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Candidate silencer elements for the human
and mouse genomes
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The study of gene regulation is dominated by a focus on the control of gene activation or

increase in the level of expression. Just as critical is the process of gene repression or

silencing. Chromatin signatures have identified enhancers, however, genome-wide identifi-

cation of silencers by computational or experimental approaches are lacking. Here, we first

define uncharacterized cis-regulatory elements likely containing silencers and find that 41.5%

of ~7500 tested elements show silencer activity using massively parallel reporter assay

(MPRA). We trained a support vector machine classifier based on MPRA data to predict

candidate silencers in over 100 human and mouse cell or tissue types. The predicted can-

didate silencers exhibit characteristics expected of silencers. Leveraging promoter-capture

HiC data, we find that over 50% of silencers are interacting with gene promoters having very

low to no expression. Our results suggest a general strategy for genome-wide identification

and characterization of silencer elements.
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It has long stood that repressive transcription factors can bind
to the promoters of genes through silencer elements to inac-
tivate gene expression1–4. In 1985, the yeast mating-type loci

revealed that distal silencer elements could control gene expres-
sion from afar5. The role for distal silencer elements in mammals
was demonstrated shortly thereafter through a silencer element
located several kilobases upstream of the rat insulin gene6. It
would be a decade later before key experiments identifying a
silencer in the intron of the mouse and human CD4 genes would
revealed the important role that silencers can play in lineage
specificity and cell fate determination, as this silencer represses
CD4 expression in CD8+ T cells7,8. Later several studies identified
genomic sequences with silencer properties, which are opposite of
enhancers across many species9–15. While dozens of mammalian
silencers have been identified, these elements are largely under-
studied, possibly due to our biased focus on gene upregulation
and the poor understanding of those elements with non-promoter
locations.

Classic studies of promoter silencers showed that these ele-
ments reside next to activating sequences4. Just as promoter
elements can switch states from activating to repressive due to the
presence of silencer elements and the factors bound, many distal
cis-acting regulatory elements can have dual activity, depending
on the set of conditions and cell type. Several previous studies
showed this dual activity of enhancers switching to gene repres-
sion, or silencing, in another cell type and vice versa16–19. For
example, GATA1 binding to a cis-acting element upstream of the
Gata2 promoter displaces the activating GATA2-bound factor
and represses Gata2 expression19. GATA switches at distal ele-
ments such as this are common during hematopoiesis18, and are
context, cofactor, and concentration dependent20–22. Further-
more, the repressive activity of GATA1 can induce changes in
chromatin looping. For example, during hematopoietic differ-
entiation, an upstream enhancer is bound by GATA2 to activate
expression of the Kit gene in multipotent cells. Subsequently
during lineage commitment, GATA1 binds to inactivate the
enhancer and also binds a downstream silencer to repress Kit
expression, which results in loss of the enhancer loop and gain of
a silencer loop with the promoter23.

Outside of promoter regions, silencers along with enhancers
and insulators create a complex array of distal cis-regulatory
elements (CREs). These elements, and the factors that bind to
them, are important for the nuanced output of RNA levels across
cell types. Identification of distal CREs and our understanding of
the regulation of gene expression in mammalian genomes has
been greatly facilitated by the genome-wide mapping of element-
specific histone modifications or transcription factors, e.g., his-
tone H3 lysine 4 monomethylation (H3K4me1) distinguishing
enhancers24 and CTCF binding to a subset of candidate insula-
tors25. While the presence of repressor sequences within CREs
such as promoters has recently become more evident by tiling
millions of oligos across these regions and testing by massively
parallel reporter assays (MPRA)26, distinct annotations for distal
silencer elements in the human and mouse genomes are still
missing from our cis-regulatory lexicon.

Our goal is to identify distinct silencer elements distal to the
genes they regulate. In order to identify silencer elements, first
we devised a simple subtractive analysis approach based on
DNase hypersensitive sites (DHS) and other known CREs to find
the DHS elements lacking known chromatin marks belonging to
promoters, enhancers, and CTCF-bound insulators, and we term
these elements as uncharacterized CREs. We tested ~7500 of
these uncharacterized CREs for silencer activity in K562 cells
using MPRA to identify silencer elements. Using MPRA data,
we trained a support vector machine (SVM) classifier to
predict potential candidate silencer elements from untested

uncharacterized CREs in 82 human and 22 mouse cell or tissue
types. This results in a catalog of >1.7 million candidate silencer
elements in the human genome and a second catalog of ~1
million candidate silencer elements in the mouse genome. We
find that candidate silencer elements are enriched for motifs of
known repressive transcription factors, and de novo motifs for
potential cognate transcriptional repressors. We are able to vali-
date our predictions by direct silencer interactions with repressed
target genes, and functional testing via reporter assays and
CRISPR genome editing. Candidate silencer elements are often
enriched for disease-associated variants in expected cell types or
lineages. These catalogs, which will require more intensive study
and validation from the field, should aid our understanding of
gene expression through negative regulation of expression.

Results
Prediction of genome-wide uncharacterized CREs containing
silencer elements. In order to find genome-wide candidate
silencer elements, first we devised an efficient simple subtractive
analysis (SSA) approach to determine DHS elements lacking
known chromatin marks belonging to promoters and enhancers,
or CTCF binding for insulators, and we term these elements as
uncharacterized CREs (Fig. 1a). Other potential cis-regulatory
elements should be present within these regions of open chro-
matin. We can generate open-chromatin data either from DNase-
seq (DNaseI hypersensitive sites sequencing) or from ATAC-seq
(assay for transposase-accessible chromatin using sequencing)
and other CREs data from ChIP-seq (chromatin immunopreci-
pitation coupled with sequencing) for any cell type or organism.
In this SSA approach, we subtract enhancers (H3K4me1 peaks),
promoters (2.5 kb window around TSS and H3K4me3 peaks), and
potential insulators (CTCF sites) from open chromatin (DHS) in
a cell-type specific manner, and assign the remaining DHS as
uncharacterized CREs. We hypothesize that a subset of these
uncharacterized CREs will contain silencer elements. Using this
SSA approach, we determined 2,315,105 uncharacterized CREs in
the human genome spanning across 82 cell types from the
Roadmap27 and ENCODE consortia28, and 1,299,866 elements in
the mouse genome for 22 cell types from the ENCODE con-
sortium28 (Fig. 1b, c; Supplementary Fig. 1a, b and Supplemen-
tary Data 1).

Uncharacterized CREs enriched with repressor TF motifs and
repressor TFBS. Transcription factors (TFs) bind at CREs and
regulate gene expression in response to external cues. Activator
TFs bind at enhancers to enhance expression, and repressor TFs
bind at silencer elements and repress gene expression. We
hypothesized that uncharacterized CREs will contain silencer
elements. To validate this hypothesis, we performed TF motif
enrichment analysis on uncharacterized CREs across cell types
and found a well-known transcriptional repressor, REST is con-
sistently enriched across all tested cell types (Fig. 1d, e; Supple-
mentary Fig. 1c, d). Motifs of USF1, BATF, BACH2, FRA1, ATF3,
FOSL2, JUN, NRF2, NFE2, and RFX family of TFs are also
enriched and previous studies reported that these TFs display
repressor activity29–32. In addition to motif analysis, we also
checked whether these uncharacterized CREs are enriched for
experimentally bound repressor TF-binding sites (TFBS). We
intersected uncharacterized CREs with known repressor TFBS
within the same cell type using ChIP-seq data for REST, YY1,
ZBTB33, SUZ12, and EZH2. We found that 73%, 61%, 49%, and
58% of total uncharacterized CREs in K562, H1, GM12878, and
HEPG2 cells, respectively, are typically enriched for one of
the above mentioned known repressor TFBS33–40 (Fig. 1f;
Supplementary Fig. 1e). This enrichment of repressor TFBS at
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Fig. 1 Overview of uncharacterized CREs in human and mouse. a Schematic of the simple subtractive analysis (SSA) approach. Barplots presenting the
count of uncharacterized CREs across different cell types and tissues in human from Roadmap (b) and mouse genomes from ENCODE (c). d Bar plot
presenting the count of cell types enriched with TF motifs across 52 cell types and tissues from Roadmap. e Heatmap of enrichment (-log(P-value)) of TF
motifs across 52 cell types. f Barplots presenting the count of uncharacterized CREs, random DHS and random enhancers at known repressor TFBS based
on ChIP-seq data in K562 and GM12878 cell types. *** indicates permutation test P-value < 0.0001, and n.s. denotes not significant.
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uncharacterized CREs is statistically significant compared with
random active enhancers and random accessible regions (DHS).
This enrichment corroborates that these uncharacterized CREs
are distinct from other categories of CREs, and likely contain
silencer elements.

Screening of uncharacterized CREs for silencer elements.
Having shown that the uncharacterized CREs are enriched with
repressor TF motifs and repressor TF binding indicative of
silencer activity, we proceeded to functionally test a subset of
uncharacterized CREs to quantitate their activity for silencer
function via massively parallel reporter assays (MPRA) using the
STARR-seq41 approach in K562 cells (Fig. 2a). The human
STARR-seq vector utilizes the super core promoter (SCP1), which
was designed and shown to be stronger than the CMV pro-
moter42, therefore, the GFP reporter expression should be sus-
ceptible to detectable decreases in expression. We selected 7430

uncharacterized CREs, 20 known silencer elements26,43, 20
known enhancer elements26, and 67 randomly selected regions,
which act as a control set (Supplementary Data 2). Oligos were
designed to span 200 nt of the uncharacterized CREs sequences
flanked by 15 nt adapter sequences and synthesized en masse. Of
7430 selected uncharacterized CREs, 3705 elements have at least
one TFBS belonging to well-known repressor TFs (REST, YY1,
ZBTB33, EZH2, and SUZ12) and 3725 elements have at least one
known motif belonging to GATA1, GATA2, GATA3, GATA4,
BACH1, BACH2, TCF12, SMAD3, FLI1, RUNX1, KLF4, ZFP187,
ZNF263, ZBTB7B, and GFI1B (actual numbers are provided in
Supplementary Data 2). All of these TFs were reported to have
repressor activity, while primarily serving as activators29,44–50. As
expected, enhancers showed the highest activity, while control
silencers and tested uncharacterized CREs, on average, showed
similar levels of activity normalized to the activity of control-
random regions (Fig. 2b; Supplementary Fig. 2a). We found 3001
of the tested uncharacterized CREs (1731 elements with known

MPRA approach for silencer activity
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repressor TFs status, and 1270 elements with other TFs status) to
have activity less than the mean activity level of control-random
regions at 5% FDR. We call these uncharacterized CREs silencer
elements (Fig. 2c). Of uncharacterized CREs demonstrating
silencer activity, those elements with known repressor status
showed significantly lower activity than elements with other TFs
status (Fig. 2d). We also looked at the distribution of TF status in
order to identify strong candidate TFBS for potential silencer
activity (Supplementary Data 2 and Supplementary Fig. 2b).
Though many of TFBS showed roughly 40% success rate, TFBS
for REST, EZH2, SUZ12, SMAD3, RUNX1, and GATA family of
TFs would be strong candidates indicative of potential silencers.
Because most known TFBS motifs are obtained from transcrip-
tional activators, we also performed a de novo motif analysis. The
de novo analysis identified several novel TFs motifs. When con-
sidering the closest related known motif, these belong to REST,
YY1, ZBTB33, and ZBTB3 (Supplementary Fig. 2c).

To validate the silencer activity from MPRA experiments, we
tested three silencer elements via traditional reporter assays by
cloning the silencer elements upstream of SCP1 core promoter +
luciferase gene construct in K562 cells. We noticed a significant
decrease in reporter gene expression for three out of three tested
silencer elements compared with two random controls (Fig. 2e;
Supplementary Data 3).

To further validate our hypothesis that uncharacterized CREs
contain silencer elements, we performed CRISPR-Cas9 genome
editing in K562 cells. We focused on uncharacterized CREs that
are common to GM12878 and K562 cell lines with a known target
gene from promoter-capture HiC51. We targeted sgRNAs to these
uncharacterized CREs regions, hypothesizing that deletion of
these elements would result in increased gene expression of the
target gene if acting as a silencer element. We observed a general
trend of significant increases in gene expression upon CRISPR-
Cas9 targeting of these uncharacterized CREs in three of the five
elements tested (Supplementary Fig. 2d and Supplementary
Data 4). Collectively, our functional tests confirm that unchar-
acterized CREs contain true silencer elements.

Candidate silencer element predictions. Recent studies showed
that well-trained support vector machine (SVM) models can
predict CREs from a given set of nucleotide sequences52–54. Using
a gapped k-mer SVM (gkmSVM)55,56, we trained the classifier
based on MPRA functional screening data to find candidate
silencer elements from untested uncharacterized CREs in K562
and other cell and tissue types (Fig. 3a). We chose the top 2000
uncharacterized CREs sequences with the lowest MPRA activity
as a positive set, and the bottom 2000 uncharacterized CREs with
highest MPRA activity as a negative set for the gkmSVM model.
We trained the gkmSVM model on 80% of the data, and used the
remaining 20% of data for testing the model. We checked the
performance of the model on test data by generating the receiver
operating characteristic (ROC) curve by plotting true positive rate
versus false positive rate and the precision recall curve (PRC). The
model accurately predicted the positive uncharacterized CREs on
the test set and the model performance in terms of area under the
curve (AUC) for ROC curve is 0.81 and for PRC is 0.76 (Fig. 3b,
c). We then used this model for predicting candidate silencer
elements across all cell types from the list of uncharacterized
CREs. We chose the threshold for the gkmSVM score where the
model’s accuracy is maximum in order to classify the positive
uncharacterized CREs from the negative set. The percent of
gkmSVM-positive predictions for candidate silencers range from
45% to 78% for human cell types, and it varies from 55% to 85%
for mouse cell types (Supplementary Fig. 3a–c and Supplemen-
tary Data 5). We found a significant decrease in reporter gene

expression for two out of three tested candidate silencer elements
predicted by the SVM model compared to two random controls
in K562 cells tested via reporter assays (Fig. 2e; Supplementary
Data 3).

Next, we determined what features drove the SVM predicted
silencers. To do so, we examined whether positively predicted
candidate silencers by the SVM model are significantly enriched
with known repressor TFs motifs in comparison with negatively
predicted ones. Motifs belonging to REST, GFI1B, NKX TFs,
BAPX1, and CUX2 are significantly enriched consistently across
all cell types. In addition, SOX TFs, ZNF TFs, ZBTB12, SMAD3,
and TCF4 are also enriched across many cell types (Fig. 3d).
Previous studies reported that many of these TFs display
repressor activity57–64. The enriched motifs are distinct from all
uncharacterized CREs (Fig. 1d).

In total, we predicted 1,706,989 candidate silencer elements in
human genome spanning across 82 cell and tissue types from the
Roadmap27 and ENCODE consortia28, and 965,198 elements in
the mouse genome for 22 cell and tissue types from the ENCODE
consortium28 (Fig. 3e, g; Supplementary Fig. 3d and Supplemen-
tary Data 1). On average, ~33,600 elements and ~60,200 elements
per cell type were identified in human and mouse genomes,
respectively. We further filtered to identify cell-type-specific
candidate silencer elements. In total, 1,230,490 cell-type specific
candidate silencers in human cell types and 772,535 cell-type
specific elements in mouse cell types are predicted (Fig. 3f, h;
Supplementary Fig. 3e). The identified candidate silencer elements
are largely present at intergenic, introns, and repeat elements of
the genome for both human and mouse (Fig. 3i, j) and located
relatively close to gene TSS (Supplementary Fig. 3f, g).

Characterization of candidate silencer elements. We performed
motif enrichment analysis to identify potential transcription
factors binding at candidate silencer elements from all cell types
compared with matched random genomic background. As
expected, motifs belonging to REST are highly enriched in can-
didate silencers of all 52 tested Roadmap human cell types
(Fig. 4a, b). Motifs of TFAP2C, NF1, BATF, BACH2, FRA1,
ATF3, FOSL2, ZFX, EBF1, NFE2, and RFX family of TFs are also
enriched at candidate silencers of many cell types. Previous stu-
dies reported that these TFs display repressor activity29–32,65,66.
We furthermore performed TF motif enrichments at these can-
didate silencer elements compared with active enhancers and
DHS elements to check if candidate silencers are distinguished
from other categories of CREs. We find that motifs belonging to
REST, ZFX, PITX1, ZNF family and many other TFs such as
CUX1, FOSL1, GFI1B, and GATA family of TFs are significantly
enriched, indicating that these elements contain silencer elements
(Supplementary Fig. 4a, b).

Next, we explored additional characteristics of the candidate
silencer elements. DNA cytosine methylation is an important
epigenetic modification affecting gene expression patterns during
development and disease. DNA hypermethylation at promoters
and CpG Islands often results in repression of gene expression
and hypomethylation results in activation. Similarly, enhancer
elements are either largely unmethylated or lowly methylated67,68.
However, a number of transcriptional repressors are known to
bind methylated DNA69–71, suggesting some silencer elements
would be methylated. We computed the average methylation
levels for candidate silencer elements using whole genome
bisulfite sequencing (WGBS) data from 17 cell types and found
them to largely be in a hypermethylated state (Fig. 4c). We also
compared the average methylation of active enhancers (DHS
marked with H3K4me1+H3K27ac) and all DHS elements
for corresponding cell types and found significantly (P-value
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< 2.2e-16) lower methylation for enhancers and DHS than at
candidate silencers. Candidate silencers are on average 71.5%
methylated compared with 43% methylation in active enhancers,
and 46% methylation in DHS elements across the 17 cell types
(Fig. 4c).

Enhancers and promoters can be annotated in the genome
based on distinct chromatin signatures72. Such a chromatin
signature for silencers would facilitate their genomic localization.

To investigate such, we made use of already available
chromHMM annotations for 52 human cell types from the
Roadmap consortium. Unfortunately, the majority of the
candidate silencer elements belong to a largely uncharacterized
annotation category or lack of known histone modification signal
(quiescent: Quies) (Fig. 4d). This uncharacterized category varies
from 27% to 81% across cell types. The next three categories are
weak transcription (TxWk) and weak polycomb repressor
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Fig. 4 Characteristics of candidate silencer elements. a Bar plot presenting the count of cell types enriched with TF motifs at candidate silencer elements
across 52 cell types and tissues from Roadmap. b Heatmap of enrichment (-log(P-value)) of TF motifs at candidate silencer elements across 52 cell types
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complex (ReprPCWk) followed by heterochromatin (Het). While
limited, all three categories are consistent features of transcrip-
tional repression and some repressor TFs. In addition to
chromHMM annotations, we also looked at the silencer overlaps
with repressive regions marked with H3K27me3 and H3K9me3
histone modifications. We found that on average ~2.7% and
~3.3% of silencer elements are present at H3K27me3 and
H3K9me3 regions, respectively, and ~5.9% of elements present
at one of these regions. In this analysis, we also checked whether
candidate silencers are distinguished from other random
accessible elements by comparing their chromHMM annotations.
The random accessible elements are enriched with enhancers
(Enh and EnhG), active TSS (TssA), flanking active TSS
(TssAFlnk), and to some extent with uncharacterized category
(Quies) (Supplementary Fig. 4d–i). This analysis also supports
that the predicted candidate silencers are distinct from
other CREs.

Lastly, we examined conservation scores to check whether
candidate silencer elements are conserved in vertebrate evolution.
We used the seven-way phastCons score comparing the human
genome to six other vertebrate genomes. The computed
phastCons scores suggest that candidate silencer elements are
moderately conserved across species in orders of magnitude
similar to enhancer elements73 (Fig. 4e). The average phastCon
score for candidate silencers is 0.183, whereas for active
enhancers it is 0.177 across 52 cell types.

Candidate silencer elements interact with inactive genes. Pre-
vious promoter-capture HiC (p-CHiC) studies reported that
promoters of transcriptionally inactive or lowly expressed genes
are interacting with uncharacterized regions of genome, which
suggests that they may act as silencers51,74. We investigated
whether our predicted candidate silencer elements are interacting
with inactive genes. For this analysis, we obtained five p-CHiC
data sets, three in human (GM12878, CD34+ and H9 cells), and
two in mouse (mESCs and mouse fetal liver cells (FLCs)) cell
types (Fig. 5; Supplementary Fig. 5)51,74. We overlapped respec-
tive candidate silencer elements with non-baited fragments (or
promoter-interacting fragments) to find their interacting genes.
We exclusively focused on interactions that were separated by a
distance of at least 10 kb between gene promoter and promoter-
interacting fragments. This criterion removes the high frequency
of close-proximity ligation events in the HiC data. In total, we
find 12,321 candidate silencers from GM12878 are interacting
with 17,250 genes in GM12878 cells and 5907 candidate silencers
from CD34+ cells are interacting with 8599 genes in CD34+ cells.
We find 4631 and 1621 inactive genes (with RPKM= 0) are
interacting with 8329 and 1993 candidate silencers in GM12878
and CD34+ cells, respectively (Fig. 5a, d; Supplementary
Fig. 5a, d). An additional set of 5918 and 3015 lowly expressed
genes (with RPKM between >0 and 2) are interacting with 9412
and 3647 candidate silencer elements in GM12878 and CD34+

cells (Fig. 5a, d; Supplementary Fig. 5a, d). These results indicate
that candidate silencers can interact with more than one gene and
also multiple candidate silencers can interact with a single gene.
Similar trends are observed in H9 cells as well (Supplementary
Fig. 5g). Furthermore, the overall expression of all genes inter-
acting with candidate silencers showed a significantly lower
expression than genes interacting with active enhancers in both
GM12878 and CD34+ cells (Fig. 5b, e). Next, we looked at the
chromatin states of transcription start sites (TSS) of genes
interacting with candidate silencers categorized into different
expression ranges (Fig. 5c–f; Supplementary Fig. 5h). The
majority of inactive gene TSS are uncharacterized with no known
chromatin mark (Quies: GM12878 − 50%; CD34 − 52%; H9 −

59%) and to some extent enriched with weak polycomb repressor
complex (ReprPCWk: GM12878–22%; CD34–17%; H9–5%),
weak transcription (TxWk: GM12878–10%; CD34–6%;
H9–7.5%), followed by heterochromatin (Het: GM12878–3%;
CD34–3%; H9–1.3%). These chromatin states might be expected
for genes repressed through distal silencers. In contrast, highly
expressed genes are enriched with active TSS (TssA:
GM12878–43%; CD34–30%; H9–55%) and transcription (Tx:
GM12878–21%; CD34– 30%; H9–30%) annotation categories.
The fraction of uncharacterized and active TSS are in opposing
trends with increasing gene expression (Fig. 5c, f; Supplementary
Fig. 5h).

We repeated the p-CHiC analysis with the mouse data sets and
found more profound results (Fig. 5g–j). Briefly, a total of 6707
candidate silencers from mESCs are interacting with 5445 genes
in mESCs and 2107 candidate silencers from FLC are interacting
with 2619 genes in FLCs. We find 4220 and 1968 genes with
RPKM in the range of 0–1 are interacting with 5674 and 1770
candidate silencers in mESCs and FLCs, respectively (Fig. 5g, i;
Supplementary Fig. 5i, j). Overall, 81% and 79% of all silencer
interacting genes are within the expression range of 0–2 RPKM in
mESCs and FLCs, respectively (Fig. 5g, i; Supplementary Fig. 5i,
j). Silencer interacting genes showed overall lower expression
than enhancer interacting genes in both cell types (Fig. 5h, j).
Altogether, this analysis provides strong evidence for silencer
activity for the candidate silencer elements.

Disease-associated variants are enriched at silencer elements.
Several earlier studies showed that disease-associated single-
nucleotide polymorphisms (SNPs) from genome-wide association
studies (GWAS) are prevalent at noncoding regions of the gen-
ome, especially at CREs, and often in enhancers of cells thought
to be associated with the disease27,75–77. We next investigated
whether candidate silencer elements were also enriched for
disease-associated variants, as this would alter how the functional
impact of the variant is interpreted for distal CREs. First, we
determined how many SNPs are present at candidate silencer
elements. For this, we downloaded all disease SNPs from the
NHGRI-EBI GWAS catalog. We included both lead SNPs and
SNPs in linkage disequilibrium (LD) (r2 ≥ 0.8) for overlap with
candidate silencer elements. We found that 57,961 SNPs
belonging to 2214 disease traits are present at silencer elements
across all cell types. Next, we examined significant enrichment of
specific disease SNPs at silencers for each cell type. This analysis
resulted in ~20% of these diseases (451 out of 2214) being sig-
nificantly enriched (adjusted P-value < 0.01, hypergeometric test)
at silencers for one or more cell types (Fig. 6a, b; Supplementary
Fig. 6a, b). Next, we asked whether these disease SNPs are enri-
ched in relevant disease cell types. As a test case, we examined
whether enrichment of autoimmune diseases are specific to blood
cell types (Fig. 6c; Supplementary Fig. 6c, d). Indeed, we found
systemic sclerosis, rheumatoid arthritis, asthma and hay fever,
type 1 diabetes, and amyloid A serum levels to be specifically
enriched at candidate silencer elements of blood cell types.
Overall, our results illustrate that candidate silencer elements are
also enriched with disease-associated SNPs similar to other cis-
regulatory elements.

Silencer elements can act as enhancers in other cell types. We
asked whether identified candidate silencer elements in one cell
type act exclusively as silencers or can also enhance gene
expression, i.e., act as active enhancers in other cell types. To
verify this, we intersected the candidate silencer elements from
each cell type with active enhancers (overlapping DHS marked
with H3K4me1+H3K27ac) of the remaining cell types.
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Fig. 5 3D Genome interactions of candidate silencer elements. a Bar plot presenting the counts of genes expressed at different expression levels (RPKM)
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Interestingly, we found that 22–62% of candidate silencer ele-
ments from one cell type can act as enhancers in at least one other
cell type (Fig. 6d). For the mouse candidate silencer elements, it
varies from 5% to 50% (Fig. 6e). This accounts for 25.3% and
15.5% of all human and mouse candidate silencers, respectively.
We hypothesize that silencers need a limited set of TFs compared
to active enhancers for regulating the transcriptional output. In
order to verify this feature, we made use of high-resolution digital
genomic footprint (DGF) data, which indicates TF binding at
single-nucleotide resolution at regulatory elements. First, we
compared the number of DGFs per silencer and active enhancer
elements for the same cell type across cell types and found on
average lower DGFs per silencer than active enhancer

(Supplementary Fig. 6e). Next, we compared the DGFs per ele-
ment at candidate silencers in one cell type and switching to
enhancers in other cell types and found on average lower DGFs
per element when acting as a silencer than acting as an enhancer
in other cell types (Supplementary Fig. 6f). Next, we wanted to
verify this feature of silencers acting as enhancers by looking at
their interacting gene expression distribution. As a test case, we
identified candidate silencer elements in GM12878 cells that
overlap with (or switch to) active enhancer elements of CD34+

cells. We then found enhancer interacting genes in CD34+ cells
from p-CHiC data as was done for silencer interacting genes in
GM12878 cells and compared the target gene expression levels in
their respective cell types. The relative expression of silencer
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Fig. 6 Candidate silencer elements are enriched for GWAS SNPs and can act as enhancers in other cell types. a Bar plot presenting the count of GWAS
SNPs belonging to various disease traits enriched (adj.P-value < 0.01) at candidate silencer elements of 52 cell types and tissues from Roadmap. b Heatmap
of enrichment (-log10(P-value)) of 451 disease traits SNPs across 52 cell types. Columns represent disease traits and rows are cell types. c Heatmap of SNP
enrichment (-log10(P-value)) for autoimmune disease traits across blood cell types. Bar plot showing the fraction of candidate silencer elements identified in
one cell type acting as enhancers in other cell types for human Roadmap data (d) and mouse ENCODE data (e). f An example of GM12878 silencers acting
as enhancers in CD34+ cells. Box plot comparing the expression distribution of interacting genes. P-values computed by one-tailed Wilcoxon rank-sum test.
In the box plots, bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 5 and 95% of the data points.
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interacting genes in GM12878 cells is indeed significantly less
compared with the expression of interacting genes in CD34+ cells
when silencers are acting as enhancers (Fig. 6f). Promoter ele-
ments frequently harbor multiple, yet distinct, regulatory
sequences, including the core promoter, enhancer elements, and
silencer elements. Our analysis of candidate distal silencers ele-
ments indicates that a subset can likely function as or are part of
the same cis-regulatory element as enhancers.

Discussion
The precise control of gene expression, either activation or
repression, is essential for changes in cell fate and cellular
response to external cues. That control is ultimately mediated by
CREs in the genome and their cognate binding factors. Though
silencers have shown to be analogs to enhancers in that they can
be distal to the genes they regulate and often function in a
position- or orientation-independent manner4, silencers lack a
unique chromatin signature to aid their genome-wide identifi-
cation. Here, we developed a simple computational (SSA)
approach to first identify genome-wide uncharacterized CREs
containing candidate silencer elements. Then, functional screen-
ing via MPRAs was performed on a select subset of 7500
uncharacterized CREs to identify the true silencer elements.
MPRA assays confirmed silencer activity for 41.5% of tested
uncharacterized CREs. This validation rate is within the range or
above what was shown for enhancer functional validation
studies26,78. However, it is susceptible to false negatives due to
caveats of in vitro reporter assays. It is also feasible that weak
silencers were not detected given that the origin of replication can
act as a promoter and also need to be repressed79. As further
evidence of silencer activity, we tested a handful of silencer ele-
ments via traditional reporter assays, mitigating any effect of
being in the 3′ UTR, and also demonstrated via CRISPR-Cas9
experiments that silencer deletions trend toward increased target
gene expression.

Based on our MPRA data, we trained an SVM model to predict
candidate silencer elements from untested uncharacterized CREs
in K562 and other cell and tissue types. We find that candidate
silencer elements are enriched with many known repressor TF
motifs. P-CHiC interactions showed that inactive and lowly
expressed genes are interacting with candidate silencer elements.
These results strongly support the annotation of silencer elements
in the human and mouse genomes. We acknowledge that this
may still be an overestimate as the majority of these candidate
silencer elements are model predicted, and large-scale functional
validation screens are needed to obtain an accurate count of
silencers. In addition, some cell-, tissue-, or species-specific
silencers may be missed. Furthermore, these predictions also rely
on the annotation of DHS in each genome, which are subject to
some degree of both false positive and false negative calls.

The vast majority of disease-associated SNPs are known to
occur outside of coding regions80. Similar to enhancers, we found
disease-associated SNPs are also enriched at candidate silencer
elements of relevant disease cell types or tissues27. Mutations
within silencer elements may provide one means for genes to
escape repression in a disease-specific manner and have impli-
cations for other diseases such as various cancers.

Overall, we find that the characteristics of the predicted can-
didate silencer elements are expected of silencer elements and are
in contrast to that of active enhancers. The catalogs of candidate
silencer elements presented here across many cell types and tis-
sues for human and mouse may serve as a resource that com-
plements the ENCODE28 and Roadmap consortia27 catalogs for
other CREs. This approach should also prove applicable to future
data sets from other cell types and across several species.

Methods
Processed data sets used. We obtained uniformly processed consolidated epi-
genome data of ChIP-seq and DNase-seq from the Roadmap consortium for 52
human cell types. We used narrow peaks called by MACS2 program for DNase-seq
and broad peaks called by MACS2 program for H3K4me1, H3K4me3, and
H3K27ac histone modifications. We directly obtained the peaks files from NIH
Epigenomics Roadmap project27 (http://egg2.wustl.edu/roadmap/web_portal/
processed_data.html). Similarly, we obtained the data for mouse (mm10) cell types
and another 30 human cell types from the ENCODE consortium (https://www.
encodeproject.org/matrix/?type=Experiment)28. We used the peak files generated
by the uniform ENCODE Processing Pipeline. We merged the peaks files for each
cell type if data are available from different sources. The CTCF TFBS are obtained
from CTCFBSDB 2.0 (http://insulatordb.uthsc.edu/) for both human and mouse81.
The gene TSS coordinates were obtained from GENCODE annotations for human
(GRCh37.p13/hg19) and mouse (GRCm38.p5/mm10)82.

Simple subtractive analysis approach. In the SSA approach, we used DNase-seq
peaks as open chromatin (DHS), H3K4me3 peaks, and TSS plus 2000 bp upstream
and 500 bp downstream of TSS of all GENCODE genes as promoter elements,
H3K4me1 peaks as enhancer elements, and CTCF TFBS as insulator elements. We
start with DHS peaks and removed DHS overlapping with any of enhancer ele-
ments or promoter elements or insulator elements in a cell-type specific manner,
and the remaining non-overlapping DHS peaks are termed as uncharacterized
CREs. We included CTCF TFBS from all cell types during subtractive analysis as
these TFBS are largely shared across cell types. We used the BEDTools suite for
genomic subtractive analysis83. The large variations in the number of unchar-
acterized CREs across cell types is most likely due to the quality of available
chromatin data.

Cell culture. All experiments are performed in K562 cells. Cells obtained from the
ATCC (CCL-243) are grown at 37 °C and 5% CO2 in RPMI-1640 (Gibco) medium
with 10% fetal bovine serum (Gibco) and 1% penicillin–streptomycin.

Massively parallel reporter assays (MPRAs). To multiplex testing for silencer
activity of uncharacterized CREs, we leveraged synthetic oligonucleotide array
synthesis and adopted the STARR-seq (self-transcribing active regulatory region
sequencing) method as described in ref. 41. To select control-random regions, first
we downloaded histone marks and DHS data in terms of processed peaks for K562
cells from the Roadmap Consortium. Next, we randomly selected genomic regions
as control elements not overlapping with any of those annotated regions or any of
Refseq annotations (promoters, genes, 3′UTRs, 5′UTRs, exons, introns, transcripts,
CDS) as to avoid CREs as controls, as these were selected separately. Control
enhancer and control silencer elements were obtained from a previous study26. An
oligonucleotide library was synthesized containing 200 nt of genomic regions with
15 nt of flanking sequence matching the Illumina primer sequence (Agilent, Inc).
The obtained library was PCR amplified using primer “Starr-seq_homology_for-
ward: TAGAGCATGCACCGGAATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGACGCTCTTCCGATCT” and “Starr-seq_homology_reverse:
GGCCGAATTCGTCGACAAGCAGAAGACGGCATACGAGAT[6-base-barcode]
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC” to add Illumina primer
sequence and 15 bp of sequence matching the STARR-seq backbone (Addgene:
71509) for In-Fusion cloning (Clontech). The library was amplified with KAPA Hi-
fi 2×(Kapa biosystem) with the following thermal condition (98 °C for 2 min,
amplification with ten cycles of 98 °C for 20 s, 65 °C for 15 s, and 72 °C for 30 s; final
extension at 72 °C for 2 min). The resulting product was purified using Ampure-XP
beads at 1.8× beads: reaction ratio. The STARR-seq screening vector was digested
for 6 h with SalI-HF and AgeI-HF and the linearized backbone was run on a gel
and purified with a gel purification kit (Qiagen). In total, 200 ng of backbone and
50 ng of pooled insert were cloned in four 10 μl Infusion-HD reactions incubating at
50 °C for 15 min (Clontech). Resulting products were then combined and purified
using Ampure-XP beads with a 1× volume of beads and eluted in 8 μl of purified
water and electroporated into NEB® 10-beta electrocompetent cells at a ratio of 2 μl
of reaction to 20 μl of competent cells for a total of four electroporations using
a Bio-Rad GenePulserR II electroporator, with the following electroporation con-
ditions: 2.0 kV, 200Ω, 25 μF. Transformations were recovered for 1 h in SOC
medium while shaking (220 rpm, 37 °C), and then grown for 16 h in 500mL of
Luria Broth while shaking (220 rpm, 37 °C). The STARR-seq input library was then
purified using the Qiagen Plasmid Maxi prep kit. K562 cells were electroporated
with a Neon transfection kit and device (Invitrogen) with the following transfection
parameters: pulse voltage: 1450; pulse width: 10; pulse number: 3. Five replicate
transfections were performed. Cells were grown in antibiotic-free media for 24 h.
Cell pellets were rinsed once with PBS, and then lysed in 2 ml of RLT buffer
(Qiagen) with 2-mercaptoethanol. The total RNA was prepared using the QIAGEN
RNeasy Plus kit. Poly-A RNA was isolated from 50 μg of the total RNA using the
µMACS mRNA isolation kit. RNA was treated with turboDNase (4U) for 30 min at
37 °C. DNase-treated poly-A RNA was purified using the RNeasy kit. mRNA and
RT primer “RT-primer: CAAACTCATCAATGTATCTTATCATG” were incubated
at 65 °C for 5 min, and cDNA was synthesized using Superscript III by incubating
for 1.5 h at 55 °C then inactivated at 80 °C for 15min. Following synthesis, cDNA
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was treated with RNaseA (Sigma) at 37 °C for 30min. cDNA was purified using
Ampure beads in a 1.5:1 bead:cDNA ratio and then amplified and indexed for
sequencing using a two-stage PCR as described previously41. The cDNA sample
from each replicate was used as an input into the first round gene-specific PCR
using primers “targeted_library_F: GGGCCAGCTGTTGGGGTG*T*C*C*A*C”
and “targeted_R: CTTATCATGTCTGCTCGA*A*G*C”, and input sample from
each replicate was amplified using primers “targeted_input_F: GGGCCAGCTGT
TGGGGTG*A*G*T*A*C” and “targeted_R: CTTATCATGTCTGCTCGA*A*G*C”
and KAPA Hi-fidelity polymerase. PCR conditions were: 98 °C for 2 min, amplifi-
cation with 12 cycles of 98 °C for 20 s, 65 °C for 20 s, and 72 °C for 60 s; final
extension at 72 °C for 2 min. * = Phosphorothioated DNA bases.

Samples were then purified using the Zymo PCR purification kit and eluted in
15 μl of nuclease-free water. The resulting products were used as templates for the
second round of PCR, which used a standard Illumina TruSeq indexing primer on
the p5 end of the library and custom indexing primers to barcode the samples for
multiplexing prior to sequencing (98 °C for 2 min, amplification with six cycles of
98 °C for 15 s, 65 °C for 30 s, and 72 °C for 30 s; final extension at 72 °C for 2 min.
Final sequencing libraries were purified with Ampure-XP beads (Beckman Coulter)
at a 1.8× SPRI: PCR ratio. All libraries were sequenced on Illumina NextSeq 500
performing 1 × 75 cycles.

MPRA data normalization and analysis. We generated data in five biological
replicate measurements. Sequencing raw reads from RNA and plasmid libraries are
checked for adapter sequences and low quality reads (q-score < 20) using FASTQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed using
TrimGalore package (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/). Trimmed reads were mapped to human genome (hg19) using the
Bowtie2 aligner84. The mapped reads were quantified against all tested sequences
using “featureCounts” function from the Rsubread package85. The biological
replicates were checked for similarity. We retained tested sequences for down-
stream analysis only if it contain reads at minimum three biological replicates at
both RNA and plasmid libraries. The RNA and plasmid read counts were nor-
malized by respective library size, and the normalized silencer element activity (fold
change) is defined as ratio of RNA to plasmid counts averaged over biological
replicates divided by mean ratio of RNA to plasmid counts of random control
regions for each tested sequence. One-tailed t test was used to find significant
differences in tested silencer activity over control-random regions activity. The
computed P-values are adjusted with Benjamini–Hochberg method to control for
false discovery rate. Then, the potential silencers were identified as sequences with
fold change less than one and adjusted P-value < 0.05. We compared the relative
activity of tested uncharacterized CREs with that of control enhancers and control
silencers and statistical significance were assessed using two-tailed t test.

Reporter assays. Reporter libraries: The STARR-seq luciferase validation vec-
tor_SCP1_empty (Addgene: 99299)79 was digested for 6 h with BslI, and a line-
arized vector was purified by gel purification kit (Qiagen) and treated with Calf
Intestine Alkaline Phosphatase (CIP). In total, 100 ng of backbone and 20 ng of gel-
purified PCR product of candidate regions having 15 bp flanking for vector insert
were cloned using Infusion-HD reactions by incubating at 50 °C for 15 min
(Clontech). Resulting products were electroporated into NEB® 10-beta electro-
competent cells at a ratio of 2 μl of reaction to 20 μl of competent cells using a Bio-
Rad GenePulserR II electroporator, with the following electroporation conditions:
2.0 kV, 200Ω, 25 μF. Transformations were recovered for 1 h in SOC medium
while shaking (220 rpm, 37 °C) and then grown under ampicillin selection. To
avoid false positives, colony PCR was performed for the selected colonies using
site-specific primers sets. The PCR-confirmed colonies were then grown for 16 h in
50 mL of Luria Broth with ampicillin selection while shaking (220 rpm, 37 °C). The
input libraries were then purified using the Qiagen Plasmid Midiprep kit.

qPCR method: In all, 1 × 106 K562 cells were electroporated with 7.2 µg of the
STARR-seq luciferase validation (firefly luciferase) reporter plasmid and 800 ng of
Renilla luciferase control plasmid (pGL4.74 ([hRluc/TK]). A total of six silencer
element STARR-seq plasmids, two random control plasmids, and an empty vector
plasmid were tested in three independent transfections. qPCR to quantify firefly
luciferase transcripts normalized to Renilla luciferase transcripts was performed
24 h after transfection. Cells were lysed using QIAshredder columns, and the total
RNA was extracted using the RNeasy miniprep kit, with beta-mercaptoethanol
supplemented RLT buffer. In all, 1 µg of the total RNA was treated with
recombinant DNaseI for 30 min at 37 °C followed by the removal of rDNaseI using
a DNase inactivation reagent. The DNaseI-treated RNA was reverse transcribed
using Invitrogen′s Superscript IV Vilo kit (25° for 10 min, 50 °C for 10 min, 85 °C
for 5 min), followed by qPCR on 2 µl of diluted (1:5) cDNA using Go Tag SYBR
Green qPCR Master Mix in a total volume of 10 µl with 0.5 µM gene-specific qPCR
primers (95 °C, 2 min; 95 °C, 3 s; 60 °C, 30 s; 40 cycles total, see the Table provided
below for primers)79.

Table for qPCR primers:
FF_fwd: GTGGTGTGCAGCGAGAATAG
FF_rev: CGCTCGTTGTAGATGTCGTTAG
RL_fwd: CAACTACAACGCCTACCTTCG
RL_rev: CGGTGTTAGGGAACTTCTTAGCTC

qPCR analysis for reporter assay: Firefly luciferase Ct values for each candidate
region were normalized to Renilla firefly Ct values using delta-Ct method86. Delta-
delta-Ct values were calculated between silencer elements and random controls
were displayed as average (2−ΔΔct).

CRISPR-Cas9 mediated characterization of candidates. The CRISPR-Cas9
system was used to edit potential silencer regions in K562 cells. Briefly, three
gRNAs spanning each silencer region and one non-targeting control gRNA (tar-
geting lambda-phage DNA) were designed using CCTop87, (https://crispr.cos.uni-
heidelberg.de/index.html). CCTOP predicted target sgRNA were selected according
to their best hit/least off-target parameters (pattern: N20NGG, core length= 12,
max. core mismatches= 2, max. total mismatches= 4). Each gRNA template was
ordered in the form of Gblocks from IDT and cloned into the lenti Guide puro
vector (Addgene: #73795). gRNA plasmids along with SpCas9-HF1 (Addgene:
#72247) were transfected using the Neon electroporator. Twenty-four hours post
transfection, puromycin selection was applied for 48 h. Cells were further trans-
duced using adenovirus vector expressing Cas9 (kindly provided by Andre Lieber’s
laboratory) at 2000 MOI. Ninety-six hours post transfection, RNA isolation was
performed with TRIzol™ according to the manufacturer’s protocol. cDNA synthesis
were carried out using SuperScript™ IV VILO™ Master Mix with the ezDNase kit.
To determine the effect on the expression of candidate target genes, primers were
selected from primer bank (https://pga.mgh.harvard.edu/primerbank/). See Sup-
plementary Data 4 for a list of primers and guideRNA sequences. qRT-PCR was
performed on three biological replicates consisting of three technical replicates
each. QuantStudio™ 3 System with KAPA SYBR® FAST qPCR master mix was used
to calculate Ct value. Ct values were normalized using two internal references 18S
rRNA & GAPDH RNA. Delta-Ct values were compared between experimental
condition and control to calculate the differences in expression status. Statistical
significance was assessed using one-tailed Student’s t test. Our current experi-
mental design is limited in that we are examining the effects of deletions in a highly
heterogeneous (polyclonal background) population and used only a single non-
targeting control gRNA targeting lambda-phage DNA.

SVM model development and silencer element predictions. We used the R
package “gkmSVM” for SVM model training and candidate silencer element
predictions from untested uncharacterized CREs in K562 cells and other cell
types56. We chose the top 2000 candidate silencer sequences with lowest activity as
a positive set and bottom 2000 silencers with highest activity as a negative set for
SVM model training with default settings from the package. We used 80% of data
for training, and the remaining 20% data for testing the model. We evaluated the
performance of the model on test data by generating the ROC curve by plotting
true positive rate versus false positive rate and the precision recall curves (PRC).
We then used this model for predicting candidate silencers across all cell types
from the list of uncharacterized CREs. We chose the threshold for the gkmSVM
score where the model’s accuracy is maximum in order to classify the positive
uncharacterized CREs, i.e., candidate silencer elements from negative ones.

Genomic annotation of candidate silencer elements. The genomic annotations
of predicted candidate silencers in human and mouse are performed using the
HOMER suite88 (annotatePeaks.pl).

Candidate silencer elements overlap with repressor TFBS. The well-known
repressor TFBS such as REST, YY1, ZBTB33, SUZ12, and EZH2 for cell types
GM12878, H1, K562, and HEPG2 are directly downloaded from ENCODE project
as processed peak files. We computed the enrichment (number of overlaps) of
repressor TFBS at candidate silencer elements using BedTools suite83.

To compute the statistical significance for enrichment of candidate silencer
elements at repressor TFBS relative to random DHS and random enhancers, we
performed 10,000 random permutation tests and computed P-values. Briefly, we
randomly selected the same number of DHS elements or enhancers as silencer
elements and overlapped with repressor TFBS and compared these overlaps with
silencer overlaps. Then, P-value is computed as follows:

P ¼ Σnþ 1
N þ 1

: ð1Þ

Where, ∑n is the number of permutations where expected overlaps (random DHS
or enhancer overlaps with repressor TFBS) are greater than observed overlaps
(silencer elements overlaps with repressor TFBS) and N (=10,000) is the total
number of permutations. The data in figures are represented as mean ± s.d.

Motif enrichment analysis. Motif analysis to find enriched TF motifs at candidate
silencer elements relative to matched random genomic background were per-
formed with HOMER suite (findMotifsGenome.pl -size given). In addition, we also
identified enriched motifs at silencer elements relative to all DHS elements and
enhancers within the same cell type as backgrounds. The enrichment of P-values
are computed using binomial distribution. Enriched motifs are defined at adjusted
P-value < 0.001. Heatmap visualizations are created using R package “pheatmap”
and “ggplot2”.
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Computing average methylation values. The methylation value for each cytosine
from WGBS data for 17 cell types were obtained from NIH Epigenomics Roadmap
project as bigwig files. The bigwig files were converted to bedgraph files via UCSC
file conversion tool (bigWigToBedGraph), and we computed the average methy-
lation levels across candidate silencer elements, DHS peaks and active enhancers.

chromHMM annotation data sets. The chromHMM annotation categories for all
52 human cell types are obtained from NIH Epigenomics Roadmap project. We
used the core 15-state model for chromatin state learning for predicted candidate
silencer elements and for TSS of genes interacting with candidate silencer elements.
In addition, we also computed the overlaps of randomly selected DHS elements at
chromHMM annotations. We repeated this process over 1000 random permuta-
tions and took the mean values over 1000 permutations.

Computing average phastCon conservation scores. We computed average
phastCons scores for candidate silencer elements and active enhancers using the R/
Bioconductor package “phastCons7way.ucsc.hg38” with “scores” function.

Promoter-capture HiC data sets used. We obtained promoter-capture HiC data
for GM12878 and CD34+ cells in human from ref. 51 and H9 cells from ref. 89 and
mouse embryonic cells (mESCs) and mouse fetal liver cells (FLCs) from ref. 74. The
processed significant promoter—other end-fragment interactions were directly
obtained from the authors’ supplementary data. The corresponding promoter gene
expression data for GM12878 and CD34+ cells are obtained from NIH Epige-
nomics Roadmap project, and for mESC and FLC are obtained from the ENCODE
project. To find the target genes interacting with candidate silencer elements, we
overlapped silencer elements with other end fragments. Then, we looked at the
expression distribution of those target genes in the respective cell type. Similarly,
we overlapped active enhancers with other end fragments to find enhancer inter-
acting genes. We defined active enhancers as DHS overlapping both H3K4me1 and
H3K27ac (DHS + H3K4me1 + H3K27ac).

Disease SNPs analysis. Disease-associated SNPs were obtained from NHGRI
GWAS catalog (https://www.ebi.ac.uk/gwas/docs/file-downloads) dated March
2019, and SNP coordinates are converted from GRCh38 to hg19 using UCSC
liftOver tool. We included both lead SNPs and SNPs in LD block (r2 >= 0.8) for
overlap with silencer elements. The SNPs in LD (proxy SNPs) were obtained from
SNAP web server (http://archive.broadinstitute.org/mpg/snap/ldsearch.php)90. The
enrichment of disease SNPs to candidate silencer elements for each cell type are
obtained by comparing the relative enrichment of particular disease SNPs against
the rest of disease SNPs using a hypergeometric distribution.

Statistical tests and visualizations. All the statistical tests are performed in the R
environment (https://www.r-project.org/). Graphs and visualizations are prepared
using “ggplot2” and “gplots” R packages.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data generated by this study have been deposited into NCBI Gene
Expression Omnibus (GEO) under accession GSE142207. All processed data, including
catalogs of candidate silencers, are made available through the Open Science Framework
[https://osf.io/hzc3p/]. All other relevant data supporting the key findings of this study
are available within the article and its Supplementary Information files or from the
corresponding authors upon reasonable request.
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