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Minor blunt head trauma (MHT) represents a common reason for presentation to the
pediatric emergency department (ED). Despite the low incidence of clinically important
traumatic brain injuries (ciTBIs) following MHT, many children undergo computed
tomography (CT), exposing them to the risk associated with ionizing radiation. The
clinical predictions rules developed by the Pediatric Emergency Care Applied Research
Network (PECARN) for MHT are validated accurate tools to support decision-making
about neuroimaging for these children to safely reduce CT scans. However, a few
non-ionizing imaging modalities have the potential to contribute to further decrease
CT use. This narrative review provides an overview of the evidence on the available
non-ionizing imaging modalities that could be used in the management of children with
MHT, including point of care ultrasound (POCUS) of the skull, near-infrared spectroscopy
(NIRS) technology and rapid magnetic resonance imaging (MRI). Skull ultrasound has
proven an accurate bedside tool to identify the presence and characteristics of skull
fractures. Portable handheld NIRS devices seem to be accurate screening tools to
identify intracranial hematomas also in pediatric MHT, in selected scenarios. Both
imaging modalities may have a role as adjuncts to the PECARN rule to help refine
clinicians’ decision making for children at high or intermediate PECARN risk of ciTBI.
Lastly, rapid MRI is emerging as a feasible and accurate alternative to CT scan both in
the ED setting and when repeat imaging is needed. Advantages and downsides of each
modality are discussed in detail in the review.

Keywords: pediatric minor head trauma, traumatic brain injury, pediatric, skull ultrasound, near-infrared
spectroscopy, magnetic resonance imaging

INTRODUCTION

Minor blunt head trauma (MHT), remains one of the most common reasons for children to present
to the Emergency Department (ED) in high income countries (1, 2). MHT infrequently results
in fractures of the skull and/or traumatic brain injuries (TBIs), and only approximately 1% of
children, overall, will sustain clinically important TBIs (ciTBIs). These include any of the following:

Abbreviations: ciTBI, clinically important traumatic brain injury; CT, computed tomography; ED, emergency department;
MHT, minor head trauma; MRI, magnetic resonance imaging; NIRS, near infrared spectroscopy; PECARN, Pediatric
Emergency Care Applied Research Network; POCUS, point of care ultrasound; US, ultrasound.
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death, neurosurgery, intubation for >24, or hospitalization for 2
or more nights in association with TBI on computed tomography
(CT) (3, 4). While CT of the head is the gold standard to diagnose
skull fractures and TBIs, it exposes patients to ionizing radiation.
Its use is associated with an increased lifetime risk of malignancy,
especially in children, although the most recent CT technology
and the optimization of CT radiation dose mitigate this risk (5–9).

Over the past two decades many clinical prediction rules,
including symptoms and signs from history and physical
examination, have been developed to support clinical decision
making on CT scan, in order to optimize its use and reduce
unnecessary radiation exposure (3, 4, 10, 11). Of these, the
two age-specific prediction rules derived and validated by the
Pediatric Emergency Care Applied Research Network (PECARN)
(3) and externally validated in several studies (4, 12, 13) showed
to be methodologically robust and highly accurate in identifying
children at low risk of ciTBIs, following a minor head trauma
defined by a Glasgow Coma Scale (GCS) score of 14 or 15
on assessment (Figure 1). Of note, these rules do not apply to
children with suspected abusive head trauma. For children with
accidental MHT, in the absence of the rule predictor variables a
CT scan can be safely avoided. In the presence of the PECARN
rule predictor variables, the risk of ciTBI differs according to the
type and number of predictors. The two age-specific PECARN
rules, one for pre-verbal children <2 years, and one for those
≥2 years, include six predictor variables. Of each age-specific
rule predictors, four are associated with an intermediate risk of
ciTBI. Based on the PECARN rule risk stratification algorithm,
in the presence of any of the four intermediate-risk predictors,
clinicians can choose to observe the patient in the ED for a
period of time, or to immediately obtain a CT. For children
at intermediate risk of ciTBI clinicians may favor CT over
observation, based on the presence of multiple versus isolated
findings, including physician experience, worsening symptoms
or signs during observation, age <3 months, and parental
preference, among other factors. Two of the six PECARN rule
predictor variables were found to be associated with a higher risk
of ciTBI. For children at high risk of ciTBI based on the PECARN
rule, the trade-off between the risk of missing a ciTBI and the
risk associated with CT-related radiation exposure is in favour of
obtaining a CT scan.

The PECARN rules have been widely implemented worldwide,
often with some adaptations, and are routinely used to assist
clinical practice in several EDs (14–18). Since their publication,
several secondary analyses of the PECARN rules parent study
(3) and of their largest external validation study (4) contributed
to best define the risk of ciTBI for children presenting with
one of the rule predictor variables in isolation or associated
with other predictors (19–27). These data provide clinicians with
additional information to further refine their decision-making
based on a more precise risk stratification for ciTBI within
specific subgroups of patients. Although the use of the PECARN
rules has led to significant decrease in CT scans in many settings
(28–30), unnecessary CT scans are still often performed (31).

The ability to further refine the risk of ciTBI through the
use of bedside non-ionizing imaging modalities represents an
opportunity to further reduce unnecessary CT scans, their

related radiation exposure, the possible need for sedation in
uncooperative children and the associated costs. With this
respect, point of care ultrasound (POCUS) of the skull and
bedside near-infrared spectroscopy technology (NIRS) devices
have the potential to be used as adjuncts to the PECARN rules
to further contribute to patient risk refinement and selection
for neuroimaging. Another opportunity to reduce radiation
exposure is the use of magnetic resonance imaging (MRI) in place
of CT scan for the diagnosis of TBIs. This imaging modality,
however, traditionally requires that the child remains motionless
for several minutes and usually needs sedation, making MRI
not suitable or impractical in the setting of acute head trauma.
More recently, rapid or fast MRI motion-tolerant abbreviated
sequence protocols, that have been used to reduce radiation
exposure in children with shunt treated hydrocephalus for more
than a decade (32), have shown promise as a feasible and
accurate alternative to CT in clinically stable children with
concern for TBI.

In this narrative review we will summarize the evidence
on the available non-ionizing imaging modalities, including
skull POCUS, NIRS bedside devices and rapid MRI, in the
management of children with accidental MHT.

Although this was not a systematic review we are providing
herein the details of the literature search used to identify
the key evidence presented in our review. We searched
PubMed focusing on three main concepts: (1) head trauma; (2)
specific non-ionizing imaging techniques (i.e., skull ultrasound,
transfontanelle ultrasound; near infrared spectroscopy brain
scanner; and rapid magnetic resonance imaging); and (3)
the pediatric field. We used the following search terms for
each of the above concepts: (1) “head trauma” OR “head
injury” OR “traumatic brain injury”; (2) “ultrasound” OR
“ultrasonography”; “near-infrared spectroscopy”; (“quick brain”
OR “rapid sequence” OR “fast”) AND (MRI OR magnetic
resonance imaging); (3) child∗ OR pediatric∗ OR paediatric∗. We
excluded articles that focused on moderate or severe head injury,
on non-accidental head trauma and non-English articles. We also
checked the reference lists of selected papers to screen for further
possibly relevant articles.

POINT OF CARE ULTRASOUND

Point of care ultrasound (POCUS) (33) is widely used in EDs
worldwide (34) as it is rapid, non-invasive, inexpensive, and it
does not expose children to ionizing radiation. Its role is well
established for the assessment of soft tissues and parenchymatous
organs or for determining the presence of fluid collections, but it
is also being increasingly used to study bone lesions. With this
respect, it has been demonstrated that clinicians with adequate
training can use POCUS to accurately diagnose bone fractures,
both in children and adults (35).

In the context of pediatric MHT, this technique is particularly
useful when a scalp hematoma is present and clinical signs of a
palpable skull fracture may be unclear or doubtful to define the
presence of an underlying depressed or complicated fracture of
the skull (36, 37). Two recent meta-analyses (38, 39) evaluated
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FIGURE 1 | Pediatric Emergency Care Applied Research Network algorithms for the emergency department management of minor head trauma – Adapted from (3).

the accuracy of skull POCUS performed by ED physicians
in identifying skull fractures in children with head trauma.
Both included prospective studies that compared POCUS results
with CT scan findings (reference standard). Both meta-analyses,
although slightly different in the methods and in the number of
studies included [six studies in Gordon et al. (39) and seven in
Alexandridis et al. (38)] found a pooled sensitivity of 91% and
a pooled specificity of 96%, confirming the accuracy of POCUS
in detecting skull fractures. Overall, the largest meta-analysis
analyzed 925 patients, with study samples ranging from 21 to
538 patients and percentage of skull fractures on CT ranging
from 10 to 77%.

One of the limitations of US is the training required to
achieve the ability to accurately identify disease, which makes
this imaging modality operator-dependent. However, limited
training is required to accurately identify skull fractures (38).
A recent multicentre study showed that clinicians who were
mostly novices to skull POCUS, were able to correctly classify
the type of skull fracture as linear, depressed, or complex in
84.4% of cases as compared with CT scan results (k statistic of
0.75, 95% CI 0.70–0.84) (40). Participating clinicians were able to
achieve such good results after receiving 2 video didactic training
sessions in skull POCUS techniques, and hands-on training done
locally at each site, which included, at some sites, homemade,
low-cost ultrasound phantoms for instruction and practice
(41). The clinicians performing the POCUS examinations were
trained to look for cortical skull irregularities visible in multiple
orientations to be considered a true positive fracture. They also
had to demonstrate 10 successful skull POCUS examinations

on patients younger than 2 years under the supervision of the
site POCUS lead.

While skull POCUS should not be used as a screening tool for
intracranial injuries (15, 18), based on the identification of a skull
fracture per se, it could help better select patients warranting a
head CT by direct visualization of fracture characteristics (18). As
a matter of fact, differently from skull x-rays, POCUS can better
define whether a fracture is depressed, diastatic or comminuted.
The PECARN rule predictor “signs of palpable skull fractures”
for younger children is associated with a high-risk of ciTBI,
suggesting that a CT scan should be obtained in these patients.
Fractures which can be palpated on physical examination (due
to a gap or step-off in the fracture margins) are more often
associated with ciTBIs, and depressed fractures can sometimes
require surgery per se, depending on the depth of depression
(3).The clinical finding of a “palpable skull fracture,” however, was
previously reported to have a low interobserver agreement among
clinicians (kappa index of 0.67 with a lower 95% confidence
interval limit of 0.41) (42). Skull POCUS, by defining the presence
and, most importantly, characteristics of a skull fracture, appears
to be a useful adjunctive tool to refine decision-making on CT
scan in young children with “signs of palpable skull fractures,”
especially when this clinical finding may be unclear or doubtful.

In addition to POCUS of the skull, some authors have
proposed transfontanelle US, in infants younger than 1 year
of age, as a useful tool to assess for intracranial lesions after
MHT (43). One important limitation, however, is its inability to
accurately identify extra-axial hematomas. For this reason, the
Italian and Australasian guidelines recommend not to routinely
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use transfontanelle US for diagnosing intracranial injuries,
especially prior to, or in lieu of, a head CT (13, 42).

Last, although transcranial doppler is being increasingly
used to aid in the diagnosis and monitoring of intracranial
hypertension following moderate or severe pediatric traumatic
brain injuries, its role in the acute ED management of children
with MHT is yet to be defined (44–46).

NEAR INFRARED SPECTROSCOPY

Near-infrared spectroscopy (NIRS) is a non-invasive, affordable,
easy-to-learn and to-use, non-radiating technology, which can
detect the presence of intracranial hematomas following a head
trauma. A NIRS apparatus consists of a near-infrared light
source that shines light (within a wavelength of 700–950 nm)
to the head, and a detector that receives the light after it has
interacted with the tissues. Under normal circumstances, the
brain’s absorption is symmetrical.

The detection of intracranial hematomas is based on
the differential near-infrared light absorption of extravascular
hemoglobin within the injured side of the brain compared to
the uninjured brain (47). Hand-held portable NIRS devices allow
for examination of head trauma patients at the bedside, and
can be used in both the pre-hospital and in-hospital setting.
The handheld brain scanner is placed successively in the left
and right frontal, temporal, parietal, and occipital regions of the
head. The device electronically calculates the difference in optical
density (1OD) between the right and left side in each of the four
regions on a pairwise basis. The formula used for this purpose is
1OD = log10 (IN/IH), where IN is the intensity of the reflected
light on the presumed normal side, and IH is the intensity of the
reflected light on the presumed abnormal side (47). A positive test
result is defined by a 1OD > 0.2 between two symmetric regions,
based on a pilot study of patients with hematomas and healthy
controls and set to maximize sensitivity and specificity (48).

Seven studies, all prospective, investigated the accuracy of this
technology in detecting CT-diagnosed intracranial hemorrhages
in children, six of which are included in a recent systematic
review (47). Overall, the seven studies comprise a total of 657
pediatric patients undergoing both a NIRS assessment and a
head CT (study samples ranging from 18 to 344) (49–54).
All studies were conducted in the in-hospital setting (six in
the ED and one in the intensive care unit) using different
inclusion criteria. The rate of positive CT scans was highly
variable across studies (between 4.7 and 42.9%). Sensitivities
ranged between 58.3 and 100%, and specificities between 65.3 and
98.7%. Of note, in the largest and most recent multicenter study
conducted in the United States using the latest brain scanner
model, NIRS technology demonstrated a sensitivity of 58.3%
(21/36) and specificity of 67.9% (209/308) for hematomas of
any size and location. Considering only hematomas within the
NIRS device detection limits, the sensitivity was 81% (13/16)
and specificity 67.4% (221/328) (55). None of the intracranial
hemorrhages missed by NIRS technology needed neurosurgery.
The negative predictive values were consistently high across
studies, between 98 and 100%, meaning that a negative result

on the NIRS assessment is highly predictive of the absence of
intracranial hemorrhages, within the device detection limits. The
assessment with the NIRS brain scanner can be easily completed
in approximately 90% of children, mostly within 5 min (54, 55).
One of the hand-held NIRS devices has recently been cleared by
the FDA for the detection of supratentorial hematomas also in
patients aged 2 years and older (56).

Despite several advantages, NIRS technology bears some
limitations that need to be acknowledged for a correct use and
interpretation of its results. First, NIRS devices are able to detect
only hematomas > 3.5 mL in volume and within a depth of 2.5 cm
of the brain surface. Secondly, it is not accurate in the presence
of bilateral hematomas, as the technology relies on the pairwise
comparison of light absorption between the two hemispheres.
Third, scalp hematomas may be confounding factors for NIRS
technology, because blood contained within a scalp hematoma
can alter the absorption of the NIR light and cause a false-positive
result. Furthermore, NIRS technology is unable to precisely
determine the location (eg, subdural vs epidural) and volume
extent of intracranial hematomas, and it is only useful in the
presence of acute hematomas (<12 h). In addition, it can be
difficult to apply on thick hair or injured skin. Lastly, operators
need to maintain proficiency in standardized and meticulous
positioning of the device to avoid hair, foreign bodies, and scalp
hematomas. Optimal pressure of the probe against the scalp also
needs to be ensured to yield reliable measurements (55).

In summary, NIRS technology appears to be a useful
adjunctive tool to the PECARN head trauma rule to refine
decision-making on CT for patients at PECARN intermediate
risk of ciTBI. The high negative predictive value of NIRS
assessment may help reduce the number of CT scans. Further
investigation, however, is warranted to determine its clinical
impact and best use in practice.

RAPID MAGNETIC RESONANCE
IMAGING

In 2002, “quick-brain” MRI was introduced as an alternative
technique to CT scanning for the evaluation of children with
hydrocephalus (32, 57). Since then, its use has been extended to
several other conditions, including MHT. Fast MRI or Rapid-
sequence MRI of the brain is a limited-sequence MRI protocol,
which reduces the time to image acquisition. This allows the
detection of TBIs during the acute assessment of MHT, while
avoiding exposure to ionizing radiation from head CT scans.
A recent systematic review, without meta-analysis, included 13
studies on the use of rapid-sequence MRI in children. Of these,
seven included children with head trauma as a sole inclusion
criterion, three included patients meeting various indications to
undergo neuroimaging, and three focused exclusively on abusive
head trauma (58).An additional relevant study was published
concurrently to the systematic review (59). Of the eight studies
considered for this review (59–66), samples ranged between 23
and 233 patients and only two were prospective (60, 61). The
average reported time to imaging completion varied between 1
and 16 min, depending on the MRI protocols used (58). Rapid
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TABLE 1 | Advantages, limitations, and role in the management of pediatric mild head trauma of non-radiating imaging techniques.

Advantages Limitations Role in the management of pediatric MHT

POCUS of the skull • Affordable
• Bedside technology
• Rapid learning
• No need for sedation
• Detection and characterization of skull

fractures

• Inadequate for identifying intracranial
injuries

• Operator dependent

Adjunctive tool to PECARN head trauma
prediction rule to refine decision-making on CT
for younger children with the high-risk predictor
“signs of palpable skull fractures” by defining
the actual presence and characteristics of
underlying fractures of the skull

NIRS • Affordable
• Bedside technology
• Rapid learning
• No need for sedation
• Detection of intracranial hemorrhages

• For acute bleeds only (<12 h)
• Limited to intracranial hemorrhage

depth/volume
• Inaccurate for bilateral hemorrhages
• Impaired detection with scalp

hematomas, thick hair
• Operator dependent

Potential adjunctive tool to the PECARN head
trauma rule to refine decision-making on CT for
patients at PECARN high or intermediate risk of
ciTBI
Further investigation is warranted to determine
its clinical impact and best use in the ED

Rapid MRI • No sedation (feasible without sedation
also in young children)

• Compatible with ED pace and flow
• Accurate for TBI

• Limited accessibility
• Costs
• Less sensitive to linear skull fractures
• Lack of consensus about best protocol

to use

Feasible and accurate alternative to CT for
stable children with MHT to detect ciTBI in the
ED, as well as surveillance imaging in lieu of
repeat CT
Good option for repeat imaging depending on
detail needed

ciTBI, clinically important traumatic brain injury; CT, computed tomography; ED, emergency department; MHT, mild head trauma; MRI, magnetic resonance imaging;
NIRS, near infrared spectroscopy; PECARN, Pediatric Emergency Care Applied Research Network; POCUS, point of care ultrasound; TBI, traumatic brain imaging.

MRI was successfully completed in 99% of children with head
trauma, as reported by the largest prospective study by Lindberg
et al. where the median time to completion was 6 min (60).
These data show that rapid MRI is a feasible option for stable
children with MHT in the ED. With respect to its diagnostic
accuracy, although difficult to compare across studies due to
the variable rapid MRI protocols used, this technique resulted
overall comparable to CT for the detection of TBIs (sensitivity
between 85 and 100%, and specificity between 83 and 100%),
while less sensitive for linear non-displaced skull fractures (with
wide variability in sensitivity across studies, between 34 and
100%) (58, 59). The accuracy in detecting linear skull fractures
was reported to remain limited, even when complemented by
a black bone sequence (62), although missed fractures never
required neurosurgical intervention (58, 59, 63, 67). CT scans
and rapid-sequence MRIs, in the relevant studies (59–66) were
mostly performed within a time interval of 48 h. It is important to
note that the variable time interval between CT scans and rapid-
sequence MRIs may have affected the sensitivity of the latter
for minor intracranial hemorrhages. Rapid MRI is particularly
recommended in the assessment of MHT patients with persistent
neurologic symptoms despite normal CT findings or in lieu of
repeat CT (66). While some authors suggest rapid MRI being
most helpful as a follow up imaging in patients with known
TBIs (65), others reported rapid MRI to be slightly superior
to CT for the detection of specific TBIs such as extradural
and subdural hematomas, parenchymal contusions and white
matter axonal injuries, although without a statistically significant
difference (59, 60, 64, 66). The sensitivity of rapid MRI seems
to be dependent on the type of sequence protocol used (65,
68, 69), other than the medical expertise of the radiologist
(60, 70). Based on the feasibility and accuracy data of rapid
MRI, this imaging modality seems to fit the ED needs for a
timely diagnosis and a rapid throughput. However, institutions

should integrate rapid MRI into acute pediatric TBI management
judiciously, relying on the clinical context and institutional
capabilities, especially for the prognostic and legal implications
(58). Unfortunately, the infrastructural accessibility of rapid MRI
is limited compared to CT (71) and it requires experienced
and qualified staff for proper exam reading and interpretation,
in order to avoid pitfalls. In addition, its use should be based
on pre-defined and established criteria, as its actual diagnostic
accuracy in the broader population of children with head trauma
remains unknown (72, 73). Until consensus is achieved on
the best protocol to be used and procedures are standardized,
this imaging modality should be reserved to settings with high
volumes of head trauma patients, able to perform MRI rapidly
and safely in children, with experienced and qualified staff for
best imaging acquisition, reading and interpretation, in order
to ensure MRI is equivalent to a head CT scan in terms of
utility (15).

CONCLUSION

POCUS of the skull, NIRS technology and rapid MRI bear great
potential to reduce CT-related radiation exposure in children
with MHT. Their advantages, limitations and potential role in the
management of pediatric MHT are summarized and compared
in Table 1. While the availability and accuracy of rapid MRI
are setting dependent and NIRS brain scanners are still not
widespread in the ED setting, POCUS is already routinely used
in EDs worldwide. This facilitates its implementation in the
approach to pediatric MHT. Although operator dependent, its
ability to more objectively define the PECARN risk factor of
“signs of palpable skull fracture” can substantially contribute to
refine clinical decision making in patients with this clinical sign.
When implementing non-ionizing imaging for the management

Frontiers in Pediatrics | www.frontiersin.org 5 May 2022 | Volume 10 | Article 881461

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pediatrics#articles


fped-10-881461 May 5, 2022 Time: 19:5 # 6

Cicogna et al. Imaging in Pediatric Head Trauma

of MHT in the ED, continuous monitoring of its impact on
patient health outcomes and CT scan use is warranted.
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