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Simple Summary: Metastatic disease remains one of the biggest challenges for tumor therapy. The
aim of our study was the preclinical evaluation of adapter chimeric antigen receptor (AdCAR)-
engineered NK-92 cell efficacy as a possible treatment strategy for various types of bone metastatic
cancers. We confirmed that AACAR NK-92 cells successfully induces tumor cell lysis in bone metas-
tasis cell lines derived from mammary, renal cell and colorectal carcinoma as well as melanoma in a
specific and controllable manner, thus, establishing a potent cellular product with universal applica-
bility and quick clinical translation potential for the treatment of solid tumors, including metastases.

Abstract: Background: Since metastatic spreading of solid tumor cells often leads to a fatal outcome
for most cancer patients, new approaches for patient-individualized, targeted immunotherapy are
urgently needed. Methods: Here, we established cell lines from four bone metastases of different
tumor entities. We assessed AACAR NK-92-mediated cytotoxicity in vitro in standard cytotoxicity
assays as well as 3D spheroid models Results: AACAR-engineered NK-92 cells successfully demon-
strated distinct and specific cytotoxic potential targeting different tumor antigens expressed on cell
lines established from bone metastases of mammary, renal cell and colorectal carcinoma as well as
melanomas. In that process AACAR NK-92 cells produced a multitude of NK effector molecules
as well as pro inflammatory cytokines. Furthermore, AACAR NK-92 showed increased cytotoxi-
city in 3D spheroid models which can recapitulate in vivo architecture, thereby bridging the gap
between in vitro and in vivo models. Conclusions: AACAR NK-92 cells may provide an interesting
and promising “off-the-shelf” cellular product for the targeted therapy of cancers metastasizing to
the bone, while utilization of clinically approved, therapeutic antibodies, as exchangeable adapter
molecules can facilitate quick clinical translation.
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1. Introduction

Cancer is one of the leading causes of death worldwide [1]. Despite the development
of new therapeutic approaches and significant improvement of survival rates in the last 20
years, metastatic disease, primarily to the bone, lungs and brain, remains incurable and is
the main cause of cancer-associated mortality [2]. Bone is the third most common site for
tumor metastasis after the lungs and the liver [3,4]. Depending on the origin of the primary
tumor, bone metastases are diagnosed in approximately 75% of patients with breast or
prostate cancer and to a lesser extent in other cancers, including lung, kidney, liver and
melanoma [5].
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The most frequent site affected by bone metastasis is spine, including thoracic spine
(63.6%) and lumbar spine (53.8%), followed by ribs (57.5%), pelvis (54.1%), sternum (44.3%),
scapula (25.1%), and femur (24.8%) [6]. Bone metastases are often associated with hypercal-
cemia, severe bone pain, pathological fractures and spinal cord compression, leading to
increased morbidity in cancer patients [7].

The treatment of bone metastases in patients with solid tumors is generally palliative,
with very limited opportunities for complete eradication. Given the limited success of
standard therapies at preventing or treating bone metastatic cancer novel therapeutic
strategies designed to destroy dormant disseminated tumor cells and existing cancer
metastases is an objective of paramount importance. Adoptive immunotherapy may
represent such an innovative treatment option for bone metastases but has not been
assessed in detail yet.

Chimeric antigen receptor (CAR)-modified lymphocytes represent a promising im-
munotherapeutic approach that involves the genetic modification of immune cells to
express synthetic recombinant receptors on the cell surface, leading to predefined target
specificity [8]. The CAR fusion protein typically comprises an extracellular single-chain
variable fragment (scFv) of an antibody for target recognition, a hinge region to provide
flexibility, a transmembrane region, and an intracellular activation domain for signal trans-
duction. The core component of the CAR endodomain contains either the CD3( portion
of the TCR complex or the y-chain of the high-affinity IgE Fc receptor (first generation
CAR), whereas the addition of one or two costimulatory domains derived from CD28,
4-1BB, OX40, ICOS or CD27 for example resulted in second and third generation CAR T
cells with sustained activation, persistence and improved functions. Upon expression in
lymphocytes, the CAR can engage its target antigen and thereby activating a variety of
effector responses resulting in targeted cell killing [9].

Immunotherapy using autologous CD19 CAR T cells has resulted in impressive
clinical response rates in patients with relapsed or refractory B cell malignancies [10-12].
Recently, the US Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) approved two CD19 CAR T cell therapeutics, Kymriah (Tisagenlecleucel)
and Yescarta (Axicabtagene ciloleucel), for patients with acute lymphoblastic leukemia and
certain types of relapsed or refractory large B cell lymphoma. However, the patient-specific
nature of this cell therapy, complex manufacturing workflows and the substantial risk of
severe side effects, including cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS) have led to concerns over costs and safety [13].
In addition, difficulties in obtaining sufficient numbers of autologous T cells for CAR
production from heavily pretreated, lymphopenic patients may pose a further problem,
illustrating the clinical need for alternative CAR effector cell sources.

There is a rapidly growing interest in NK cells for CAR engineering due to their potent
anti-tumor activity and safety in an allogeneic, “off-the-shelf” format which could overcome
some of the limitations associated with autologous CAR T cell therapies. In a recent phase
1 and 2 trials, CD19-specific CAR-engineered primary NK cells have shown a tremendous
clinical response in patients with relapsed or refractory CD19-positive non-Hodgkin’s
lymphoma (NHL) or chronic lymphocytic leukemia (CLL) without the induction of typical
CART cell-associated side effects such as cytokine release syndrome, neurotoxicity or graft-
versus-host disease [14]. The majority of CAR NK cell studies to date, however, have been
performed with NK-92 cells, a FDA-approved human cell line, which can be effectively
expanded to high cell numbers and easily manufactured in a GMP-compliant manner. More
importantly, early phase clinical trials have demonstrated the safety of irradiated NK-92
cells as an allogeneic cell therapeutic in patients with advanced hematological malignancies
and solid tumors [15-17]. These properties make NK-92 cells an interesting option for
CAR engineering and the development of standardized “off-the-shelf” cell products with
enhanced antitumor activity for adoptive cancer immunotherapy [18]. Despite the progress
in treating hematological malignancies, CAR T cells in patients with solid tumors have
demonstrated only limited antitumor activity [19]. Antigen escape is a key barrier for
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expanding the use of CAR-modified immune effector cells towards solid cancers with
their more diverse surface antigen repertoires which are likely to fail single-targeted CAR
therapy [20].

Since antigen heterogeneity and phenotypic plasticity of tumor cells present additional
obstacles to the current development of CAR-based immunotherapies, efforts are being
made to boost flexibility and improve the effectiveness by engineering modular chimeric
antigen receptors so that the antigen recognition domain is split from the signaling domain
of a conventional CAR, hence the target antigen can be switched or re-directed more readily
without the requirement of re-engineering the CAR-modified immune effector cells [21].

We previously established a modular adapter CAR (AdCAR) platform which consists
of AACAR-expressing NK-92 cells that cannot recognize target antigens directly but are
redirected to a target structure referred to as linker-label epitope, which consists of the
endogenous vitamin biotin, conjugated to an adapter molecule (AM), e.g., a monoclonal
antibody, in the context of special linker moiety, thereby allowing an on/off switch of CAR
activity, and facilitating flexible targeting of various tumor antigens depending on the pres-
ence and specificity of the biotinylated AM [22-26]. Since novel or preexisting therapeutic
antibodies can be easily labeled with biotin, there are almost unlimited possibilities in
tumor antigen targeting using the AACAR technology.

Bringing together the advantages of NK-92 cells as an “off-the-shelf” therapeutic and
the controllable multiplex targeting capacity of the AACAR system, led to the generation
of a universal, on-demand CAR NK product which can be maintained and expanded at
low cost in a GMP compliant manner for clinical use. Here, we outline the preclinical ap-
proach using AACAR NK-92 cells in combination with therapeutic antibodies for targeting
and elimination of bone metastatic cells in vitro using newly established bone metastatic
cancer cell lines from different tumor entities, including mammary carcinoma, colorectal
carcinoma, renal cell carcinoma and melanoma.

2. Results
2.1. Establishment and Characterization of Newly Developed Bone Metastasis Cell Lines

Tumor material from resected bone metastases and blood samples of the patients were
provided by the Department of Orthopedic Surgery, University Hospital Tuebingen (UKT)
(Table 1).

Table 1. Patient data for tumor cells from bone metastasis resections.

Patient Age [years] Patient Sex Metastatic Site Tumor Entity Designation
Patient 1 63 f Scapula Mammary carcinoma MAC
Patient 2 17 m Spine L3/14 Renal cell carcinoma MAM
Patient 3 54 m Spine C7 Colorectal carcinoma MCKS3
Patient 4 47 m Acetabulum Melanoma MeGal7

Cell lines were established from outgrowth cultures and successfully cultivated for
more than 30 passages. All assays conducted throughout the present study were performed
with cell lines in early passages between 5 and 7 to prevent potential, cell culture-induced
mutational changes. Cell line authentication was performed by Eurofins Scientific using
short tandem repeat (STR) analysis. Tumor cells were immunophenotyped for extracellular
expression of tumor antigens that can be targeted by therapeutic antibodies using flow
cytometry (Figure 1 and Table 2).
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Figure 1. Cell line immunophenotyping. Bone metastatic cell lines were screened for tumor antigen surface expression

using flow cytometry. Cells were co-incubated with primary biotinylated antibodies for 15 min at 4 °C. Antigen expression

was detected using a secondary PE-coupled anti-biotin antibody (black line) using staining with the secondary antibody

alone as negative control (grey area).

Table 2. Cell line immunophentoyping. Tumor cells were co-incubated with primary biotinylated antibodies. Antigen

expression was detected using a secondary PE-coupled anti-biotin antibody. Percentage of stained cells and median

fluorescence index (MFI) values were calculated using staining with the secondary antibody alone as negative control.

Percentage of Stained Cells

Cell Line
CD146 CD171 CD200 CD221 CD271 CD274 CD276 CD340 EGFR GD2
MAC 97.70% 11.80% 13.90% 68.50% 44.60% 0.40% 100.00% 97.90% 99.90% 1.78%
MAM 99.80% 99.90% 5.29% 99.40% 2.06% 0.65% 99.90% 99.70% 100.00% 4.04%
MCKS83 5.62% 0.45% 0.31% 59.60% 0.13% 0.46% 99.50% 81.20% 85.80% 0.44%
MeGal7 99.20% 42.90% 62.10% 70.40% 22.80% 1.23% 99.00% 44.10% 27.20% 1.91%
Median Fluorescence Index (MFI)
CD146 CD171 CD200 CD221 CD271 CD274 CD276 CD340 EGFR GD2
MAC 45.48 1.15 1.23 4.10 1.91 1.03 106.65 9.39 183.42 1.21
MAM 194.20 79.54 1.16 11.27 0.99 1.03 113.92 11.59 92.86 1.35
MCKS83 1.22 1.00 0.96 6.26 0.77 0.97 31.39 10.08 12.41 1.14
MeGal7 172.52 3.49 7.71 9.06 1.96 0.96 67.70 5.00 2.78 1.18

All cell lines shared high expression of B7-H3 (CD276), a recently emerging immune
checkpoint molecule of the B7 superfamily. The epithelial growth factor receptor (EGFR),
an important oncogene in the development of lung and colorectal cancer, is expressed in the
mammary carcinoma MAC, the renal cell carcinoma MAM and the colorectal carcinoma
MCK83 but not in the melanoma MeGal7. Interestingly, the melanoma cell adhesion
molecule MCAM (CD146) was not only expressed in the MeGal7 cell line but also in the
MAM cell line.

Further characterization of the tumor cell lines was conducted by flow cytometric
assessment of cell surface expression of well-known NK cell ligands (Table 3). The colorectal
carcinoma MAC, renal cell carcinoma MAM and melanoma MeGal7 showed comparable
NK ligand expression profiles. Uniformly, all cell lines expressed human leukocyte antigen
E (HLA-E), a major ligand for the inhibitory receptor complex CD94/NKG2A on NK
cells, as well as the major histocompatibility complex (MHC) class I chain-related protein
A and B (MICA/B), a protein that acts as an activating signal for NK cells through the
natural killer group 2, member D (NKG2D or CD314) receptor. Moreover, all four cell
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lines expressed death receptor 5 (CD262), Nectin 2 (CD112) and PVR (CD155). CD262
is a cell surface receptor of the TNF-receptor superfamily that binds the tumor necrosis
factor (TNF)-related apoptosis-inducing ligand (TRAIL) and mediates apoptosis. CD262
and CD112 are important ligands for DNAM-1 (CD226) triggering activating signaling
cascades. They can also trigger an inhibitory NK response by activation of the immune
checkpoint receptor TIGIT. Interestingly, the NK ligand HLA-ABC was completely absent
on MCK83 cells while MAC, MAM and MeGal7 cells expressed it widely.

Table 3. Characterization of tumor cell lines for NK ligand expression. Tumor cells were co-incubated with fluorescently
labeled antibodies. MFI values were calculated using staining with the respective isotype control antibody.

Cell Line CD48 CD50 CD54 CD58 CD95 CD102 CD112 CD155 CD261 CD262

MAC 1.47 1.69 5.46 73.22 23.35 1.27 3441 128.96 3.01 16.87
MAM 1.36 1.78 7.31 30.55 9.54 1.13 69.73 192.65 6.06 59.84
MCKS83 1.84 1.75 1.29 5.54 4.26 1.27 15.32 89.62 4.15 14.91
MeGal7 1.25 1.58 9.66 31.32 2.18 1.13 16.27 50.20 1.22 15.03
HLA-ABC HDLI? ) HLA-E HLA-G MICA/B ULBP1 ULBP2/5/6 ULBP3 ULBP4
MAC 52.41 0.90 9.18 0.98 6.53 3.45 1.26 0.68 0.75
MAM 19.07 0.87 8.07 0.81 21.25 3.15 1.00 1.67 1.53
MCKS83 0.47 0.92 10.01 0.82 9.07 6.09 1.09 1.25 1.41
MeGal7 23.33 12.10 7.55 1.34 727 245 1.37 0.92 0.77

2.2. AdACAR NK-92 Cells Specifically Lyse Bone Metastasis Cell Lines In Vitro

NK-92 cells were transduced with lentiviral vectors encoding the second generation
adapter CAR with a CD28 co-signaling domain and an intracellular immunoreceptor
tyrosine-based activation motif (ITAM) from the CD3 zeta chain (CD3(). Cells were
subsequently single-cell sorted for highest CAR expression and functionality. Transduction
process and AACAR NK-92 cell characterization was previously described [23]. AACAR
NK-92 cells showed stable AACAR surface expression for at least 150 days after cell sorting
with an average viability of >90%. Proliferation rate was not impaired by the transduction
process compared to untransduced, parental NK-92 cells.

Functional assessment of AACAR NK-92-mediated cytotoxicity was conducted using
the previously established metastatic tumor cell lines earlier described in this manuscript
as target cells. Calcein-labeled tumor cells were co-incubated with AdCAR NK-92 as
well as parental NK-92 cells in the presence and/or absence of biotinylated antibodies
(bAb) targeting antigens highly expressed on the tumor cells. AdCAR NK-92 but not
untransduced NK-92 cells significantly induced cellular cytotoxicity against all tumor cell
lines but only in the presence of a bAb targeting antigens sufficiently expressed on the
cell surface (Figure 2a—d), thus, underscoring the controllability of the AACAR system.
Correlation of median fluorescence index (MFI) as an indicator of antigen density on tumor
cell surface and specific cell lysis of MAC, MAM, MCK83 and MeGal7 cells resulted in R?
values of 0.5157, 0.1161, 0.7650 and 0.5375, respectively.

Next, we examined the kinetics of AACAR-mediated cytotoxicity after addition of
specific biotinylated antibodies. Utilizing the xCELLigence real-time label-free live cell anal-
ysis (RTCA) system based in cell impedance measurement, tumor cells were co-incubated
with AACAR and parental NK-92 cells with and without bAb and monitored for over
12 h. The dimensionless cell index is proportional to the amount of live tumor cells. NK-
mediated cytotoxicity is assessed by measurement of cell index decrease. AACAR NK-92
cells but not parental NK-92 cells successfully lysed the tumor cells of renal cell carcinoma
MAM and melanoma MeGal7 in less than 4 h, but only in the presence of a specific bAb
(Figure 3a,b). Specific tumor cell lysis correlated with surface expression of the respective
antigen and no long-term tumor regrowth was observed with adapter molecules targeting
highly expressed antigens.
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Figure 2. AACAR NK-92-mediated metastatic tumor cell lysis. AACAR NK-92 cells were co-incubated with calcein-labeled
tumor cell lines MAC (a), MAM (b), MCKS83 (c) and MeGal7 (d) in the presence or absence of indicated biotinylated
antibodies for 2 h at indicated E:T ratios. Specific lysis is shown as mean £ SD, n = 3. ****: p < 0.0001; ***: p < 0.001;
**:p<0.01;*p<0.1;ns:p >0.1.

To further examine NK-92-mediated lysis, a cytokine secretion profile was established
to screen for secretion of a variety of cytokines, including NK cell effector molecules. Vari-
ous cytokines were significantly increased after co-incubation of AACAR-transduced NK-92
cells with MAC cells (Figure 4). GM-CSF (22-fold; p < 0.002), IL-10 (10-fold, p < 0.0002),
granulysin (24-fold; p < 0.0006), granzyme B (6-fold, p < 0.0001), IFN-y (10-fold; p < 0.0009),
MIP-1b (2-fold; p < 0.008) and TNF-« (32-fold; p < 0.0001) showed significantly elevated lev-
els but only upon AdCAR induction via specific biotinylated antibodies. While enhanced
secretion of granulysin and granzyme B directly account for increased tumor lysis, IFN-y
and TNF-« stimulate the endogenous immune system and indirectly enhance anti-tumor
activity. Secretion of MCP-1 and perforin was not significantly augmented after AACAR
activation (1.7-fold and 1.4-fold, respectively).
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Figure 3. Kinetics of AACAR-mediated tumor cell lysis. AACAR NK-92 cells were co incubated
with unlabeled tumor cell lines MAM (a) and MeGal7 (b) in the presence or absence of indicated
biotinylated antibodies and constantly monitored over time using the xCELLigence real time cell
analysis system. NK-mediated tumor cell lysis is depicted as decrease in the dimensionless “cell
index”, n =3.

2.3. NK-92 Cells Exhibit Successful AdCAR-Mediated Cytotoxicity in a Three-Dimensional Tumor
Cell Model

While the majority of in vitro studies about cellular immunotherapy are still based
on tumor cell monolayer culture systems, examination of three-dimensional (3D) tumor
models allows for limited translation to the in vivo situation. Thus, we generated multicel-
lular spheroids of the GFP-transduced cell lines. Since just one out of the four cell lines
successfully grew as a solid spheroid, only the renal cell carcinoma MAM was used to
assess cytotoxic potential of AACAR NK-92 cells in a 3D model.

After four days of culture tumor spheroids were co-incubated with either AACAR-
transduced or parental NK-92 cells in the presence or absence of biotinylated antibodies
and monitored for over 96 h. Fluorescence signals of MAM spheroids co-incubated with
NK-92 cells were correlated with untreated control spheroids (Figure 5a,b). After 48 h
AdCAR NK-92 cells in combination with bCD146, bCD276 or bEGFR successfully increased
NK-mediated lysis of MAM tumor cells to 76.9%, 81.1% and 80.3%, while AACAR NK-92
cells in combination with bCD171 showed specific lysis of 51.4% of tumor cells. After 96 h
AdCAR-mediated cell lysis increased to 82.3% (bCD146), 57.0% (bCD171), 83.5% (bCD276),
93.3% (bEGFR).
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Figure 4. Cytokine secretion profile of AACAR NK-92 cells. AACAR NK-92 cells as well as parental
NK-92 cells were co-incubated with the tumor cell line MAC in the presence and absence of bEGFR
for 6 h at an E:T ratio oif 5:1. The release of cytokines was measured using the Bio-Plex Pro human
cytokine 17-plex assay and is shown as a heatmap. PMA /Ionomycin was used as control to induce
maximum cytokine secretion.

3. Discussion

To date, conventional therapies have limited success in preventing or treating bone
metastasis due to the complex nature of the bone microenvironment, tumor heterogeneity,
and the therapeutic resistance of dormant tumor cells. Despite significant advancement
of conventional therapies, such as surgery, chemotherapy, hormone or radio therapy,
metastatic disease remains virtually incurable and still is one of the most common causes
for cancer-associated mortality [2].

Our recently developed AdCAR platform combines a modular adapter chimeric
antigen receptor with the universal applicability of the NK-92 cell line, thus creating an
“off-the-shelf” cellular product for the treatment of cancer [23]. Currently, universal CAR
approaches with T or NK cells using adapter molecules that are foreign to the human
body like the affinity-enhanced monomeric streptavidin 2 (mSA2) can potentially cause im-
munogenic reactions and make clinical translation difficult [27,28]. Even adapter molecules
tagged with endogenous molecules such as biotin could potentially cause adverse reactions
due to the immunogenicity of avidin and streptavidin [29]. The adapter system used herein
is based on a scFv targeting a “neo”-epitope-like structure, the linker label epitope, con-
sisting of biotin in the context of a mADb, instead of biotin itself [26]. Hence, application of
AdCAR NK-92 cells can circumvent adverse immunogenic reactions of other CAR systems
and decrease the risk of severe side effects during therapy.
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Figure 5. AACAR NK-92-mediated lysis of 3D tumor spheroids. GFP-transduced cell lines MAM was grown as 3D spheroids
in ultra-low attachment plates and subsequently co-incubated with AACAR NK-92 or parental NK-92 cells and indicated
biotinylated antibodies for 96 h in at least three individual experiments. Fluorescence images show representative MAM
spheroids at indicated time points (a). Integrated fluorescence intensity of tumor spheroids was measured regularly using
the Celigo S Imaging Cytometer (Nexcelom, Lawrence, MA, USA), compared to untreated control spheroids and is shown
as mean =+ SD, n = 3 (b).

The flexibility of the presented AACAR system can further counteract drawbacks of
conventional CAR T cell therapy such as off-tumor toxicity or tumor evasion strategies.
Previous CAR T cell studies showed downregulation of the target antigen as a reaction
to therapy which ultimately leads to immunotherapy resistance [30-32]. Additionally,
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since only few antigens are uniquely specific for solid tumors, eradication of tumor cells
while simultaneously sparing healthy tissue is a major concern of CAR T cell therapy [33].
Utilizing a standardized flow cytometry screening panel enables target options that are
tailored on a patient-individualized basis. In case of tumor antigen evasion during therapy,
the target structure can be easily switched by application of a different bAb while still
retaining therapeutic efficacy. Moreover, simultaneous or consecutive use of different
biotinylated antibodies in combination with AACAR NK-92 cells may provide a possible
treatment strategy for highly heterogeneous tumors and is able to counteract tumor antigen
loss and off-tumor/on-target toxicity. Utilization of biotinylated antibodies, which are
already approved by the FDA, such as cetuximab or trastuzumab generates functional
adapter molecules with a known safety profile for AACAR NK-92 therapy and facilitates
translation into clinical settings.

In this study, we demonstrated that CAR-modification of the NK-92 cell line with
our AdCAR system can enable promising therapeutic opportunities for the treatment of
a variety of metastatic tumor entities. AACAR NK-92 cells effectively eliminated tumor
cells from the newly established cell lines derived from bone metastases of renal cell,
mammary and colorectal carcinomas, as well as melanomas in standard in vitro cytotoxicity
assays within two hours. Specificity of cytolytic activity was achieved by prior screening
for suitable target antigen structures on tumor cell lines and utilization of respective
biotinylated antibodies as adapter molecules. Due to the lack of FcyRIII (CD16) expression
on NK-92 cells, the formation of the immunological synapse is simply dependent on bAb
titration [34]. AACAR NK-92 cells that were co-incubated without bAb or with bAb without
specificity of interest lead to little to no tumor lysis. Additional controllability of AACAR
NK-mediated cytotoxicity is underscored by the fact that cytolytic activity occurred in a
concentration-dependent manner [23]. Moreover, AACAR NK-92 cells are functionally
independent of the target cells’ NK ligand profile. Specific AdCAR-mediated cytotoxicity
could be demonstrated regardless of tumor cell surface expression of inhibitory ligands
such as HLA-E which was shown to have negative effects cytotoxic activity of primary NK
cells [35,36].

As shown in first in vivo and clinical CAR NK-92 trials the NK cell line was less
likely to induce severe side effects such as neurotoxicity and cytokine release syndrome
(CRS) [37,38]. Likewise, in the present study, IL-6, a driving causation of CRS, was not
produced by AACAR NK-92 cells after co-incubation with either tumor cell line or a
specific bAb. The secretion of the pro-inflammatory cytokines IFN-y and TNF-«, as
shown by AACAR NK-92 cells co-incubated with the target cell line and a specific bAb,
may, additionally, stimulate the endogenous immune system and enhance anti-tumor
activity [18].

One of the key necessities of CAR-immune cell therapies to be successful for the
treatment of solid tumors and, especially, in the metastatic setting is their capability of
immune cell homing and tumor infiltration [39—41]. Establishment of three-dimensional
in vitro spheroids enables accurate assessment of a range of in vivo biological processes [42].
Here, AACAR NK-92 cells are clearly able to efficiently lyse tumor spheroids in an antibody-
dependent manner. Furthermore, they have been shown to be resistant to the tumor
microenvironmental influences such as the secretion of transforming growth factor beta
(TGFf) which was reported to account for tumor resistance to immunotherapy [18,43,44].
Future research needs to evaluate the therapeutic potential of AACAR NK-92 cells in pre-
clinical in vivo and clinical settings. Particularly, mouse bone metastasis models will be of
major importance to assess AACAR NK-92 biodistribution, homing and infiltration.

As previously described, frozen CAR-engineered NK-92 cells can be thawed and
expanded as a batch culture in gas permeable cell culture bags. Doubling time of CAR
NK-92 cells is approximately 32 to 36 h and culture yields can be individually scaled
according to treatment doses and number of patients treated [45]. Safety was proven in a
recent phase I clinical trial with CD33-specific CAR NK-92 cells. No dose-limiting toxicities
were observed upon repeated intravenous infusions of up to 5 x 10” irradiated cells per
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dose [37]. Several other early phase clinical trials with CAR-engineered NK-92 cells are also
currently being carried out in Europe, China and the US (clinicaltrials.gov; NCT 02742727,
03383978, 04050709).

For clinical translation, metastatic tumor cells isolated from bone marrow biopsies
or surgery can be quickly screened for their target antigen expression profile with the
implemented, standardized antibody panel using flow cytometry or ultra-high content
imaging techniques. AdCAR-engineered NK-92 cells could be utilized to eradicate dissem-
inated, dormant metastatic tumor cells within the bone marrow as well as micrometastases.
Furthermore, for the treatment of large bone metastases, AACAR NK-92 cells could be
given as intratumoral injections or also be applied after surgery at the resection site to
eliminate non-resectable tumor residues. A well-characterized, GMP-compliant qualified
master cell bank of CAR NK-92 cells as a reliable source for subsequent production of
patient doses, enables therapeutic translation within hours of the surgery [38,46]. Together
with biotinylated therapeutic antibodies, universal “off-the-shelf” AdCAR NK-92 cells can
be utilized for flexible and patient-individualized therapy, thus, enabling broadly available
and more affordable immunotherapy for cancer patients independent of specialized facili-
ties. Their specific properties make AACAR NK-92 cells a promising treatment option for
bone metastases.

4. Materials and Methods
4.1. Cell lines and Culturing Conditions

NK-92 cells were purchased from ATCC and maintained at a concentration of 10°
cells/mL in MEM Alpha Medium containing stable L-glutamine (GlutaMAX, Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 20% FBS and 100 U/mL IL 2
(Proleukin, Aldesleukin, Chiron, Emeryville, CA, USA) referred to as NK-92 complete
medium. MAC, MAM, MCK83 and MeGal7 cell lines were established from biopsy tumor
samples from resected bone metastases provided by the Department of Orthopedic Surgery,
University Hospital Tuebingen (UKT). Newly established cell lines and matched tumor
samples, as well as patient’s blood lymphocytes for comparison, were authenticated by
short-tandem-repeat analysis (Eurofins Scientific, Luxembourg City, Luxembourg) to verify
cell origin and identity. Tumor cell lines were cultivated in RPMI 1640 medium (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA) containing GlutaMAX, referred
to as RPMI complete medium, maintained at 37 °C in a humidified 5% CO, atmosphere
and regularly tested for mycoplasma contamination. The present study was approved
by the ethics committee at the Medical Faculty of the Eberhard Karls University and the
University Hospital Tuebingen (reference number 008/20114/B0O2). Human material was
collected after obtaining informed consent in accordance with the Helsinki protocol. All
media contained 1x antibiotic-antimycotic solution (Thermo Fisher Scientific, Waltham,
MA, USA).

4.2. Design of the AACAR System

The second-generation adapter CAR is based on the mAb “mBio3”-derived single-
chain variable fragment (scFv) targeting a “neo”-epitope-like structure, the linker label
epitope, consisting of biotin in the context of a mAb. Exact constitution of the AACAR
construct and generation of AdCAR-engineered NK-92 cells was previously described [23].

4.3. Biotinylated Antibodies

Antibodies were either purchased as bAb from Miltenyi Biotec (Bergisch-Gladbach,
Germany) or acquired from the UKT pharmacy and biotinylated by Davids Biotechnologie
(Regensburg, Germany).
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Antigen Clone Antibody Order # Lot Supplier

CD146  541-10B2 n/a 130-092-852 5190627154  Miltenyi Biotec, Bergisch
Gladbach, Germany

CD171  REA163 n/a 130-100702 5190607129  Miltenyi Biotec, Bergisch
Gladbach, Germany

CD200  OX-104 n/a 130-106-064 5191021606  litenyi Biotec, Bergisch
Gladbach, Germany

CD221  REA271 n/a 130-103-973 5190627184  Miitenyi Biotec, Bergisch
Gladbach, Germany

CD271  REAS844 n/a 130-112-608 5190627191  Miitenyi Biotec, Bergisch
Gladbach, Germany

CD274 n/a Atezolizumab n/a n/a Hoffmann-.La Roche, Basel,

Switzerland

CD276  EM276 n/a 130-095-514 5190627174  Miltenyi Biotec, Bergisch
Gladbach, Germany

CD340 n/a Trastuzumab n/a n/a Hoffmann-.La Roche, Basel,

Switzerland
EGFR n/a Cetuximab n/a n/a Merck KgaA, Darmstadt,
Germany
Dinutuximab Eusa Pharma,
GD2 n/a beta n/a n/a Hertfordshire, Great Britain

4.4. Flow Cytometry

Staining of cells was conducted using primary biotinylated mAb with antigen speci-
ficity of interest. Cells were incubated with specific antibodies at 4 °C in flow cytometry
buffer containing PBS (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 2% FBS
and 0.5 M EDTA (Sigma-Aldrich, St. Louis, MO, USA) for 15 min. Unbound antibody was
washed off by centrifugation (4 °C, 350 g, 5 min) and stained with a secondary, fluorophore-
labeled anti-biotin antibody (Anti-Biotin PE, clone: REA746, Miltenyi Biotec, Bergisch
Gladbach, Germany) for 15 min followed by another washing step. Surface antigen ex-
pression was analyzed with the secondary antibody alone as a negative control using a BD
FACSCanto II flow cytometer (BD, Franklin Lakes, NJ, USA).

4.5. Calcein Release-Based Cytotoxicity Assay (CRA)

Target cell staining with Calcein AM (Thermo Fisher Scientific, Waltham, MA, USA)
as well as the protocol for the calcein release-based cytotoxicity assay (CRA) was described
previously [23,45].

4.6. Real-Time Label-Free Live Cell Analysis

Bone metastasis cell lines were adjusted to a concentration of 10° cells/mL in RPMI
complete medium and seeded in E-Plate 96 VIEW (OLS, Bremen, Germany) micro-well
plates. Effector AACAR NK-92 cells were adjusted to an E:T ratio of 5:1 in NK-92 complete
medium without IL-2 and co-incubated with the target cells in the presence or absence
of specific bAb. Utilizing the xCELLigence real-time cell analysis (RTCA, OLS, Bremen,
Germany) system, cells were monitored for over 12 h. Tumor cell viability was calculated
using the RTCA 2.0 software (OLS, Bremen, Germany) and AdCAR-mediated cytotoxicity
was subsequently determined.

4.7. Quantification of Cytokine Release

Cytokine release of AACAR NK-92 cells upon AdCAR induction was determined
using the Bio-Plex Pro human cytokine 17-plex assay (Bio Rad, Hercules, CA, USA). The
respective protocol was described previously [23].
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4.8. 3D Spheroid Cytotoxicity Assay

GFP-transduced metastatic tumor cells were grown as three-dimensional spheroids
and co-incubated with NK-92 as well as AACAR NK-92 cells in the presence or absence of
biotinylated antibodies. The respective protocol was described previously [23].

4.9. Data Analysis

All statistical analyses were performed with GraphPad Prism 8 software (GraphPad
Software Inc., San Diego, CA, USA). Flow cytometry data were analyzed using FlowJo
software V10.0.8 (FlowJo LLC, Ashford, OR, USA).

5. Conclusions

Innovative immunotherapy for the treatment of solid cancers and especially metastatic
disease is urgently needed. Adapter CAR-engineered NK-92 cells are able to combine their
“off-the-shelf” availability with personalized and controllable elimination of metastatic
tumor cells, thus, establishing a potent cellular product with universal applicability and
quick clinical translation potential for the treatment of solid tumors, including metastases.
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