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Human milk (HM) is dynamic and shows a high inter- and intra-individual variability. To

characterize HMwith precision, it is necessary to understand the factors that modulate its

composition. The objective of this narrative review is to summarize the maternal, infant

and methodological factors that affect HM composition. We searched SCOPUS and

PubMed databases for articles related to factors that are known to or could potentially

influence HM composition and volume across lactation periods. Our comprehensive

review encompasses various maternal-, infant-related, and methodological factors that

modulate aspects of HM composition including macro- and micronutrients, vitamins and

minerals, as well as volume. The most profound changes were observed in HM lipids

and lipophiles. Evidence exists for many of the infant-related factors known to affect the

nutritive and non-nutritive components of HM (e.g., birth weight, gestational age, infant

age/stage of lactation). In contrast, less is known with respect to maternal factors; where

there is either limited research or conflicting evidence (e.g., maternal lifestyle, obstetric

history, medical conditions), except for the mother’s diet, for which there is a relatively

well-established understanding. Equally, although many of the methodological factors

(e.g., HM sampling, handling and analytics) are known to impact HM composition, few

studies have investigated this as a primary outcome, making it an important area of

future research in HM. Here we propose a systematic capture of numerousmaternal- and

infant-related characteristics to facilitate associative comparisons of HM data within

and across studies. Additionally, it would be prudent to standardize the methodological

aspects known to affect HM composition in analytics, not only for HM lipids and

lipophiles, but also for those nutrients whose variability is yet less well-understood.

Defining the factors determining HM composition with accuracy will open perspectives

for maternal intervention to optimize milk composition for specific needs of infants.

Keywords: human milk, lactation, maternal, infant, human milk sampling, standardization, human milk

composition
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INTRODUCTION

Breastfeeding i.e., human milk (HM1) feeding either from the
infant’s own mother, or wet nurses as in the past, was and
continues to remain the feeding norm for new-born infants.
Benefits of breastfeeding for both infants and mothers, in short-
and long-term are well-documented (1–5). A recent publication
indicates a protective effect of breastfeeding against childhood
infections and malocclusion, increases in intelligence, and
probable reductions in overweight and diabetes later in life (6).
Mothersmay also benefit from breastfeeding in that risk of breast,
uterine and ovarian cancer is reduced, and post-partum weight
loss is promoted (6). With multiple benefits of breastfeeding,
it is no surprise that characterization of HM composition is of
increasing interest in order to gain insights into the underlying
factors that contribute to the benefits of breastmilk.

HM is a highly complex, and dynamic biological fluid rich
in nutritive (e.g., lipids, proteins, carbohydrates, fatty acids,
amino acids, minerals, vitamins, trace elements, etc.) and
non-nutritive bioactive components (e.g., cells, Ig, cytokines,
chemokines, hormones, growth factors, glycans, mucins, etc.).
It provides protection against infection and inflammation,
and contributes to immune maturation, organ development,
microbiota colonization and overall infant health (7–9).

It is hypothesized that HM is tailor-made by each mother
to meet the nutritional needs of her growing infant; plasticity
of HM composition may be key to early infant growth and
programming of health in later life. Studying HM composition
is essential to not only understand the nutritional needs
but also to correlate with other developmental outcomes of
infants (e.g., neurodevelopment, immune development, and
gut maturation). Understanding the associations between HM
composition and developmental outcomes can also lead to
strategies formodifyingmaternal nutrition in cases where needed
and to adapt fortification strategies for preterm infants.

While there exist published reviews in which a selection
of factors that influence the composition of HM is described,
to our knowledge no review considers the numerous aspects
that affect the composition and volume of HM. With our
narrative review we aim to collate the most relevant factors that
influence nutritional and non-nutritional composition of HM,

Abbreviations: HM, human milk; PUFA, polyunsaturated fatty acid; LA, linoleic

acid; ALA, alpha-linolenic acid; DHA, docosahexaenoic acid; FA, fatty acid; AA,

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; GPC,

glycerylphosphorylcholine; TMAO, trimethylamine N-Oxide; BMI, body mass

index; Ig, immunoglobulin; EGF, epidermal growth factor; PCBs, polychlorinated

biphenyl; PCDDs, polychlorinated dibenzo-p-dioxins; PCDFs, polychlorinated

dibenzo-furans; GDM, gestational diabetes mellitus; IL, interleukin; MFG, milk fat

globule; HMO, humanmilk oligosaccharides; b-FGF, fibroblast growth factor; IGF-

1, insulin-like growth factor-1; TN, total nitrogen; NPN, non-protein nitrogen;

HMA, human milk analyser.
12 FL, 2′-fucosyllactose; i, 3′-Fucosyllactose; 3 SL, 3′sialyllactose; AA, Amino

acid; BCA, bicinchoninic acid assay; EGF, epidermal growth factor; FM, fat

mass; b-FGF, fibroblast growth factor; GDM, gestational diabetes mellitus;

GPC, glycerylphosphorylcholine; HM, human milk; HMO, human milk

oligosaccharides; IR, infrared; IGF-1, insulin-like growth factor-1; MFG, milk

fat globule; NPN, non-protein nitrogen; PCBs, polychlorinated biphenyl; PCDFs,

polychlorinated dibenzo-furans; PCDDs, polychlorinated dibenzo-p-dioxins; TN,

total nitrogen; TMAO, trimethylamine N-oxide.

namely both maternal- and infant-related factors. In addition,
we highlight methodological aspects that affect the quantification
of HM components in research settings, which in turn leads
to a set of scientific recommendations for HM sampling,
handling, and analytical characterization when embarking on
research in this field. On the one hand, we attempt to be as
comprehensive as possible. On the other, it would simply be
too much for one paper to provide an in-depth review of all
topics that modulate HM composition and volume. Therefore,
the purpose here is to identify and focus on the most important
factors including maternal diet, supplementation, galactagogues,
maternal anthropometry, obstetric history, socio-demographic
factors, medical conditions, as well as infant-related factors such
as infant birth weight and sex. Temporal changes in HM volume
and composition are also included. In addition, methodological
factors affecting the quantification of HM components are
assessed. Other factors are deprioritized but summarized and
listed as further reading.

METHODOLOGY

Literature Search
We conducted a narrative literature review and search using
SCOPUS and PubMed database with predefined keywords for
all scientific literature related to factors that are known to
or could potentially influence HM composition and volume
across lactation.

An initial search was performed limited to titles, key words,
and abstracts to assess the potential yield of the search strategy.
Based on the results, search terms were modified (e.g., wild
characters) or additional terms were included. A subsequent
search included MeSH terms. The search terms were grouped
into 2 different concepts, which were combined with Boolean
term “AND.” Terms within each concept were combined with
the Boolean term “OR.”

Concept 1: human milk, breast milk, mothers’ milk, mothers’
own milk, colostrum

Concept 2: maternal/mothers’ diet, supplementation,
anthropometry, smoking, alcohol consumption, coffee
consumption, physical activity, breastfeeding frequency,
parity, mode of delivery, cesarean section, age, socioeconomic
status, psychology, drugs, galactagogues, infant sex/gender,
gestational age at birth, small for gestational age, low
birth weight, foremilk/midmilk/hindmilk, preterm, feeding
time, type of expression, storage temperature/length,
milk processing/pasteurization.

The search was limited to English language abstracts and
articles only.

Selection Criteria
We did not eliminate any kind of study design for
initial screening as long as it met search criteria. Articles
include original research, literature review and conference
abstracts/papers/presentations that were published up to
December 2018. After a final selection by reading the abstract of
each article, 260 relevant papers were included.
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TABLE 1 | Maternal factors affecting nutritive and non-nutritive components of human milk.

Factors Effect on nutritive or non-nutritive components of HM Evidence References

Dietary or

supplementary intake

Changes in maternal intake modify amino acids, (n-3) FA, iodine, selenium,

thiamine, riboflavin, niacin, vitamin B6, vitamin B12, choline, vitamin C,

vitamin A, provitamin A carotenoids, vitamin D, vitamin K

Evidence probable (10–67)

Changes in maternal intake do not modify calcium, magnesium, copper Evidence probable

Changes in maternal intake do not modify HM volume, energy,

macronutrients, phosphorus, potassium, sodium, chromium, cobalt,

fluoride, iron, manganese, molybdenum, zinc, folate, non-provitamin A

carotenoids, vitamin E

Inconsistent or lacking

Anthropometry The higher the BMI the higher the concentration of SFA, n-6/n-3 FA ratio,

leptin in HM

Evidence probable in

high-income countries

Lacking in low-middle

income countries

(68–82)

The higher the BMI the higher the HM intake by the infant Inconsistent or lacking

Parity Higher parity increases amounts of proteins, lipids, and improves FA profile Inconsistent or lacking (83–89)

Multiparous women show increased concentrations of iron and Ig Inconsistent or lacking

Mode of delivery Affects iodine, microbiome, IgA, or bacterial diversity Inconsistent or lacking (88, 90–93)

Age Influences the content of lactose, lipids, protein, TN, NPN, Na, K, Ca, P, Cu,

colostrum Ig

Lacking (83, 84, 86, 87,

94, 95)

Maternal age is negatively correlated with FA profile and Zn Lacking

Socioeconomic status Socioeconomic status is associated with lipids, proteins, IgA, and FA profile Inconsistent or lacking (83, 95–98)

Medical conditions Maternal GDM delays the initiation of lactation or reduces hormones Inconsistent or lacking (99–127)

Maternal post-partum depression is associated with a shorter duration of

lactation and perceived HM production

Inconsistent or lacking

Celiac disease reduces immune protective compounds (TGF-β1, sIgA) and

bifidobacteria

Lacking

Allergies affects levels of interleukins, growth factors, beta-casomorphin,

selective proteins, pro-inflammatory markers, cytokines

Inconsistent or lacking

Mastitis results in higher levels of minerals, MFG, and chlorides as well as

higher catalase activity and increased concentration of IL-6

Lacking

Mastitis results in lower contents of lactose, lipid, protein, and casein Lacking

Use of galactagogues Increase HM volume Inconsistent or lacking (63–66)

RESULTS

Factors that impact HM composition and/or volume are
summarized into the following two categories:

1. Maternal and infant characteristics affecting HM components
2. Methodological parameters affecting the quantification of

HM components

The resulting information leads to a set of scientific
recommendations for reproducible HM analysis in
interventional as well as observational studies (see
Methodological factors affecting the quantification of HM
components in a research setting).

Maternal Factors Affecting HM Volume and
Composition
Maternal Diet
Maternal diet is an important factor that influences the volume
and composition of HM. Some components have been studied
extensively, while others require further research to draw strong
conclusions. The results of our analysis are summarized in

Table 1. Furthermore, a systematic analysis of the influence of
maternal diet on HM composition, micro- and macronutrients,
emphasized the relation of fatty acid intake, the intake of fat-
soluble vitamins, vitamin B1, and vitamin C to their content in
HM (10).

Effects of maternal diet on macronutrient content in HM
The macronutrient composition of HM is relatively constant
across populations despite variations in the nutritional status
of the mother (7). The effect of maternal energy intake on
HM volume has shown conflicting results. Some studies showed
that provision of additional calories (11, 128), energy restriction
(12), or fasting (13) had no impact on HM volume, while
others showed that a low calorie diet (1,200 kcal per day for 3
days) (14) or low energy intake (15) resulted in reduced HM
production. In terms ofmacronutrient composition, an isocaloric
high fat diet (16) and increased dietary consumption of proteins
(17) and carbohydrates (18) demonstrated an increased HM
fat concentrations at different stages. No significant differences
in energy content of HM were found up to 12-weeks post-
partum supplemented with a commercially available product,
despite the higher energy intake (19). The same study revealed
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a greater volume of HM in mothers with a low mid upper arm
circumference (<24.1 cm) following supplementation. Several
reviews have highlighted the population differences in HM fatty
acid composition and the influence of maternal diet on levels of
PUFAs [including HM linoleic acid (LA), α-linolenic acid (ALA),
and DHA] (20–22). A study provided supporting evidence that
the quality of fatty acid intake during pregnancy and lactation
is important (23). In this study the abundance of n-6 fatty
acids (FA) and low n-3 FA, was reflected in the fatty acid
composition of HM, in as such that DHA concentrations were
significantly reduced particularly during lactation compared to
pregnancy, while arachidonic acid (AA) did not follow the
same development. On the contrary, women who consumed 2
portions of salmon per week from 20 week of pregnancy until
delivery showed higher proportions of EPA (80%), DPA (30%),
and DHA (90%) on day 5 post-partum (24). The impact of
omega-3 supplementation during pregnancy and/or lactation on
HM FA is well-studied: a systematic review found a positive
relationship between the consumption of omega-3 sources and
their concentration in HM, despite differences in the methods
used, timing of supplementation, source of omega-3 source used,
and the sample size (25). Supplementation with fish oil starting
at 20 weeks of pregnancy until delivery not only increased the
long-chain omega-3 FAs in HM during early lactation (up to 6
weeks post-partum), furthermore DHA levels at day 3, 6, weeks
and 6 months were positively associated with infant DHA status
at 1 year (26). Supplementing lactating women 4–6 weeks post-
partum with either 200mg or 400mg DHA for 6 weeks with
usual diets led to a 50 and 123% respective increase in HM DHA
levels (27).

In terms of carbohydrate type, a randomized crossover study
revealed that the consumption of a high-fructose corn syrup–
sweetened beverage increased concentrations of fructose in HM,
which stayed elevated for 5 h (28). No such effects were found for
glucose or lactose. The consequences of habitual consumption of
high-fructose sweetened beverages for early development need to
be further investigated, but evidence exists that fructose in HM is
positively associated with infant’s body composition (29).

Effect of maternal mineral supplementation on mineral

content of HM
Iodine supplementation (75–400mg iodine/day) increased HM
iodine concentrations (30–32), although a lower dose (75 or
150 µg/d) through either supplementation (31) or fortification
(33) may be insufficient to ensure adequate iodine status in
women or their infants. Equally, administering a single dose
of 400mg iodine as oral iodized oil to mothers may be an
effective strategy to provide adequate iodine to their infants
through HM for at least 6 months compared with direct
supplementation to infants (30). The results of Mulrine et al.
where iodine concentrations in HMwere 1.3 and 1.7 times higher
in women supplemented with 75 and 150 µg per day would
also suggest a dose-response relationship (31). A systematic
review of epidemiological and clinical data suggested that a
high dose as well as daily iodine supplementation were effective
in increasing iodine concentrations in HM (34). The same
authors also concluded that iodine concentrations of around

150 µg/l during the first 6 months of lactation are enough to
meet infants’ needs. Selenium (Se) supplementation at a dose
of 20 µg/day, approximating the quantity secreted into HM,
(35) or 200 µg/day (36) increased HM selenium concentrations
accompanied by an increase in infant Se intake. It is known
that HM concentrations of minerals such as zinc and iron are
not largely altered by deficiency or excesses in the maternal diet
as these have well-regulated homeostatic processes (37). Zinc
supplementation studies (10–50 mg/day) provided inconsistent
findings, with some reporting an increase or prevention in
decline in HM zinc concentration compared with placebo (38),
while others did not find an effect of zinc supplementation
(39, 40). Observational studies show reduced levels of iron in the
HM of anemic mothers (41) and iron supplementation among
women with low baseline levels of iron, was shown to increase
HM iron concentrations (42). However, studies among healthy
lactating women have failed to demonstrate an association
between iron intake of the mother and HM iron concentrations
(37, 43). There are physiological changes that happen during
lactation, such as changes in calcium and bone metabolism, that
provide sufficient calcium for HM production independent of
maternal calcium supply in populations where calcium intakes
are close to current recommendations (44). Furthermore, dietary
nutrient consumption had no strong association with calcium
concentrations in HM of three different ethnic groups in New
Zealand (45). In this study, calcium intake of the mothers varied
from 736 to 1,041 mg/day, but had no significant effect on the
calcium concentration in HM.

Effect of maternal vitamin supplementation on vitamin

content of HM
Maternal supplementation of B vitamins during lactation is
known to rapidly increase their concentrations in HM as
reviewed extensively Allen et al. (46). Evidence suggests that HM
concentrations of thiamine, similar to those observed in well-
nourished mothers, can be maintained by maternal thiamine
intake of 2 mg/d (47). The concentrations of vitamin B6 in
HM (ranging from 0.89 to 1.31 nmol/L) appear to be saturated
at an intake of 2.5 mg/d of vitamin B6 (48, 49). Vitamin B12
supplementation (50 µg/d) was shown to maintain elevated
concentrations of B12 in HM only during the supplementation
period (6-week post-partum) (50) and the concentrations
observed were much lower than those reported with a higher
dose of 250 µg/d dose (97 vs. 235 pmol//L) (51). Choline
supplementation of 750 mg/d increased HM concentrations of
free choline, betaine, and phosphocholine (52), while a higher
dose (930 mg/d) resulted in significantly higher concentrations
of phosphocholine and glycerylphosphorylcholine (GPC), the
main choline metabolites in HM as well as HM trimethylamine
N-Oxide (TMAO), which is essential for maintaining osmotic
balance and glycine concentrations (critical for production of
glutathione that appear limiting in early development) (53).
Similarly, higher lutein and zeaxanthin concentrations in HM
have also been observed with lutein supplementation of 6 mg/d
(140% higher) and 12 mg/d (250% higher) compared with the
placebo (54). Further evidence comes from a study with Korean
mothers, where a higher dietary intake of lutein was associated
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with higher lutein content in HM (55). In this study, the mean
intake of lutein was 4.7 mg/day, with a range from 0.64 to
17.05 mg/day, while the mean lutein concentration in HM was
3.5 µg/dl, with a range from 0.5 to 31.3 µg/dl. Although no
intervention studies have been reported so far, observational data
suggest that the concentrations of biotin in the HM decreased
over the course of lactation despite an intake of 57mg biotin/d
which is 63% higher than the adequate intake of 35mg biotin/d,
suggesting that a low intake of biotin may accelerate the decrease
(56). There is strong evidence that retinol or beta carotenoid
concentrations in colostrum (1–5 days) or mature (>14 days)
HM are increased through supplementation of vitamin A during
lactation either as retinyl palmitate (658–7,218 µg per day), as
multivitamins containing β-carotenoids (providing 90 mg/d beta
carotene) or as part of a diet enriched with vegetable oils like
red palm oil (providing 90 mg/d beta carotene), soybean oil
or sunflower oil (22). The same is true for a higher vitamin A
consumption (range of 50–7,205 µg retinol activity equivalents),
which led to higher, but non-significant, retinol concentrations
(57). A strong positive association was demonstrated between
maternal vitamin D intake during exclusive breastfeeding and
infant serum 25-hydroxyvitamin D levels (58), although doses
at the current recommended daily intake of vitamin D may not
be sufficient for adequate transfer from mother to the breastfed
infant (58) and supplementation during lactation with 4,000–
6,400 IU/d of vitamin D may be needed to prevent vitamin
D deficiency in the mother and her breastfed infant (59). The
mode of supplementation needs to be taken into account, as a
randomized controlled study demonstrated that a single bolus
led to a higher production of vitamin D, compared with a daily
dose (60), and levels remained elevated for at least 28 days.
Among women with adequate folate status, HM folate secretion
was shown to reach a maximum threshold and was not affected
by the maternal folate status, except in clinically folate-deficient
mothers (46). Maternal supplementation with alpha-tocopherol
was shown to increase the vitamin E concentrations in colostrum,
although the evidence is limited (61).

Galactagogues
Adequate lactation is fundamental for the (premature) infant’s
health, hence there is an increasing interest in galactagogues.
Galactagogues are substances that have the potential to assist
in various stages of milk production, such as initiation,
continuation, or augmentation (62). Pharmaceutical agents, such
as domperidone, or more recently herbs such as silymarin-
phosphatidylserine and galega are widely used (63, 64). Many
herbal concoctions have been proposed as galactagogues around
the world. However, there is more anecdotal evidence rather
than scientific rigor. There is a huge cultural as well as regional
aspects on what is considered or promoted as a galactagogues.
From many herbal galactagogues, fenugreek has most number
of clinical trials reported in the literature and a recent network
meta-analysis demonstrated its efficacy against placebo (65).
Moreover, a study reported that a herbal tea containing stinging
nettle, among other herbs, increased milk production in 36
mothers with premature infants by 80%, a significant increase
when compared with the placebo and control group (66). Overall,
the quality of galactagogue literature was found to be poor and

the field would benefit from well-designed double blinded and
randomized controlled studies.

Maternal Anthropometry

Influence of maternal weight/body composition on HM lipids

and fatty acid profile
HM of overweight women is reported to contain higher
amounts of SFAs, lower amounts of n-3 FAs, a lower ratio
of PUFAs to SFAs and a higher ratio of n-6 to n-3 FAs,
compared with normal weight women, even after adjusting
for maternal diet (68). A study with 80 women reported a
significant maternal age and body mass index (BMI) interaction
with calorie and fat. BMI alone was significantly associated
and protein content (69). Calorie and fat contents were
found to be lower in overweight mothers in their 20s but
higher in older, overweight mothers. The reason for this
unique finding is not fully understood. The overall nutritional
status of the mother and the stage of lactation may be
important factors that deserve attention while studying the
association between maternal BMI and HM macronutrient
concentrations. To exemplify this, studies among well-nourished
lactating women have failed to demonstrate any association
between maternal fat stores and HM lipids (70), while those
conducted among marginally nourished populations showed
a positive relation both in early (<90 d) and late (≥90 d)
lactation (71, 72).

Influence of maternal weight/body composition on volume of

HM
Maternal body composition not only influences the composition
of HM in terms of its macronutrient composition, but is also
associated with the volume of HM transferred to infants when
assessed using the “dose to the mother” deuterium dilution
method (73). This was shown in infants from Kenya, where
HM intake was positively correlated to maternal triceps and mid
upper arm circumference during pregnancy (74). In contrast,
among low-income Honduran women maternal anthropometric
status was not found to be a significant predictor of HM
volume or infant energy intake between 4 and 6 months of age
after accounting for confounding factors such as birth weight
and milk energy density. This highlights the ability of the
infant to self-regulate intake in response to milk energy density
and infant weight (75). Furthermore, studies reported positive
associations between maternal BMI and HM leptin levels (76–
79). One study found higher maternal %FM associated with
higher leptin but not adiponectin concentrations (80). The same
authors hypothesized that HM adiponectin levels are less likely
to be impacted by maternal adiposity as the majority of HM
adiponectin may be synthesized and controlled by the mammary
gland. Others reported positive associations between HM leptin
and adiponectin concentrations with infant weight gain (77, 78,
81) as well as HM adiponectin concentrations and fat mass in the
infants up to 2 years (82).

Maternal Obstetric History

The influence of parity on HM composition
Parity has been found to be an independent factor influencing
proteins and lipids content (83) and FA profile (84). However,
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findings are not consistent in the literature. Bachour et al. (83)
reported an increased lipid concentration of HM associated with
higher parity among Lebanese mothers. In contrast, among rural
Gambian women, the amount of HM fed to the infant and
the proportion of endogenous FAs in HM was markedly lower
among those who had borne 10 or more children, implying
an impairment of the ability to synthesize HM FAs de novo
for high parity women (85). In terms of mineral content,
increased amounts of iron were found in multiparous women
(86). Islam et al. (87) did not find an association between parity
and colostrum Ig concentration (including IgA, IgM, IgG, and
peripheral immune cells) among women from Bangladesh, yet
another study showed, increased IgA and IgM in colostrum
of primiparous compared with multiparous Brazilian women
(88). It is further hypothesized that a mother’s breastfeeding of
higher birth-order infants would be exposed to a wider array of
organisms from their other children, and these could affect milk
cytokine levels (89).

The influence of mode of delivery
Mode of delivery, including cesarean and vaginal delivery, was
shown to affect protein content in colostrum (90), HM choline
level (91), HM iodine concentration (92) and IgA concentration
(88). Some data also suggested that vaginal delivery is associated
with higher protein content in colostrum when compared with
cesarean delivery (90). Ozarda et al. (91) found higher levels
of choline in HM after cesarean vs. vaginal delivery. Iodine
concentration in the transitional milk was found to be higher
in women with cesarean section (349.9 µg/kg) in comparison
with those with vaginal delivery (237.5 µg/kg, p < 0.001) (92).
Higher IgA concentration was found in colostrum of women
having undergone cesarean section rather than vaginal delivery,
because of the occurrence of labor together with surgical stress
(88). However, in a multi-center study, mode of delivery was not
found to be a significant factor in IgA concentrations in HM (93).
The effect of the mode of delivery on HM IgA concentration is
suggested to be confirmed in larger cohorts (89). While we have
started to observe the differences in HM composition between
groups, further studies should focus on the implications of such
differences on the health outcomes of the infants.

Maternal and Socio-Demographic Factors

Maternal age
The potential influence of maternal age on HM composition is
still being debated. Early studies indicated that the lactose, fat,
total nitrogen, protein nitrogen, non-protein nitrogen, sodium,
potassium, calcium, and phosphorous concentrations differed
little between adolescent and adult breastfeeding mothers
(94). Likewise, maternal age was not related to colostrum Ig
concentration (including IgA, IgM, IgG, and peripheral immune
cells) (83, 87), milk lipids (83, 95), proteins (83), and copper
contents (86). In contrast, Antonakou et al. reported maternal
age as an independent factor, demonstrating a strong negative
association between maternal age and MUFAs, including oleic
acid proportions particular during the first months of lactation
(84). Also, Silvestre et al. reported lower zinc contents in HM

from older women when compared with HM from younger
women (86).

Maternal socioeconomic status
There is no consistent evidence about the influence of maternal
socioeconomic status on HM lipid contents. Rocquelin et al.
did not find an association between socioeconomic status, e.g.,
mothers’ education/occupation and HM lipid content among
Congolese mothers of 5 month old infants (95). Bachour et
al. found a notable but not statistically significant association
between maternal residential area and milk lipids, proteins
and IgA levels (83). In contrast, Al-Tamer and Mahmood
demonstrated an effect of maternal socioeconomic status of
lactating mothers in Iraq on HM lipid content, TG and FA
composition, especially the proportions of long-chain omega-
3 FAs decreased with decreasing socioeconomic status (96).
Similarly, a study in low-income Indian women demonstrated
an association of socioeconomic factors, particularly maternal
education, with HM composition in as such that a higher
education resulted in lower concentrations of SFAs and PUFAs
(97). In Chinese women a higher education was positively
associated with concentrations of carotenoids and tocopherol in
HM (98).

Geographical location
There is consistent evidence in the literature that HM FA
composition varied according to geographical location, and
variation was frequently attributed to the differences in maternal
diet (129–133). For example, Chulei et al. reported different
concentrations of DHA and AA: DHA ratio in HM in five
distinct geographical regions (pastoral, rural, urban 1, urban
2, and marine) of People’s Republic of China (130). Roy et al.
revealed differences in HM n-6 and n-3 PUFAs between urban
and suburban mothers in Bengali, India, and contributed the
rural and urban differences to the mothers’ alimentary habits
(134). A study comparing the levels of omega-3 and omega-6
PUFAs in HM of Swedish and Chinese women demonstrated
a more favorable balance of those FAs in Swedish women
(135). In addition to lipid content, mineral composition of
HM, namely phosphorous was found to vary among three
different regions among 444 Chinese lactating women (92).
Oligosaccharide profiles in colostrum varied between Italian
and Burkinabe women, in as such that in contrast to Italian
women, the Burkinabe women had higher concentrations of 2
fucosyllactose and lower concentrations of lacto-N-fucopentaose
in colostrum (136). The relevance of these findings is not
clear. Like FAs, growth factors vary according to geographical
location. For example, 228 breastfeeding mothers from 3 regions
in People’s Republic of China revealed significant differences
in the content of epidermal growth factor (EGF) and TGF-
α content in HM by region (137). Differences in diet may
explain some of the findings as the concentration of EGF in HM
significantly decreased with increasing intake of proteins, total
energy, vegetables, fruits, soy products and dairy foods, while
the TGF-α content in HM significantly increased with increasing
intake of carbohydrates and dairy products and decreased with
increasing intake of proteins and meat. Overall, we hypothesize
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that geography is a proxy factor for underlying factors that
drives the differences in HM composition. The major factor
that remains common to a cohort in geography such as diet
or life style are usually the underlying causes of demonstrated
differences in HM composition.

The influence of maternal exposure to toxins on levels of

toxins in HM
Human milk of mothers with different childhood exposures
differs significantly. It might be possible that exposure of
the mother during her own infancy primes her intestinal
immune cell development in as such that when immune
cells migrate from the maternal intestine to the mammary
gland, results in altered HM composition. It was reported
that women who were breastfed during infancy and grew
up on the Baltic coast of Sweden had high levels of
polychlorinated biphenyl (PCBs) and polychlorinated dibenzo-
p-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)
in HM. Exposure early in life to HM and consumption of
contaminated fish from the Baltic sea were the reasons for
high toxic level of PCBs and PCDDs in their HM (138). Also,
toxic metal contamination in HM is of concern (139). The
authors found, for example, arsenic in 64% of HM samples in
Lebanese women and identified an association with cereal and
fish intake. In general, inter-country studies reported varying
levels of perfluorinated carboxylic acids in HM samples from
Japanese, Chinese and Korean mothers, with the highest levels
in Japanese mothers (140). More specifically, a strong positive
association of perfluoroalkyl substances in HM with maternal
age, BMI and parity was reported from an analysis of HM
from 128 Korean mothers (141). The same authors reported
the consumption of snack, milk, and eating-out frequency to be
associated with increased levels of perfluoroalkyl substances.

Maternal Medical Conditions

Effects of gestational diabetes mellitus (GDM) on

composition of HM
Maternal prenatal metabolic profile influences the composition
of HM (99). It was shown that mothers with diabetes experienced
lactogenesis II later than healthy mothers (100). A relatively
small study showed that levels of ghrelin, an appetite-stimulating
hormone, were lower in HM of early lactation of mothers with
GDM as compared with mothers without GDM, but that ghrelin
levels were restored to normal in mature HM (101). These data
need to be confirmed in a larger group of women. Moreover,
mothers with a higher pre-pregnancy BMI combined with GDM
or lower insulin sensitivity had higher insulin concentrations in
mature HM compared with normal glycaemic mothers (102).
Galipeau et al. found that the presence of gestational diabetes
increased the risk of an elevated HM sodium level at 48 h after
delivery (127). However, Klein et al. did not find any significant
differences in HM free AAs content between GDM and healthy
women, regardless of it being colostrum or mature HM (103).

Influence of celiac disease on composition of HM
In comparison to healthy mothers, HM of mothers with celiac
disease was found to have a reduced abundance of immune

protective compounds (TGF-β1 and sIgA) and bifidobacteria
(104). On the other hand, HM of 42 mothers with celiac disease
who followed a gluten-free diet showed no difference in anti-
gliadin antibodies compared with HM from 41 mothers with a
normal, gluten-containing diet (105). This suggests that rather
than diet, the immunological memory defines the presence of
these antibodies in HM.

Influence of maternal atopy/allergy on composition of HM
The association between maternal atopy/allergy and HM
composition is not consistent in the literature. Higher IL-4, IL-
5, IL-13 (106), and beta-casomorphin-5 (107) in colostrum, and
higher levels of IL-4 (108), lower levels of TGF-β1 (109, 110),
TGF-β2 (111), IL-10 (108) and proteome (including protease
inhibitors and apolipoproteins) (112) in HM were found in
women with history of allergic disease compared with non-
allergic women. Higher levels of sCD14 were found in mothers
with a positive vs. negative allergic history (113). On the contrary,
Marek et al. (109) did not find any difference in IL-4 and IL-10
levels inHMbetween allergic and non-allergicmothers. Likewise,
no differences were reported in pro-inflammatory markers and
cytokine concentrations (111, 114, 115) and FA composition
(111) in HM between allergic and non-allergic mothers. A study
among Danish mothers with atopic dermatitis, mothers with
other types of atopy, and non-atopic mothers reported that the
HM FA composition was not affected (116). In contrast, women
with a combination of eczema and respiratory allergy had lower
HM levels of several PUFAs (AA, EPA, DHA, and DPA), and had
a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs, even though
the fish consumption was not different between groups (117).
Their PUFA levels differed not only from that of healthy women,
but also from that of women with only respiratory allergy, who
had a FA pattern like that of healthy women.

Mastitis
Early evidence indicated that HM of mothers with mastitis
showed a higher content of minerals, chlorides, and catalase
activity, and lower levels of lactose, fat, total proteins, and total
casein fractions, in comparison with HM from healthy women
(118). This observation is likely because mastitis inflammation
can produce pro-inflammatory cytokines and damage the milk
fat globule (MFG). Mizuno et al. found that HM of mothers
with mastitis contained larger MFG and higher IL-6 levels in the
diseased breast than HM from the healthy breast (119). The same
authors reported that this difference was larger if accompanied
by systemic symptoms of mastitis (fever/malaise). In a separate
study, Buescher and Hair reported that HM of mothers
with mastitis had the same anti-inflammatory components
and characteristics of HM from healthy mothers; although
elevation in selected components/activities was observed (TNFα,
soluble TNF receptor II, and IL-1RA and bioactivities that
cause shedding of soluble TNF receptor I from human
polymorphonuclear neutrophils) (120). These components may
help protect the nursing infant from developing clinical illness
due to intake of HM from mothers with mastitis.
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TABLE 2 | Further reading for factors with potential impact on human milk.

Factors potentially modulating HM composition

and volume

Suggested

reading

Use of medication (142)

Hormones (143)

Stress (144)

Microbiome (145–148)

Ethnic groups (45, 149)

Infant suckling time (150, 151)

Smoking (83, 152–155)

Alcohol consumption (156–158)

Coffee consumption (159–162)

Physical activity (163–171)

Breastfeeding frequency (127, 150, 151, 172)

Immunological composition (89, 173)

Drug use (142, 159)

Synbiotics (67)

Post-partum depression
About 85% of women experience a so called “post-partum blues,”
which is transitional and lasts ∼2–3 weeks after birth (121).
The “blues” does not resolve in some women, and about 10–
20% of new mothers experience post-partum depression (122).
Post-partum depression is frequently found to be related with
a shorter breastfeeding duration (123, 124). Currently, there
are no randomized controlled trials to demonstrated causality.
A population-based prospective cohort study showed that
maternal depression was associated with maternal perceptions
of insufficiency of HM but not actual milk quantity (125). This
finding was supported in lactating mothers of preterm and term
infants, where the perceived mood states had no apparent effect
on HM volume (126).

Other Maternal Factors Influencing HM Composition

and Volume
For the sake of greater focus on the most relevant factors
influencing HM composition and volume, this chapter lists but
not discuss in detail other topics that could be considered
for planning and conducting research in this area but are not
discussed in detail. Instead, further reading is proposed (see
Table 2). Indeed, many factors have significant impact on human
milk composition, however, how those differential composition
impacts infant outcomes should be a topic of future studies.

Infant-Related Factors Affecting HM
Volume and Composition
The main factors have been summarized in Table 3.

Infant Birth Weight
A positive relationship has been suggested between birth weight
and HM intake attributed mainly to increased sucking strength,
frequency or feeding duration (70). In the DARLING study,
weight at 3 months and total time nursing were positively
associated with HM intake at 3 months, while no maternal

variable (such as age, parity or anthropometric indices) was
significantly correlated with intake, volume extracted, or residual
milk volume, indicating that infant demand was the main
determinant of lactation performance (174). In contrast, no
differences were observed in absolute and relative HM transfer
volumes and HM zinc concentrations of small for gestational age
vs. appropriate for gestational age infants born to low-income,
marginally nourished Bangladeshi mothers (175).

Infant Gestational Age at Birth and Term vs. Preterm

Delivery
A meta-analysis of 41 studies indicated significantly higher
concentrations of “true protein,” excluding the non-protein
nitrogen, in the first few days post-partum. Lower lactose
concentrations (in the first 3 days and some later time points)
were found in preterm compared with term HM, although no
differences were observed for fat and energy content (177).
Compared with term HM, preterm HM was shown to have a
highly variable human milk oligosaccharides (HMO) content
and was richer in glycosaminoglycans. The latter allows HMOs
to competitively bind to pathogens and prevent them from
adhering to the enterocytes (178). With respect to mineral
content, preterm compared with term HM is reported to have
higher concentrations of copper and zinc that decline across
lactation and lower concentrations of calcium that remains
constant over lactation (178). HM from preterm mothers was
shown to have higher levels of IgA, IL-6, EGF, TGF-β1, and TGF-
β2 in colostrum compared with term HM (179). Ozgurtas et al.
found higher levels of vascular endothelial growth factor, basic
fibroblast growth factor (b-FGF) and insulin-like growth factor-
1 (IGF-1) in HM from the mothers of preterm infants (180).
Similarly, preterm delivery also affects hormone concentrations
in HM. In a study with 40 lean mothers, those of the preterm
infants showed higher concentrations of obestatin and higher
expressions of ghrelin mRNA in mammary epithelial cells,
however the latter did not result in higher ghrelin concentration
in HM (181). It may be speculated that the synthesis of these
peptides and their transport from maternal circulation could
contribute to the finding that the transcript level of the gene does
not correspond to the peptide level in HM. While the HM of
mothers of preterm babies seemed to have a higher concentration
of immunological markers, there is conflicting evidence on the
ability of gestation age to influence HM PUFA composition. One
study showed lower levels of EPA and DHA in HM frommothers
of preterm infants (182), while others did not find any association
(183). Limited data showed that gestation age may influence HM
minerals composition. For example, Ustundag et al. reported
lower zinc levels in HM from mothers of premature infants with
a similar trend seen in colostrum copper levels (184).

Sex of the Infant
The sex of the infant may also be one of the determinants of
HM volume and composition of HM, for example, the HM of
mothers with male infants had 25% greater milk energy content
than mothers delivering female infants (185). Furthermore, at 4
months of age, HM for male infants compared with females were
higher in energy and lipid content by 24 and 39%, respectively

Frontiers in Nutrition | www.frontiersin.org 8 September 2020 | Volume 7 | Article 576133

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Samuel et al. Modulators of Human Milk

TABLE 3 | Infant-related factors affecting nutritive and non-nutritive components of human milk.

Factors Effect on nutritive or non-nutritive components of HM Evidence References

Birth weight Higher birth weight increases HM intake Evidence probable (174–176)

Gestational age at birth Preterm birth increases true protein in colostrum Evidence probable (177–184)

Preterm birth decreases lactose in colostrum Evidence probable

Preterm birth decreases minerals, Ig, growth factors Lacking

Sex Male infants consume higher amounts of HM than female infants Evidence probable (185–188)

Energy and lipid content of HM is higher after giving birth to male

infants

Inconsistent or lacking

Age (stage of lactation) Advanced stage of lactation increases HM intake, as well as

energy, total lipids and HMO (3 FL) content

Evidence probable (4, 7, 98, 137, 186, 189–

213)

Advanced stage of lactation has no major impact on lactose and

some HMOs (e.g., 3 SL)

Inconsistent or lacking

Advanced stage of lactation decreases total and major proteins,

as well as some HMOs (e.g., 2 FL), immune factors, whey/casein,

vitamins and zinc

Evidence probable

Feeding session Hindmilk has higher energy and total lipids compared with foremilk Evidence probable (195, 196)

Feeding—time of the

day

Mid-day feeding demonstrates higher energy and total lipids Lacking (214, 215)

Variations between

breasts

Milk output from the right breast is greater than from the left breast Inconsistent (195, 196, 216–224)

Energy content in HM from the left breast is higher than from the

right breast

Inconsistent or lacking

Circadian variability Lipids and lipolytic enzymes in HM peak at mid-day Evidence probable (150, 214, 215, 225–239)

(186). The same study revealed lipids such as linoleic acid,
phospholipids and gangliosides were increased in HM of male
infants in later lactation, potentially based on the higher energy
requirement of a male infant (186). Interestingly, in resource
poor setting, HM for female infants was richer in lipids, while in
a resource sufficient setting, the milk for male infants was richer
suggesting that infant sex and maternal socioeconomic status
showed an interaction and should be studied further (187). HM
intake, assessed using stable isotope methodology, was shown to
be higher in males than in females over the first 12 months of
lactation, likely related to the fact that males have greater lean
mass than females during infancy (188).

Temporal Changes in HM Volume and
Composition
Changes in HM Volume Across Lactation
HM is a dynamic fluid that changes its composition and volume
depending on the stage of lactation and adapts to the evolving
nutritional requirements of the infant (4, 189–192). Stable isotope
studies in infants aged 0–24 months have shown that the volume
of HM intake increased over the first 3–4 months and remained
above 0.80 kg/d until 6–7 months in order to meet the increasing
energy requirements of the infant (188).

Branched-chain FAs may reduce the incidence of necrotizing
enterocolitis, but evidence is limited. One study found branched-
chain FAs decreased with increased lactation (193). Most growth
factors (EGF, IGF, and TGF) significantly decrease over the course
of lactation from colostrum, over transitional and mature milk,
while TGF-α content in HM revealed a significantly increased
trend over the course of lactation (137). The time of lactation had

an influence on the concentration of oligosaccharides, on 4 out
of 22 oligosaccharides measured. (194). However, published data
are hampered by large variation and results need to be interpreted
with caution.

Changes Observed Within Feed and Between Breasts
The energy content of HM is not constant and changes within
a feeding (195). Significantly higher energy content has been
observed in hind milk than in foremilk since the lipid content
increases markedly with emptying of the breast. The fat content
of hindmilk is reported to being approximately two- to three-fold
that of foremilk and included 25–35 kcal/100mLmore energy on
average than foremilk (195). Milk volume differences between
left and right breasts have also been a topic of study. Reports
indicated that milk output from the right breast was usually
greater than the left breast (216–219, 240). However, the opposite
has also been reported where the left breast showed a greater milk
output in pump-dependent mothers of non-nursing preterm
infants (220). Perhaps studying physiological implications of left
cradling bias that occurs in 70–85% of the women may help shed
light on the observed between breast variability (221).Whenmilk
composition from the left and right breasts was assessed over 12
months in fore and hindmilk the content of fat was found to vary
slightly between breasts, with a mean CV of 47.6 (SE 2.1) % (n 76)
and 46.7 (SE 1.7) % (n 76) for left and right breasts (196). These
variations resulted in differences in the amount of fat delivered
to the infant over 24 h. This indicated that a rigorous sampling
routine should take into account all levels of variation in order
to accurately determine infant HM intake (196). Different levels
of sodium, chloride, glucose, lipid, and zinc were reported in
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the HM of breasts but differences were either transient and/or
random (222). In a different study the levels of sodium, the levels
have shown a difference, potentially due to underlying mastitis
localized to only one breast (223).

Changes Due to Circadian Variability
Diurnal variation in the lipid content of HM was first studied
more than a century ago (225). Later it was shown that diurnal
variations were unrelated to the degree of emptying of the breast
in the previous feeding and to maternal meal times (226). Since
then it has been a topic of interest for many teams of scientists
in normal term (150, 227–229, 241) as well as preterm infants
(230). It is noteworthy that not only lipids in HM but lipolytic
enzymes of HM show a circadian rhythm and peak at mid-
day, which has been shown for serum-stimulated lipase and
lipoprotein lipase but not bile salt-stimulated lipase (214, 215). In
a study with 6 women, HM volume, along with total lipids were
found to be significantly higher between 08:00–12:00 and 16:00–
20:00 (231). The same team suggested that if 24-h sampling was
not possible, single samplings at 12h00, 20h00, and 24h00 may
be most representative for lipid yield and may predict the value
within 97–124%. Since lipids provide more than 50% of total
energy in HM, it is not surprising that energy content of HM
was positively related to fat content (232). Though lipids have
been studied the most, milk minerals also have received some
attention. However, the evidence was not very conclusive and did
not demonstrate a cyclic change at a different stage of lactation
(233–237). Endocrine factors and melatonin are hypothesized to
improve nocturnal sleep and reduce infantile colic (238). Indeed,
it has been shown that melatonin is found at significantly higher
concentrations in night time HM (7.3 pg/mL) as opposed to day
time HM (1.5 pg/mL) (239).

Longitudinal Changes Across Lactation
Among all the factors covered in this paper, longitudinal changes
observed across progressing stages of lactation have been studied
the most. Key differences include the presence of a relatively high
abundance of immune related factors in early compared with
later stages of lactation (7). Additionally, a higher concentration
of total proteins has been observed in colostrum and transitional
compared with mature milk (190). In contrast, lipids are present
at higher concentration inmature milk (186, 196). In next section
we review the different aspects of changes across lactation as
reported in the literature.

Changes in the macronutrient composition of HM
The energy content of HM showed an initial decrease followed
by an increase over the course of lactation, which was directly
related to the HM lipid content (186, 196). With respect to
carbohydrates, several studies showed that lactose concentrations
remained constant throughout lactation (186, 195, 197), however,
there is also some evidence to the contrary, indicating an
increase in HM lactose from 56 to 69 g/l over the first 4
months of lactation (198). The other significant carbohydrates
found in HM are oligosaccharides, the concentrations of
most of which, not all, have been shown to decline during
the course of lactation although HM concentrations of 3-FL
either increased throughout lactation or remained at relatively

constant concentrations starting at 1 month onwards (199,
200). The colostrum to milk transition was also associated with
significant changes in concentrations of free sugars and polyols
(increased in concentrations of lactose and glucose, decreased in
concentrations of Myo-inositol and glycerol) over the first 3 days
after birth and thereafter reaching a steady state (201).

Colostrum contains very high concentrations of protein
(ranging from 20 to 30 g/L), which decreases significantly
thereafter, and reaches 7–8 g/L after 6 months of breastfeeding
(202). This observation coincides with lower protein intake and
lower growth rate of breastfed infants in the latter half of the
first year of lactation (203). A systematic review reported on
the reduction in HM protein concentration (g/L) from about 25
in colostrum (age 1–5 days) to 17 in transitional milk (age 6–
14 days) and then to 13 (8–21) in mature milk (at age of >14
days and <6 weeks) (204). The protein profile of the HM also
evolves over lactation. At the beginning of lactation the whey:
casein ratio was around 90:10, reduced to 70:30 in transition
milk, then to 60:40 in mature milk and ultimately reached 50:50
ratio in mature milk after 6 months of lactation (205, 206).
The concentration of lactoferrin in HM (second most abundant
whey protein in HM known for its antimicrobial activities)
was high during early lactation (<28 days lactation), decreased
by almost 50% in the first 5 days of lactation, and thereafter
remained relatively stable (207). The total nitrogen and total AAs
in HM decreased in the first 2months of lactation and thereafter
remained relatively unchanged, while the free AAs (glutamic
acid and glutamine) increased over lactation, peaked around 3–6
months, and thereafter decreased (208).

The most variable macronutrient in the HM is fat, which is
dependent on a number of factors and includes the fat content of
colostrum; it is usually very low (1–2%) but was shown to increase
rapidly during the first week of lactation (204). The mean lipid
content of HM (g/L) increased from 22 in colostrum (age 1–5
days), to 30 in transitional milk (age 6–14 days), and 38 in mature
milk (age >14 days and <6 weeks) (204). There were also stage-
based changes reported in the ganglioside content of HM with
some decreasing and others increasing over the time (209).

Changes in micronutrient composition of HM
The concentrations of antioxidant vitamins such as A and E are
known to be lower in mature milk compared with colostrum and
decrease over the course of lactation, while the total antioxidant
status of mature milk was higher than colostrum indicating an
increase in total antioxidant properties (210). Non-provitamin
A carotenoids (lutein and lycopene) decreased while there was
no significant change in the provitamin A carotenoids (α- and
β-cryptoxanthin) with advancing lactation stage (211). Over
the course of lactation (up to 240 days) significant changes of
carotenoids and tocopherol were reported in a population of 540
Chinese women (98). In this population, the concentrations of
lutein, zeaxanthin, and α-tocopherol were higher the first 4 days,
decreased until 12 days post-partum to remain stable afterwards.
Zeaxanthin and γ-tocopherol remained stable over time.

Zinc concentrations in HM decline dramatically over the
first 3–5 months of lactation and even an increase in HM
volume during the early weeks post-partum is not sufficient
to overcome this decline (212). A marked decrease in HM
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TABLE 4 | Methodological factors affecting nutritive and non-nutritive components of human milk.

Factors Effect on nutritive or non-nutritive components of HM Evidence References

Human milk expression Hand expression compared with pump expression shows lower daily milk supply Inconsistent or lacking (242–247)

Hand expression compared with pump expression results in higher sodium, potassium,

proteins, total lipids

Inconsistent

Storage temperature Higher temperatures (−20◦C) reduce total lipids Inconsistent or lacking (248–255)

Storage length Longer storage durations reduce vitamin C concentrations Inconsistent or lacking (248, 252–255)

Longer storage durations do not affect tocopherol concentrations Evidence probable

Longer storage durations (12 months) reduce concentrations of IgA, IL-8, and TGF-β1 Inconsistent or lacking

Freeze-thaw cycles Multiple cycles reduce total lipids Evidence probable (250, 251, 256, 257)

Multiple cycles reduce carbohydrate concentrations Lacking

Multiple cycles increase lipolytic products (free FA, monoacylglycerol) Evidence probable

Choice of analytical

method

Determination of combustion in a bomb calorimeter accurately quantifies macronutrients

and total energy

Evidence probable (177, 205, 258–273)

The Kjeldahl method or micro-Kjeldahl analysis measure true protein with high precision Evidence probable

High throughput spectroscopy measures protein accurately Inconsistent

The Folch, Bligh and Dyer and Röse-Gottlieb methods accurately measure lipid content Evidence probable

Spectroscopic methods determine total lipids accurately Inconsistent

cobalamin was also observed at 4 months and this has been
associated with an accompanying decrease in plasma cobalamin
and holotranscobalamin in infants, indicating an impaired
cobalamin status (213).

Methodological Factors Affecting the
Quantification of HM Components in a
Research Setting
The main factors identified have been summarized in Table 4.

Sample Collection—Hand Expression vs. Electric

Pump Expression
It is well-known that there are multiple ways of expressing milk
from mothers’ breasts, be it for feeding to the new-born, for
donation or for research purposes. The methods may include but
are not limited to, hand expression, manual pump and electric
pump (242). In a randomized trial of mothers delivering very
low birth weight infants, hand expression produced significantly
lower cumulative daily milk volume in comparison with electric
pump expression (243). Sodium concentration was shown to
be significantly affected by method of pumping. Higher sodium
content was found in hand expressed milk as opposed to
electric pump-expressed milk (244). In a Cochrane review of
methods for HM expression, sodium, potassium, protein, and fat
constituents of HM were reported to differ between methods.
However, no consistent effect was found related to prolactin
change or effect on oxytocin release with pump type or method
(242). A randomized trial indicated that HM expressed manually
contained higher fat than that expressed electrically (245).
Morton et al. (246) indicated that a combination of manual
technique and electric pumping resulted in high levels of fat-
rich, calorie-dense milk, unrelated to production differences. An
experiment from 57 lactating women showed that macronutrient
content (fat, carbohydrate, protein, and energy contents) of mid
expression HM is unaffected by maternal handedness, breast size
or breast side dominance (247, 274).

Post-collection Handling of HM Samples
Utmost care must be observed with HM samples immediately
after the milk is expressed from the mothers’ breast into the
collection container. Collection tubesmay need to be acid washed
prior to collection if the intention is to measure minerals.
Similarly, maintenance of a cold chain until laboratory analyses,
ensuring optimal storage temperature and duration, limiting
freeze-thaw cycles, amount of oxygen exposures etc. comes into
the scope of post-collection handling variability. It is our general
observation that not many systematic studies exist that assess and
guide the future HM research scientist, but few observational as
well as data supported statements are mentioned in this section.

Storage temper and duration
Lipids, more than carbohydrates or proteins in HM, are sensitive
to storage over long periods. Chang and colleagues demonstrated
that even storage at −20◦C for 2 days leads to ∼9% reduction in
HM total lipid content (248). It is likely that bile salt-stimulated
lipases present in HM may still maintain some activity at cooler
temperatures and lead to enzymatic hydrolysis of lipids (249).
Indeed this was confirmed in a separate study where storage at
−20◦C was also done with pre-heating milk samples at 80◦C
(90 sec) to destabilize the lipolytic enzyme (250). Therefore, if
possible, samples should be stored at the minimum possible
temperature, preferably at −80◦C, from the day of collection.
However, others have argued that freezing at −80◦C reduced
the energy content of both fat and carbohydrates and suggested
HM should be stored at−20◦C (251). Furthermore, even vitamin
C was reduced significantly over time in cold storage but not
tocopherols and total FAs (252, 253). Bacterial composition
(quantitative or qualitative) of HM was stable with cold storage
at−20◦C for 6 weeks (254). Long-term storage of HMmay affect
immunological composition. According to Ramirez-Santana et
al. freezing storage of colostrum at −20 and −80◦C for a 12-
month period produced a decrease in the concentrations of IgA,
IL-8, and TGF-β1 (255).
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Freeze-thaw cycles
Freeze (−20◦C) and thaw (5◦C) cycles have been shown to
activate lipolysis and increase the presence of lipolytic product
in HM, such as free FAs, monoacylglycerols and diacylglycerols
(250, 256). Structural effects such as increasing size of milk
fat globules due to freezing have also been observed (257).
Carbohydrate content was significantly reduced in thawed HM
samples when compared with fresh samples (251).

Analytical Procedures
The choice of analytical methods to measure the nutrient of
interest in HM is important, especially in comparative and
longitudinal studies, where differences among populations and
lactation stages could be due to biological variation or may reflect
methodological biases and errors. Several factors influence the
analysis of HM and in the following paragraph, we will discuss
the most relevant ones. This is not intended to be a review on
methodologies for determination of nutrients in HM, but to
demonstrate the consequence of using unsuitable methodologies.

Sample preparation
Using the correct preparation and storage of samples are
important elements of maintaining the integrity of HM during
storage, as previously mentioned. In our experience, maintaining
sample homogeneity is an issue both when frozen samples
are thawed at room temperature or in a 37◦C water bath.
Often, probe sonication should be used if the measure is based
on optical analyses, such as the commonly used mid infrared
spectroscopy. HM must be immersed in warm water (30–40◦C)
and gently mixed, prior to analysis, in order to rapidly thaw and
minimize phase separation. Homogenization is an important step
in preparing milk samples for total fat determination by infrared
(IR) spectroscopy techniques, as it decreases the variability in
fat globule size and the light-scattering effect of larger globules,
improving the accuracy of the measurement (258).

Selectivity/Specificity and accuracy
When quantitative data are required, the analytical methods
chosen must demonstrate enough selectivity and accuracy.
Selectivity is the ability of the method to distinguish between
the analyte and other substances present in the matrix. In
absence of selectivity, accurate values cannot be obtained. The
accuracy expresses the closeness of a result to an accepted
reference value and it is normally studied as two components:
trueness, which represents the closeness of agreement between
the average value obtained from a series of results and a
reference value and precision, which is the closeness of agreement
between independent test results obtained under stipulated
conditions (ISO 5725) (259). In the following paragraphs,
several methodologies are discussed with respect to selectivity
and accuracy.

Energy
Two approaches have been used to measure energy in HM: direct
energy quantification by combusting in a bomb calorimeter and
calculated energy using Nichols et al. (260) energy multiplication
factors for protein, fat and carbohydrate. Lack of accuracy has
been shown by Gidrewicz et al. (177) for the measurement of
energy when calculated using values for the energy contributions

TABLE 5 | Recommendations for collecting and handling of HM samples.

Collection of samples

Standardize the time of sampling of HM to avoid diurnal variations

Agree on breasts for HM collection

Request mothers to completely empty the breast, ∼2 h prior to collection of milk

by feeding the infant or manual pumping to minimize the impact on nutrient

concentration of interest by residual milk from previous feeding session

Realize single full HM sampling to ensure inclusion of fore-, mid-, and hind milk

Record the volume of milk

Standardize the collection of milk for all study subjects by either electrical

pumping or hand pumping to minimize variation due to extraction method

Handling of samples

Store milk in smaller aliquots (e.g., 250 µL/aliquot) to avoid freeze-thaw cycles if

multiple analyses are anticipated

Store aliquots of milk in tubes at −80◦C as quickly as possible and at

temperatures as low as possible in field collections until transfer to central

laboratory for longer term storage

Analyses

Choose appropriate analytical method to characterize and quantify nutrients in

HM, with respect to their selectivity, accuracy and precision

from fat, protein and carbohydrate rather when measured
by bomb calorimetry. Differences as high as 13%, which
likely represent clinically important differences, were reported
(177). Since HM contains a large amount (∼12%) of non-
digestible oligosaccharides, they will contribute a significant
amount of energy when using bomb calorimetry for energy
measurement, but since they are essentially non-digestible,
they should contribute significantly less energy to the infant.
Overall, the choice of analytical methods can determine outcome
and interpretation of HM analyses. Therefore, adoption of
standard methods when possible and/or rigorous assessment of
alternative methods is needed. To assure equivalence of two
analytical methods, we recommend evaluating the accuracy of
the alternative method and to check the presence of systematic
and/or proportional bias by performing analysis of differences
and a regression analysis, respectively.

Proteins
Amino acid analysis is the most accurate method for determining
true protein content (205). The Kjeldahl method, based on
complete combustion of the sample, measures total nitrogen
(TN) and it is the most accurate indirect determination of total
protein content in HM (261). The true protein content can
also be estimated by the chemical determination of non-protein
nitrogen (NPN) (262), and subsequent subtraction from TN.
Unfortunately, AA analysis is costly and time consuming and the
Kjeldahl method requires large amounts of sample. Alternatively
micro-Kjeldahl (263) analyses can be used with high precision to
determine true protein because it has been shown to correlate
well with AA analysis (264) if corrections are made for NPN.
High throughput approaches requiring low sample amounts such
as spectroscopy and colorimetric methods have been investigated
(258, 262, 265–268). Absence of accuracy was shown (258, 266)
when comparing near- and mid IR spectroscopy equipment
for determination of total protein against chemical reference
methods. Casadio et al. (265) compared Miris HMA vs. Bradford
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for total protein determination and reported overestimation of
protein content. On the other hand, Silvestre et al. (267) reported
underestimation of protein content when Miris HM analysis
was compared vs. Bradford for total protein determination. This
observation illustrates that spectroscopy methods can vary in
accuracy depending on the calibration of the instrument and
reference method; hence the appropriate methods should be
selected with care. Keller and Neville (262) compared micro-
Kjeldahl to different spectrophotometric methods to determine
proteins in HM: Biuret assay, Lowry-Peterson assay, Bio-Rad
Coomassie Blue assay and Pierce Bicinchoninic acid assay (BCA).
The Pierce BCA assay demonstrated better accuracy, and was
recommended for total protein analysis in HM. Lonnerdal et
al. (268) showed the BCA method consistently overestimated
Kjeldahl protein by 30%. However, parameters such as incubation
time and temperature highly influenced the accuracy of the BCA
method (269).

Lipid
In order to accurately quantify HM lipid, the first step is
disruption of the biological membrane enveloping triacylglycerol
core, e.g., ultrasound treatment, followed by lipid separation
from milk protein by the addition of organic solvent [e.g.,
methanol (270, 271)] or acids or bases [NH3 (272)] which triggers
protein precipitation. At this point, lipid can be extracted from
the matrix by using organic solvents. Since most of the lipid
in HM is represented by triacylglycerol (98%), solvents like
diethyl ether and petroleum benzene (272) can be used. Lipid
extraction methods are time consuming and other approaches
like Gerber, creamatocrit, and spectroscopy have been applied
for the quantification of lipid in HM. The Gerber method is
based on protein precipitation and further separation of fat
by centrifugation. A collaborative study (273) performed on
crude and homogenized pasteurized cow milk showed that the
Gerber method underestimated the amount of fat by 0.02–
0.06% compared with the official method of Röse-Gottlieb. A
critical point of the method is the accuracy of butyrometers.
The supplier should calibrate the butyrometer at delivery and
supply a test certificate. The internal surface of the butyrometers
must be smooth and free of defects. Recently, spectroscopy
techniques have been employed to measure total lipid in HM,
and showed conflicting results on precision and accuracy of these
techniques (258, 265, 266). The reasons were mainly due to
selection of chemical reference methods for the comparison and
calibration of spectroscopy instruments. Therefore, the Folch,
Bligh, and Dyer and Röse-Gottlieb extraction methods are highly
recommended to perform absolute quantification of lipid in
human milk (261) and they have to be used for calibrating near-
and mid IR spectroscopy equipment.

Lactose
Indirect methods, such as colorimetric methods can show poor
selectivity. Casadio et al. (265) reported the lack of selectivity of
the enzymatic essay to measure lactose in HM, due to lactose
overestimation when compared with HPLC measurements.
Attempts have been made to quantify lactose by near- and mid

IR spectroscopy (258), however neither of the approaches were
accurate or precise (261, 266).

Below the main considerations, for successful HM collections
and analyses in observational as well as interventional studies, are
summarized (see Table 5).

CONCLUSIONS AND FURTHER
RECOMMENDATIONS

To our knowledge, this is the first comprehensive literature
review that provides a holistic overview of a broad range of
factors affecting HM composition and volume. Several maternal
and infant characteristics as well as study methodological
aspects were found to impact HM composition and volume.
Study procedures should be systematically recorded and/or
standardized in individual studies, whenever possible, to facilitate
appropriate analysis, and interpretation of data and comparisons
across studies. HM lipids and lipophiles were the nutrients found
to be most vulnerable to maternal, infant and methodological
factors. We therefore recommend standardizing the sampling
of the HM, especially for characterization of lipids, lipophiles,
and for those nutrients whose variability is yet unknown. Keen
attention should be given to the choice of the analytical method to
characterize and quantify nutrients in HM, with respect to their
selectivity, accuracy and precision.

Our review not only summarizes recommendations for
standardization of HM sampling and handling for future research
protocols, but also sheds light on the dynamic and highly variable
nature of HM. This knowledge is crucial to better understand
the controversial impact HM may have on developmental
outcomes of infant early life. We also illustrate the agility of
HM to adapt to changes in the environment of the mother
and evolving nutritional requirements of the infant. There is
an apparent need of systematic reviews of existing evidence
in the field. It is particularly crucial to better understand
those maternal dietary, lifestyle, and environmental exposures
that can be modified to significantly impact HM composition
and thereby positively impact infants’ developmental and
health outcomes.
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