believed to be
involved in stress response [37,54]. The serine/threonine
protein kinase (RB12942) and two histidine-kinases
(RB4511 and RB10330) were up-regulated during heat
shock. Whereas, under cold shock only one serine/threo-
nine kinase (RB8505) was induced. Under salt stress a his-
tidine-kinase (RB13122) and three two-component
systems (RB5780, RB12952 and RB13118) were induced.

Finally, the ECF-sigma factor RB1790 was up-regulated,
but only under high salinity conditions. In summary, the
results confirmed that ECF sigma factors, as well as two-
component systems, are heavily involved in stress sensing
and regulation of R. baltica. The importance of these genes
in the natural environment is asserted by the presence of
a homolog to RB12952 on the planctomycete fosmid
6N14 [18].

The down-regulation of genes associated with the ribos-
omal machinery (55%) was observed. During heat shock
and high salinity these genes were permanently repressed,
whereas under cold shock they were only repressed within
the first hour. Of the 51 ribosomal proteins in the whole
genome, 18 genes encoding proteins of the small- and
large subunit (RB1233, RB12821, RB12824, RB12839,
RB7117, RB7837 - RB7841, RB7849, RB7850, RB7852,
RB7854, RB7856, RB7857, RB7859 and RB7899) were
repressed. Additionally, a set of genes involved in RNA
metabolism, protein synthesis, as well as R. baltica's only
translation elongation factor (EF-Tu - RB7894) were
repressed. The genes for the conserved hypothetical pro-
tein RB12818 and the hypothetical protein RB12837 were
co-regulated which suggests an association with the trans-
lation machinery. The repression of the ribosomal genes,
along with a large set of genes involved in RNA metabo-
lism, protein synthesis, cell growth (Cluster 1 ADDI-
TIONAL FILE 2), has been reported as a general feature of
the environmental stress responses (ESR) [33]. It has been
assumed that they are acting as stress sensors [55]. This
coincides nicely with the induction of the ribosomal pro-
teins at 300 min under cold shock conditions. Recovery
and ongoing adaptation of R. baltica was further sup-
ported by the up-regulation of the ribosomal-binding fac-
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tor rbfA (RB5503), which is, aside from csdA, required for
optimal growth at low temperatures [56].

Hypothetical proteins

Approximately 50% of the regulated genes observed have
no known function in each of the three environmental
stress experiments. Some of these share a similar expres-
sion profile (ADDITIONAL FILE 2). We propose that
some of these genes are involved in cell morphology
changes, stress sensing and regulation. The low number of
known transcriptional regulators (2.4%) in the genome of
R. baltica [53], coupled with the fact that most of the
essential pathways encoded are not organized in operon
structures [16] support the hypothesis of novel global reg-
ulation mechanisms. Hypothetical proteins that carry reg-
ulatory domains, like the FHA domain in RB1789 or a
putative transcriptional regulatory domain in RB9999 are
strong candidates. RB11766 might regulate the gene next
to it, which is a so called giant gene (RB11769) [57]. This
giant gene encodes a novel peptide motif that is most
likely involved in cell morphology changes [46]. The
importance of the hypothetical proteins RB11505,
RB10954, RB10956 and RB10958 was further supported
by their presence on the proteome gels of Hieu et al. as
well as Gade et al. [21,22,24]. The latter three of these
genes were claimed to be among the most abundant pro-
teins in R. baltica cultures grown on mineral medium.

Planctomycete special feature: Genes encoding
sulfatases

The genome of R. baltica contains no less than 110 sulfa-
tases. It is assumed that they are involved in the recycling
of carbon from complex sulfated heteropolysaccharides.
Although the mineral medium does not contain any sul-
fated polysaccharides, we found 11 sulphatase genes were
up- or down-regulated (TABLE 3) during the different
stress experiments. These included one choline sulphatase
(RB1205), seven arylsulfatases (RB13148, RB1477,
RB3403, RB406, RB5146, RB684 and RB9498), two sul-
phatase genes without specificity (RB3956, RB5294), and
one alkylsulfatase (RB11502). Furthermore, during life
cycle experiments (unpublished data) we found evidence
that certain sulfatases are only regulated in specific growth
stages, which could indicate their involvement in the
remodeling of the distinct morphological features of R.
baltica. Sulfatase genes RB1477, RB5294, RB9498 and
RB11502 were induced. We propose that RB9498 and
RB11502 have an extracellular function and may be
involved in the formation of an extrapolymeric substance.

Six sulfatase genes (RB406, RB684, RB1205, RB3403,
RB5146 and RB13145) were repressed after 300 min of
heat shock. They may have been involved in the rearrange-
ment of the cell wall formation, which comprises a pro-
tein sacculus with disulfide bonds [12]. In summary, these
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Table 3: Differentially expressed sulfatase genes of R. baltica are shown

ID Product AA  Signal P Heat Cold Salt Remarks
RB1205 choline sulfatase 456 0.80 repressed  repressed
RB3403 arylsulfatase precursor 491 0.99 repressed  repressed [22,24]
RB3956 sulfatase 489 0.98 repressed
RB5146 arylsulfatase A precursor (ASA) 522 0.95 repressed
RB9498 arylsulfatase A 518 0.97 induced [22,24],
RBI1502 alkyl sulfatase or beta-lactamase 445 1.00 induced
RB1477 arylsulfatase precursor 538 0 induced induced
RB5294 sulfatase 533 0 induced wall* unpublished results
RB406 arylsulfatase 557 0 repressed  repressed
RB684 arylsulfatase precursor 653 0 repressed repressed life cycle unpublished results
RB13148 arylsulfatase A [precursor] 1012 / repressed life cycle unpublished results

results show the diverse roles that sulfatases may have
and, furthermore, that only a variety of different experi-
mental approaches will increase our knowledge of these
roles.

Conclusion

This work presents the first transcriptome study of the
environmental stress response of a marine, free-living
Planctomycete. Although R. baltica is an unusual organism
in many aspects, its stress responses to heat and cold
shock as well to changing salinity were in line with earlier
results reported for other model organisms. Heat shock
induced a set of chaperons, likely to protect cellular pro-
teins from denaturation and breakdown. Growth in the
cold may be followed by the induction of genes altering
lipid metabolism. Salinity shifts resulted in the activation
of planctomycete-specific groups of genes including genes
involved in morphological change and an extracytoplas-
mic stress response. All stressors triggered the down-regu-
lation of the ribosomal machinery, the up-regulation of
transposases and the induction of several ECF-sigma fac-
tors and two-component systems. This supports the
hypothesis that R. baltica is regulating its gene activity on
a global rather than operon level. Aside from well charac-
terized stress response genes, about 2000 genes of
unknown function, constituting 30% of the genes pre-
dicted in the genome, were affected. This, combined with
proteome studies and the presence of some of the genes in
fosmid libraries, provides a strong indication that the vast
number of genes with unknown function play a vital role
in the organism's environmental response. The regulation
of 11 sulfatases during stressful conditions suggests that
these genes are heavily involved in the core cellular func-
tion of R. baltica. The data presented lead to the conclu-
sion that R. baltica's rich repertoire of genes is combined
with a fine tuned regulation mechanism to best respond
to the changing conditions of its habitat. Nevertheless,
data analysis has just started and further investigations
concerning the genes involved in the life-cycle, the stress

response pathways, promoter regions and network analy-
sis are already ongoing or planned for the near future.

Methods

Bacterial growth conditions

For all experiments Rhodopirellula baltica SH1T cells were
grown as chemostat cultures in a mineral medium con-
taining 10 mM glucose as the sole carbon source and 1
mM ammonium chloride as a nitrogen source at 28°C
[20]. Chemostat (@ 13.5 cm x 25 cm, 11, Schott, modified
by Ochs, Bovenden) parameters used were: pH 7.4, aver-
age dilution rate 0.75 ml/min and pO, around 100%. The
cultures had an OD, ,, of 0.5 - 0.6 (corresponding to
log phase). The cells were harvested after 5 dwell times.

Sample collection, cell lyses, RNA Isolation and cDNA
synthesis

After harvesting the R. baltica cultures, an aliquot was col-
lected to serve as the time-zero reference. The culture
broth was collected in 500 ml tubes and swirled briefly in
an ethanol-dry ice bath to rapidly cool the cultures and
prevent shifts in the RNA profile. Subsequently, the broth
was centrifuged at 6000 rpm for 20 min at 4°C (Beckman
Coulter™ AvantiTM626 J-20XP, JA10 Rotor). The pellets
were re-suspended in 0.1 M Tris-HCL and then re-centri-
fuged. Cell pellets were shock-frozen in liquid nitrogen
and stored at -80° C. Total RNA was isolated using the pro-
tocol of the TRI Reagent® Kit by Ambion (Austin, USA).
The purity and quality of the extracted total RNA was
checked with an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palto Alto, USA) and gel electrophoresis. cDNA
synthesis was performed using the SuperScript direct
cDNA labeling kit by Invitrogen (Karlsruhe, Germany)
according to the manufacturer's instructions with random
hexamers and unlabeled dCTP/dUTP, followed by a three
hour reverse transcription incubation step at 46°C. The
RT reaction was halted by incubation for 3 min at 95°C.
To hydrolyze the RNA, 0.1 M NaOH was added, incubated
at 65°C for 15 min and neutralized with 0.1 M HCL. The
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remaining cDNA was precipitated overnight at -20°C and
the pellet washed with 70% Ethanol.

cDNA was directly labeled using the Platinum Bright™
nucleic acid labeling kit based on KREATECH's patented
Universal Linkage System (ULS) (Biocat, Heidelberg, Ger-
many) according to the manufacture's protocol.

Concentrations of RNA and ¢cDNA were measured, and
incorporation of the dyes Alexa 546 and Alexa 647 were
checked using a Nanodrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, USA).

Experimental design and sample preparation

In three independent hybridizations conducted for each
experiment and time point, the expression profiles of cells
that had undergone stress were compared with those of
cells at time zero. That is, the array analysis of each Alexa
647 labeled sample was compared with those of Alexa
546 labeled time-zero samples. The data shown are based
on the analysis of all three replicates performed for each
of the conditions.

Samples for expression profiling and microscopic analysis
were collected at 10, 20, 40, 60 and 300 min in all three
stress experiments.

Heat shock from 28°C to 37°C

Cells grown continuously at 28°C were collected by cen-
trifugation. An aliquot was removed for RNA extraction
and taken as the time zero reference for the heat, cold and
salt stress experiments. Aliquots were re-suspended in an
equal volume of 37°C medium and returned to 37°C for
cultivation.

Cold shock from 28°C to 6°C

Cells grown continuously at 28°C were collected by cen-
trifugation, re-suspended in an equal volume of 6°C
medium and returned to 6°C for cultivation.

Salt stress from 17.5%o0 to 59.5%o. salinity

Similar to the heat and cold shock experiments, an R. bal-
tica culture was grown in mineral media with 17.5%0
salinity. Cells were harvested and aliquots were trans-
ferred to a mineral media with a salinity of 59.5%o.

Whole Genome Array construction, hybridization and
image analysis

The whole-genome oligonucleotides for R. baltica SH1T
(Pirellula AROS 630 Version 1.0) were purchased from
Operon (Cologne, Germany) and diluted to 20 uM con-
centration in Micro Spotting Solution Plus spotting buffer
(Telechem, Sunnyvale, USA). Spotting was done with
three replicates per gene, per slide onto GAPS II aminosi-
lane slides (Corning, Schiphol-Rijk, Netherlands) using a
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SpotArray 24 spotting device (Perkin Elmer, Wellesley,
USA) together with 48 Telechem Stealth Pins (Telechem,
Sunnyvale, USA). The arrays were subsequently exposed
at 245 nm and 360 mJ in the GS Gene Linker (Bio-Rad,
Miinchen, Germany), followed by incubation at 80°C for
at least 3 h. Slides were stored at room temperature in the
dark until use.

Blocking, denaturing, hybridization, washing and N, dry-
ing procedures were carried out in an automated hybridi-
zation station HS400 (Tecan, Crailsheim, Germany). The
spotted arrays were blocked in prehybridization solution
containing 250 mM NaCl, 5 mM Tris/HCI at pH 8.0, 50%
formamide, 0.5 x SSC, 0.05% BSA, and 1% blocking rea-
gent from Roche Diagnostics, Mannheim, Germany for 45
min at 52°C. For hybridization at least 2 pug of Alexa 546
dye-labeled and 2 pg of Alexa 647 dye-labeled total cDNA
were combined and taken up in a final volume of 100 pul
DIG Easy Hyb hybridization solution (Roche Diagnostics,
Mannheim, Germany). After the blocking step, the sample
solution was applied to the arrays, denatured at 95°C for
3 min and hybridized under stringent conditions at 52°C
for over 12 hours. After hybridization slides were washed
at room temperature in ULTRArray Low Stringency Wash
Buffer (Ambion, Austin, USA) and dried by N,,.

Signal detection and data analysis

Slides were scanned at a resolution of 5 pm using a
ScanArray Express Microarray scanner (Perkin Elmer,
Wellesley, USA) with varied laser power and photomulti-
plier tube (PMT sensitivity) for each slide. The accompa-
nying image analysis software, ScanArray Express Version
4.0, was used for automatic spot detection and signal
quantification of both fluorophores. Raw data were auto-
matically processed using the microarray data analysis
software tool MADA http://www.megx.net/mada, devel-
oped in-house. Firstly, the spot intensities were corrected
for local background (mean spot intensity minus mean
spot background intensity). Signals were only assessed as
positive if mean spot pixel intensity was higher than the
mean local background intensity plus twice the standard
deviation of the mean local background pixel intensity.
Each gene is spotted in three replicates. Spot replicates
with poor quality were removed from the data set accord-
ing to MADA's outlier test results. This test first computes
the standard deviation of all replicates. Secondly, one rep-
licate is omitted and the standard deviation is recalcu-
lated; if the deviation differs more than 50% from the
previous deviation, the omitted replicate is regarded as an
outlier. This procedure is repeated for all replicates

Expression is described through the ratio and intensity,
where R is the fluorescence log ratio of the experiment
time point relative to the control condition (e.g. R = log2
(result of channel 10 min/result of channel control/refer-
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ence)) and I is the log mean fluorescence intensity (e.g. |
=1og10 (result of channel 10 min x result of channel con-
trol/reference)).

Each data point represents a regulation factor (ratio) in a
logarithmic scale for one gene calculated from the positive
replicates for a particular probe coming from two RNA
pools (reference and sample). Normalization was carried
out by LOWESS fitting on an R-versus-I plot with a
smoothing factor of 0.5. Each time point of the time-series
experiment was hybridized independently three times.
The expression data (ratio) of the three hybridizations
were combined to one expression data point (ratio) by
averaging and the standard deviation of the average value
was calculated. Only ratios with a standard deviation less
than 25% were regarded as genes that are regulated. Dif-
ferentially expressed genes were detected by a fixed thresh-
old cut off method (i.e. a two-fold increase or decrease)
based on the results of self-self hybridization. Using the
same biological sample, the reference (untreated sample)
is labeled twice, once with Alexa 546 and once with Alexa
647, and the variability between the two sets of measure-
ments is calculated to estimate the experimental noise.
Ideally, there should not be any variability and all expres-
sion points should have a ratio close to zero. In reality,
however, this is never the case and thresholds based on
the distribution of these data along the y-axis were defined
for the further experiments.

Consequently, R. baltica genes detected with intensities
resulting in ratios above or below these thresholds can
beregarded as up- or down-regulated.

Cluster analysis

Differentially expressed genes present in the complete
time course profile (10, 20, 40, 60 und 300 min) for all
three experiments were clustered using the k-means clus-
tering approach (Euclidean distance metric, k = 30 clusters
and 49 (max. 500) iterations) [58] with the software tool
Multiexperiment Viewer MeV Version 4.0.2 from the TM4
microarray software suite [59]. Briefly, the clustering algo-
rithm arranges genes into a given number of clusters, k,
according to similarity in their expression profiles across
the entire array experiments, such that genes with similar
expression patterns are clustered together. The data are
displayed in tabular format where each row of colored
boxes stores the variation in transcript abundance for each
given gene and each column stores the variation in tran-
script levels of every gene in a given mRNA sample, as
detected on one array. The variations in transcript abun-
dance for each gene are depicted by means of a color scale,
in which shades of red represents increases and shades of
green represent decrease in mRNA levels, relative to the
unstressed culture, and the saturation of the color corre-
sponds to the magnitude of the differences. Black colora-
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tion indicates no change in transcript level while grey
represents missing data.

Genome tools

The genome of Rhodopirellula baltica was automatically re-
annotated based on updated homology searches (June
2005 - MicHanThi [60]). The updated annotation includ-
ing all tool results is publicly available at http://
gendb.mpi-bremen.de/gendb/BX119912[61]. JCoast [62]
was used as a tool for the visualization, interpretation,
COG-assignment statistics and comparison of genomic
data stored in GenDB V2.2 [63]. The Venn diagrams were
generated by BioVenn [64].

Microarray Datasets

Each microarray used in this study contained 7325 known
or predicted R. baltica genes according to Glockner et al.
[16]. A detailed description of the array can be found at
the NCBI's Gene Expression Omnibus (GEO) database
under accession number GPL7654. The complete micro-
array datasets covering the expression of R. baltica cultures
exposed to heat, cold and high salinity, are public availa-
ble in the GEO repository http://www.ncbi.nlm.nih.gov/
geo/ under accession numbers GSE13769, G SE13856 and
GSE14075 [65].
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