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Rotating robots move collectively and self-organize
Christian Scholz 1,2, Michael Engel1 & Thorsten Pöschel 1

Biological organisms and artificial active particles self-organize into swarms and patterns.

Open questions concern the design of emergent phenomena by choosing appropriate forms

of activity and particle interactions. A particularly simple and versatile system are 3D-printed

robots on a vibrating table that can perform self-propelled and self-spinning motion. Here we

study a mixture of minimalistic clockwise and counter-clockwise rotating robots, called

rotors. Our experiments show that rotors move collectively and exhibit super-diffusive

interfacial motion and phase separate via spinodal decomposition. On long time scales,

confinement favors symmetric demixing patterns. By mapping rotor motion on a Langevin

equation with a constant driving torque and by comparison with computer simulations, we

demonstrate that our macroscopic system is a form of active soft matter.
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Swarms of robots mimic collaboration of animals and can be
programmed to arrange into shapes by information
exchange among individuals1. A purely physical approach

to achieve collective behavior is self-organization, where patterns
emerge outside of thermal equilibrium2. Particularly simple
examples are walking robots known as bristlebots, artificial bugs,
or vibrobots. To excite motion, energy is input by a motor carried
on top of the robot vibrating its body3 or, alternatively, by a
vibrating baseplate4, 5. Each robot consists of a rigid body and
tilted elastic legs. The legs act as elastic springs and convert
momentum of the baseplate into motion of the robot at each
impact6–9. In general, parallel legs apply translational forces
(walker), while legs arranged in a circular manner apply torques
(rotor, spinner or vibrot). As a result, these robots move, similar
to mechanically vibrated polar disks10, 11. Together with biolo-
gical12 and synthetic microswimmers13, they belong to the class
of active soft matter. Collectives of such particles exhibit phase
separation into dense clusters and a surrounding gas phase14–19

or self-organize into swarms and flocks3, 10, 11.
In this work, we focus on 3D-printed rotors of gear-like shape,

which are expected to self-organize in ways not possible in the
absence of energy input20–25. Existing experimental realizations
of rotors depend on the application of electromagnetic fields20–22.
This approach does not allow rotation control of individual rotors
because the fields act equally on all particles. As an alternative, we
use 3D printing to fabricate rotors with propulsion mechanisms
that can be varied for each particle individually. We demonstrate
that our setup is suitable for observing phase separation driven by
active rotation26, 27, a phenomenon reminiscent of spinodal
decomposition in binary fluids with a high symmetry between
both phases. Our experiment is a simple yet non-trivial example
for chiral symmetry breaking in a classical system, far beyond the
well-known swarming and flocking behavior of active agents.

Results
Phase separation of opposite rotors in experiment. A mixture of
210 clockwise and 210 counter-clockwise spinning rotors (Fig. 1a,
b) with area filling fraction of 52% is prepared by placing the
particles in a fully mixed checkerboard configuration (Fig. 1c).
Once the vibration is turned on, the initial state quickly decays
into a disordered configuration (Fig. 2a, Supplementary Fig. 1,
and Supplementary Movie 1). After about 60 s, domains of
equally rotating particles are visible and then grow until the
system is almost fully segregated (Fig. 2b, c). During the segre-
gation process, we observe super-diffusive motion along the
interface, also known as edge currents (Fig. 2g)26, 28.

Particle segregation is robust in a wide range of packing
fractions ϕ. To show this, we vary the density of a smaller system
(enclosing ring 300 mm diameter) in the range ϕ= 0.3–0.7, where
the system is stable against gravitational drift and still below the
transition to crystallization (Fig. 2h). We start at ϕ= 0.3 and
successively add particles and wait for the system to relax (1–2 h
per step). After reaching ϕ= 0.7, we reverse the process by
removing particles to test the reversibility of phase separation.
Domains of likewise spinning rotors form at packing fractions up
to ϕ= 0.6. To demonstrate the efficiency of the demixing process,
we calculate the relative difference of equal and opposite nearest
neighbars (Nop−Neq) /Ntot for each packing fraction, which in
the absence of system boundaries is 0 for the fully mixed state and
1 for the fully demixed state. A plateau is found in the range
ϕ ≲ 0:55 before the system starts mixing again at higher packing
fraction (Fig. 2i).

Phase separation is counter-intuitive at first glance because
particles interact purely repulsively and the spinning motion of
equal rotors is blocked when in contact (Fig. 3a–d). In contrast,

opposite rotors come apart more easily after collision (Fig. 3e–g).
As a result of the longer contact time of equal rotors, the system
exhibits spontaneous separation26. We observe that the segrega-
tion efficiency decreases for high packing fraction (Fig. 2i),
possibly because there is less freedom for likewise spinning
particles to perform collective rotation. In the following
experiments and simulations, we fix the packing fraction again
to 52% by using the large enclosing ring with 420 particles. At this
packing fraction pronounced segregation is generally observed.

We quantify edge currents by measuring the mean squared
displacement (MSD) of particles moving close to the interface
between domains of opposite rotors. MSD is recorded after a
fixed time interval in dependence on the distance to the interface
(Fig. 4a) as well as at fixed initial distance to the interface in
dependence on time (Fig. 4b). We observe that particles close to
the interface are more mobile and for distances greater than three
particle diameters the displacement is independent of the
distance. Furthermore, the time dependence of the MSD is
quadratic at the interface and linear at larger distances.

Mapping of single-particle motion to Langevin dynamics.
Numerous results in the field of active matter have been dis-
covered in simulations using effective equations of motion,
typically with colloidal applications in mind in which active
motion is driven by chemical gradients29. In our system, particle
rotation is the result of a purely mechanical ratcheting
mechanism5, 8. Interactions are extremely short-ranged, collisions
dissipative, and hydrodynamics negligible. We test whether our
macroscopic experiment agrees with the approach in ref.26 and
map it to a system of coupled Langevin equations with a driving
torque of constant magnitude.

The equations of motion for the i-th particle with velocity vi
and angular momentum ωi read

M
∂vi
∂t

¼ Fi þ γT
ffiffiffiffiffiffiffiffi
2DT

p
ηiðtÞ � vi

� �
; ð1Þ

I
∂ωi

∂t
¼ τi þ γR

ffiffiffiffiffiffiffiffiffi
2DR

p
ζ iðtÞ � ωi

� �
þ τDi ; ð2Þ

where M and I are mass and moment of inertia of a single rotor,

a

b

c

Fig. 1 3D-printed spinning robots and experimental setup. a Clockwise and
b counter-clockwise spinning rotors (diameter σ= 15 mm). Four satellites
attached to the edge of the body enhance steric interactions between
particles. c Electromagnetic shaker with circular acrylic baseplate and
smooth circular enclosing ring (diameter 470mm). Initially, the rotors are
placed in a checkerboard configuration with alternating clockwise and
counter-clockwise spinning rotors
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γT and γR are translational and rotational damping coefficients,
respectively, τDi ¼ ± const is a driving torque, and Fi and τi are
forces and torques resulting from collisions with other particles
and the enclosure. The random forces and torques are uncorrelated

Gaussian processes with hηðmÞ
i ðtÞηðnÞj ðt′Þi ¼ δijδðt � t′Þδmn, where

m,n∈ {x,y} and hζ iðtÞζ jðt′Þi ¼ δijδðt � t′Þ. In the model, their
amplitudes are functions of the diffusion coefficients DT and DR.
However, in contrast to colloidal systems, the random forces do
not describe thermal noise but an instability that arises from the
vibration mechanics8. This means diffusion and damping
constants are not related through the Stokes–Einstein relation.

We measure the mass M and calculate I from particle shape
and density. All other parameters are extracted from vibration
experiments. The diffusion coefficients DT and DR are obtained
from stochastic velocity fluctuations of a single-particle trajectory

(Fig. 5a, b) by fitting the slope of the MSD (Fig. 5c). The driving
torque is given by jτDj ¼ γRω in the steady state. It is only weakly
dependent on the vibration amplitude A for A > 70 μm, where we
observe an average angular velocity ω ¼ 1

T

R T
0ωðtÞdt � 10rads�1

(Fig. 5d). The translational damping coefficient γT is obtained
from the response of an isolated rotor to an instantaneous kick. A
rotor is perturbed and the resulting velocity decay measured
(Fig. 5e). We find a good fit with an exponential decay,
v / expð�tγT=MÞ, similar to a particle suspended in a viscous
fluid, which confirms that the assumption of a velocity-dependent
frictional force in the Langevin equations (1) and (2) is justified.
Finally, the rotational damping coefficient γR is determined from
the acceleration of a stopped rotor due to the driving torque
(Fig. 5f). Again, we find a good fit with an exponential function,
ω� ω / expð�tγR=IÞ.
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Fig. 2 Phase separation of a binary mixture of rotors. Experimental system at times a 10 s, b 60 s, c 900 s after initialization. d–f Snapshots of computer
simulations at the same times. g Rotors at the interface perform super-diffusive motion along the interface. Representative trajectories are shown for
clockwise transport of clockwise spinning particles (black particles, red trajectories) and counter-clockwise transport of counter-clockwise spinning
particles (white particles, blue trajectories). Arrows indicate the direction of motion. For further visualizations of edge currents see Supplementary Fig. 2–3
and Supplementary Movies 2, 3. h Snapshots of the system at different packing fractions after successively adding and then removing particles.
Segregation occurs in a wide range of packing fractions of ϕ= 0.3–0.6 and breaks down at larger ϕ. i Relative difference of equal and opposite nearest
neighbors (Neq−Nop) / Ntot during a time interval of 20min at fixed ϕ. Error bars are defined as standard deviation. For 0:3 � ϕ ≲ 0:55, the relative
difference is independent of packing fraction indicated by a plateau
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The validity of the equations of motion and the parameters
extracted from experiment (Table 1) are tested with Langevin
dynamics simulations. A typical simulation evolution is shown in
Fig. 2d–f (Supplementary Fig. 4 and Supplementary Movie 4).
Visual inspection shows good agreement with the experiment.

Collective behavior on long time scales. We compare the
domain size evolution of seven experimental runs and 128 Lan-
gevin dynamics simulations for a duration of 1000 s (Fig. 6a).
Variations among experimental runs appear to be slightly larger
than variations among the simulation runs, possibly caused by
mass polydispersity and shape imperfections of our 3D-printed
rotors. Still, overall good agreement in the average coarsening
behavior is observed. This demonstrates that the system of Lan-
gevin equations fitted to single-particle behavior also reproduces
collective dynamics well.

Dimensional analysis and numerical solutions of the
Cahn–Hilliard model for spinodal decomposition predict that
domain size growth follows s(t)= t1/3g30, 31 with growth
coefficient g on the order of (Dw)1/3 32, 33. Here, D is the particle
self-diffusion coefficient in the dense rotor system and w is the
width of the transition zone between domains. The self-diffusion

coefficient is approximated from experiment and simulation as D
= 2 × 10−5 m2 s−1 and the transition zone width is assumed to be
about one particle diameter, w= 15 mm. Thus, g should be on the
order of 10−2 m s−1/3. Our data is consistent with g= 1.5(5) × 10
−2 m s−1/3 (thick black lines in Fig. 6a). Nevertheless, the
comparison to a power-law is only qualitative and is affected by
the confinement condition. Simulations of large systems of rotors
without confinement have already shown with high accuracy that
the Langevin model used here leads to spinodal decomposition
with exponent 1/326. Larger setups than ours are necessary to
accurately determine the growth exponent in experiment.

Because random forces and the viscous term in the contact
force are frequently neglected in the literature, but could be
relevant in our experiment, we test simulations with DT=DR=
tvis= 0 (Fig. 6b). The deviation of these simulations from the ones
with the full model is small, justifying the simplification. We use
this simplification to reduce computational cost and study a large
ensemble of realizations over longer times than attainable from
experiment in a reasonable time.

At longer times, confinement affects the kinetics of phase
separation strongly28, 34. Clear deviations from a power law occur
when we extend the observation time to 10000 s (Fig. 6c). The
system remains trapped in metastable states for a certain time
period, a phenomenon that is apparent as plateaus in the domain
size growth plots, before coarsening eventually saturates in the
completely phase-separated state. From the analysis of snapshots,
we discover that the plateaus correspond to the following high-
symmetry states: the completely phase-separated state (Fig. 6d), a
symmetric state with three domains (Fig. 6e) and two types of
metastable states with four domains (Fig. 6f, g). Figure 6h–i show
corresponding high-symmetry states observed in experiment.
Domain interfaces in the symmetric states are curved such that
they intersect the boundary at angles close to 90° (dashed red
lines in Fig. 6i). Domains with more straight interfaces are harder
to break up because the interfacial motion exerts a lower pressure,
which means the system remains in these metastable state for
longer time. Surprisingly, this observation is reminiscent of phase
segregation in immiscible fluids under strong confinement35, 36,
even though all essential preconditions applicable to molecular
fluids are not fulfilled in our system. In particular, pressure is
generally not a state variable in active systems37.
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Fig. 3 Typical collision between equal and opposite rotors. Collision sequence for likewise spinning rotors is a individual rotation, b collision, c collective
rotation and d individual motion (duration between frames is 0.12 s). When e opposite rotors collide, we observe f synchronization followed again by g
individual motion (duration between frames is 0.07 s). Due to the additional collective rotation likewise spinning rotors spend more time together, which
causes a net attraction
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While the simulation typically reaches a fully demixed
symmetric steady state, the experimental system is more sensitive
and the fully segregated symmetrical state is found only for small
system sizes (Fig. 2h). For the large system of Fig. 6, the time to
reach the final state is so long that gravitational drift eventually
leads to asymmetry and we only observe nearly full demixing.
Despite our attempts to correct the tilt down to 0.001 degree and

careful re-adjustment before each run, tilt is gradually introduced
due to the constant vibrations of the system restricting the
maximal experimental time. Edge currents at the boundary
appear to prevent the achievement of the symmetric fully
segregated state (Fig. 7).

Discussion
Our findings suggest an analogy of our granular experiment and
the behavior of microscopic soft matter systems. Past simulations
predicted that phase separation of rotors is still possible in the
presence of hydrodynamic interactions27. We therefore expect
that the evolution observed in our experiments could agree with
that of smaller active rotors, like colloidal and molecular spinners
in liquid crystals or biological motors38–43, even though the
confirmation of this phenomenon remains an ongoing experi-
mental challenge. Additionally, our joined experimental and
numeric approach strongly suggests that analytic descriptions of
self-organization for microscopic systems are also applicable to
active matter on large length scales. In future, effects character-
istic for binary fluids, such as emulsification or critical Casimir
forces, could be studied on the macroscopic scale with active
rotors or other 3D-printed vibrated particles.

Methods
Particle fabrication. The rotor geometry consists of two connected central
cylinders, a cap (diameter 15 mm, height 2 mm) and a body (diameter 11 mm,
height 6 mm). Four satellites (sidelength 3 mm) and seven tilted legs (length 8.5
mm, diameter 1 mm, angle 18degrees) are attached to the cap. Rotors are manu-
factured by 3D printing using fused deposition modeling from acrylonitrile buta-
diene styrene (ABS) for experiments on the large plate and stereolithography using
acrylate-based photopolymer for experiments on the small plate. To simplify the
detection of positions and orientations from video recordings, we mark the rotors
with a cross at the top (either painted or with a printed label). To avoid alternative
segregation mechanisms commonly observed in granular systems, such as size-
dependent or weight-dependent segregation, the particles must be manufactured
with sufficiently high accuracy. We also need to consider other effects that might
lead to additional inaccuracy, like positioning on the build plate (due to mis-
alignment, particles close to the edges of the build plate can slightly differ in height)
and the role of secondary manufacturing steps (painting the cross at the top). The
3D printing fabrication via fused deposition modeling employed in this work
achieves a maximum accuracy of 0.1 mm. Overall, 300 particles of each species are
fabricated. Particles with a mass that deviates more than 5% from the average mass
(Fig. 8) were successively discarded until 210 particles of each species remained.
The resulting distribution has a standard deviation of <2%. The mean weight of
each species deviates by <0.5%. Particles created by stereolithography, which
achieves a higher accuracy, do not require post-processing.

Vibrating table. The active rotors are excited by vertical vibrations of circular
acrylic baseplates (diameter 300 and 480 mm, height 15 and 30 mm) attached to an
electromagnetic shaker. The tilt of the plate is adjusted with an accuracy of 10−3

degrees. Motion is restricted by an enclosing ring (diameter 470 mm). The shaker is
attached to heavy concrete blocks to suppress resonances. Production experiments
are performed with vibration frequency f= 80 Hz and vibration amplitude A= 84
(2) μm, at which stable excitation is guaranteed. Experiments are recorded using a
high-speed camera system at up to 500 frames per second with spatial resolution of
1024 × 1024 pixels. The rotors are tracked using standard image recognition
methods with sub-pixel accuracy, which lies below the manufacturing tolerance of
the 3d printer of 0.1 mm.

Damping constants. To measure the damping constants γT and γR, we assume
that, on average, particle motion (translation and rotation) relaxes according to
Newton’s equations of motion with a viscous damping term and external torque τ,

M _v ¼ �γTv; ð3Þ

I _ω ¼ τ � γRω: ð4Þ

These equations are solved by an exponential with relaxation times tT=M/γT

and tR= I/γR.

Moment of inertia. It is difficult to measure the moment of inertia I directly.
However, since we know the mass and shape of the particle, I can be calculated
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Fig. 5 Dynamic properties of a single rotor. a Example trajectory of a rotor
on the vibrating table. b Particle orientation in the co-rotating frame of
reference θ � ωt. c Mean squared displacement of translational (red) and
rotational (black) degrees of freedom. d Average angular velocity ω at
constant frequency f= 80 Hz in dependence on the excitation amplitude A.
e Relaxation of translational velocity after a kick. f Relaxation of angular
velocity after releasing a particle. Fits with linear functions (c) and
exponentials (e, f) are shown with dashed curves

Table 1 Simulation parameters obtained from experiment

Parameter Symbol Value

Particle mass M 0.969(5) × 10−3 kg
Moment of inertia I 2.21(1) × 10−8 kg m2

Translational diffusion DT 7.2(2) × 10−6 m2 s−1

Rotational diffusion DR 0.19(3) rad2 s−1

Driving torque τD ±6.7(29) × 10−6 kg m2 s−2

Translational damping γT 0.010(2) kg s−1

Rotational damping γR 7(3) × 10−7 kg m2 s−1
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from shape. The particle consists of two central cylinders (c1 and c2 with mass mc1,

c2 and radius rc1,c2), four cubes (satellites, s with mass ms, edge length as and
distance ds) on the outside and seven cylinders (legs l with mass ml, radius rl, length
ll, distance from the center dl and inclination angle θ with respect to the vertical).
The total moment of inertia is the sum of individual moments considering off-
central rotation for the satellites and the legs,

I ¼ Ic1 þ Ic2 þ 4Is þ 7Il
¼ 1

2mc1r2c1 þ 1
2mc2r2c2 þ 4 1

6msa2s þmsd2s
� �

þ 7 mld2l þ 1
2mlð12r2l þ 1

6l
2
l Þ sin2 θ þ 1

2mlr2l cos
2 θ

� �
:

ð5Þ

Langevin dynamics simulations. Rotors are modeled by a large central disk
(diameter 15 mm) and four satellite disks (diameter 3.4 mm). The diameter of the
satellite disks is chosen such that the area covered by a particle equals that of the
experiment. As typical for granular matter, we assume a viscoelastic normal contact
force of the form Fvis ¼ FelðξÞ þ tvis _ξ

∂Fel
∂ξ , where ξ is the compression or indentation

depth of neighboring particles (which is only microscopic in our system) and tvis is
the viscous relaxation time describing the dissipative part of the force. Tangential
forces between colliding discs are neglected. The elastic contact force of contacting
cylinders is given by

Fel ¼ � πYh ξ

ln e1þν ξ
4Reff

ð6Þ

with Reff= 2(R1R2) / (R1+ R2)44 and ξ= R1+ R2− d. Here, Y= 2.3 GPa is the
Young modulus of the 3D printing material (ABS), ν= 0.35 is the Poisson ratio, h
= 2 mm is the cylinder height and R1, R2 are the cylinder radii, either 1.7 or 7.5
mm, depending on the colliding parts and d is the distance between particle
centers. We either set a small value of tvis= 10−5 s as typical for stiff materials or
tvis= 0 s for purely elastic collisions. Langevin dynamics simulations are performed
using custom code that is included as part of the Supplementary Information.
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Characteristic domain size. For two particle species A and B with particle den-
sities

ρAðrÞ ¼
XNA

i¼1

δðr� riÞ; ρBðrÞ ¼
XNB

i¼1

δðr� riÞ ð7Þ

and the difference ρAB(r)= ρA(r)− ρB(r), we define the relative radial distribution
function for the binary mixture as the autocorrelation function

gABðr1; r2Þ ¼ ρABðr1ÞρABðr2Þ
� �

¼ þ ρAðr1ÞρAðr2Þ
� �þ ρBðr1ÞρBðr2Þ

� �

� ρAðr1ÞρBðr2Þ
� �� ρBðr1ÞρAðr2Þ

� �
:

ð8Þ

If the system is homogeneous and isotropic, this expression reduces to the
relative radial distribution function gAB(r) that only depends on the distance r= |
r1−r2|. It is positive if at distance rmainly particles from equal species contribute to
the average and negative if mainly particles of the opposite species contribute to the
average. The roots of gAB(r) are found at distances, where particle species A and B
appear with equal probability. A characteristic domain size is defined from the first
non-trivial root26, 32, 33. Measured examples at different times are shown in Fig. 9.

Code availability. The Langevin dynamics simulation source code that was used to
generate all simulation data for this study is included as Supplementary Infor-
mation. An OpenSCAD and STL file of the rotor design is included as Supple-
mentary Information.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.

Received: 24 July 2017 Accepted: 24 January 2018

References
1. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a

thousand-robot swarm. Science 345, 795–799 (2014).
2. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium.

Rev. Mod. Phys. 65, 851–1112 (1993).
3. Giomi, L., Hawley-Weld, N. & Mahadevan, L. Swarming, swirling and stasis in

sequestered bristle-bots. Proc. R. Soc. A 469, 20120637 (2013).
4. Tsai, J.-C., Ye, F., Rodriguez, J., Gollub, J. P. & Lubensky, T. C. A chiral

granular gas. Phys. Rev. Lett. 94, 214301 (2005).
5. Altshuler, E., Pastor, J. M., Garcimartín, A., Zuriguel, I. & Maza, D. Vibrot, a

simple device for the conversion of vibration into rotation mediated by
friction: preliminary evaluation. PLoS ONE 8, e67838 (2013).

6. Scholz, C. & Pöschel, T. Actively rotating granular particles manufactured by
rapid prototyping. Rev. Cuba. Física 33, 37–38 (2016).

7. Torres, H., Freixax, V. M. & Perez, D. The Newtonian mechanics of a vibrot.
Rev. Cuba. Física 33, 39–43 (2016).

8. Scholz, C., D’Silva, S. & Pöschel, T. Ratcheting and tumbling motion of
vibrots. New J. Phys. 18, 123001 (2016).

9. Koumakis, N., Gnoli, A., Maggi, C., Puglisi, A. & Leonardo, R. D. Mechanism
of self-propulsion in 3D-printed active granular particles. New J. Phys. 18,
113046 (2016).

10. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar
disks. Phys. Rev. Lett. 105, 098001 (2010).

11. Deseigne, J., Léonard, S., Dauchot, O. & Chaté, H. Vibrated polar disks:
spontaneous motion, binary collisions, and collective dynamics. Soft Matter 8,
5629–5639 (2012).

12. Berg, H. C. E. coli in Motion (Springer, New York, NY, 2004).
13. Golestanian, R., Liverpool, T. B. & Ajdari, A. Designing phoretic micro- and

nano-swimmers. New J. Phys. 9, 126 (2007).
14. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living

crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
15. Buttinoni, I. et al. Dynamical clustering and phase separation in

suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301
(2013).

16. Stenhammar, J., Tiribocchi, A., Allen, R. J., Marenduzzo, D. & Cates, M. E.
Continuum theory of phase separation kinetics for active Brownian particles.
Phys. Rev. Lett. 111, 145702 (2013).

17. Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev.
Condens. Matter Phys. 6, 219–244 (2015).

18. Bialké, J., Speck, T. & Löwen, H. Active colloidal suspensions: clustering and
phase behavior. J. Non Cryst. Solids 407, 367–375 (2015).

19. Blaschke, J., Maurer, M., Menon, K., Zöttl, A. & Stark, H. Phase separation
and coexistence of hydrodynamically interacting microswimmers. Soft Matter
12, 9821–9831 (2016).

20. Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of
magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature
405, 1033–1036 (2000).

21. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking
synchronization to self-assembly using magnetic Janus colloids. Nature 491,
578–581 (2012).

22. Driscoll, M. et al. Unstable fronts and motile structures formed by
microrollers. Nat. Phys. 13, 375–379 (2016).

23. Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize
into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114,
158102 (2015).

24. Snezhko, A. Complex collective dynamics of active torque-driven colloids at
interfaces. Curr. Opin. Colloid Interface Sci. 21, 65–75 (2016).

25. Scholz, C. & Pöschel, T. Velocity distribution of a homogeneously driven two-
dimensional granular gas. Phys. Rev. Lett. 118, 198003 (2017).

26. Nguyen, N. H. P., Klotsa, D., Engel, M. & Glotzer, S. C. Emergent collective
phenomena in a mixture of hard shapes through active rotation. Phys. Rev.
Lett. 112, 075701 (2014).

27. Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary
mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114,
188301 (2015).

28. van Zuiden, B. C., Paulose, J., Irvine, W. T. M., Bartolo, D. & Vitelli, V.
Spatiotemporal order and emergent edge currents in active spinner materials.
Proc. Natl Acad. Sci. USA 113, 12919–12924 (2016).

29. Bechinger, C. et al. Active particles in complex and crowded environments.
Rev. Mod. Phys. 88, 045006 (2016).

30. Lifshitz, I. & Slyozov, V. The kinetics of precipitation from supersaturated
solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

31. Zhu, J., Chen, L.-Q., Shen, J. & Tikare, V. Coarsening kinetics from a variable-
mobility Cahn-Hilliard equation: application of a semi-implicit Fourier
spectral method. Phys. Rev. E 60, 3564–3572 (1999).

32. Toral, R., Chakrabarti, A. & Gunton, J. D. Numerical study of the
Cahn-Hilliard equation in three dimensions. Phys. Rev. Lett. 60, 2311–2314
(1988).

33. Toral, R., Chakrabarti, A. & Gunton, J. D. Large scale simulations of the two-
dimensional Cahn-Hilliard model. Phys. A Stat. Mech. Appl. 213, 41–49
(1995).

34. Spellings, M. et al. Shape control and compartmentalization in active colloidal
cells. Proc. Natl Acad. Sci. USA 112, E4642–E4650 (2015).

35. Avalos, E., Higuchi, T., Teramoto, T., Yabu, H. & Nishiura, Y. Frustrated
phases under three-dimensional confinement simulated by a set of coupled
Cahn-Hilliard equations. Soft Matter 12, 5905–5914 (2016).

36. Basu, S., Majumder, S., Sutradhar, S., Das, S. K. & Paul, R. Phase segregation
in a binary fluid confined inside a nanopore. Europhys. Lett. 116, 56003
(2016).

37. Junot, G., Briand, G., Ledesma-Alonso, R. & Dauchot, O. Active versus passive
hard disks against a membrane: mechanical pressure and instability. Phys. Rev.
Lett. 119, 028002 (2017).

38. Riedel, I. H. A self-organized vortex array of hydrodynamically entrained
sperm cells. Science 309, 300–303 (2005).

39. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving
microtubules. Nature 483, 448–452 (2012).

0 5 10 15 20

0

5

10

r /�

gA
B
(r

)

t = 50 s
t = 150 s
t = 300 s

Fig. 9 Relative radial distribution function. Radial dependence of gAB(r) at
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given in units of the particle diameter σ
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