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Abstract
Multi-stability refers to the phenomenon of perception stochastically switching between pos-

sible interpretations of an unchanging stimulus. Despite considerable variability, individuals

show stable idiosyncratic patterns of switching between alternative perceptions in the audi-

tory streaming paradigm. We explored correlates of the individual switching patterns with

executive functions, personality traits, and creativity. The main dimensions on which individ-

ual switching patterns differed from each other were identified using multidimensional scal-

ing. Individuals with high scores on the dimension explaining the largest portion of the inter-

individual variance switched more often between the alternative perceptions than those

with low scores. They also perceived the most unusual interpretation more often, and expe-

rienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resil-

iency personality trait, which reflects a tendency for adaptive flexibility and experience

seeking, was significantly positively related to this dimension. Taking these results together

we suggest that this dimension may reflect the individual’s tendency for exploring the audi-

tory environment. Executive functions were significantly related to some of the variables

describing global properties of the switching patterns, such as the average number of

switches. Thus individual patterns of perceptual switching in the auditory streaming para-

digm are related to some personality traits and executive functions.

Introduction
The phenomenon of perception stochastically switching back and forth between possible inter-
pretations of an unchanging stimulus is termed multi-stable perception (often referred as bi-
stability, for a review, see [1]). For example, in the duck-rabbit illusion [2], a perceiver can see
either a duck or a rabbit, and his/her perception can change over time between the two
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alternatives. Aafjes, Hueting, and Visser [3] were the first to show that individuals differ in how
often they switch between the alternative percepts. Extending this observation, Denham et al.
[4] found idiosyncratic switching patterns in a multi-stable auditory stimulus paradigm (audi-
tory streaming [5]). These authors also found that listeners retained their idiosyncratic switch-
ing pattern even with over a year between successive tests. These observations suggest that the
perception of ambiguous sound sequences can reveal individual differences in information
processing. The current study explores whether the idiosyncratic patterns that characterize per-
ception correlate with other more widely recognized differences in executive functions, person-
ality traits, and creativity.

Individual differences in switching rate have been found in a number of visual multi-stable
perceptual paradigms, such as binocular rivalry [3,6,7], structure-from-motion illusion [8],
visual plaids, and reversible figures [9]. In the auditory modality, individual switching rate dif-
ferences have been demonstrated for verbal transformations [9,10] and auditory streaming [9–
11]. Some of the individual variability in switching rates have been linked to genetic markers
[7], differences in brain activations [10,11], and inter-hemispheric connectivity [8].

The auditory streaming paradigm [5] (Fig 1, top panel) has been widely used to study how the
human auditory system separates concurrently active sound sources (termed auditory scene anal-
ysis by [12]). This stimulus consists of sequences of sounds of the form ABA-ABA-. . ., where
“A” and “B” denote two different sounds and “-”stands for a silent interval with the same dura-
tion as A and B. Listeners mostly perceive this stimulus as either a single coherent sequence (or
“stream”) consisting of the repeating ABA pattern with a characteristic galloping rhythm (termed
the “integrated percept”; Fig 1, second panel) or as two separate isochronous streams in parallel,
one consisting of the A, the other of the B sounds alone (termed the “segregated percept”; Fig 1,
third panel). However, when given the option, from time to time, listeners also report other
repeating patterns (together these are interchangeably termed the “both percept” or “combined
percept” [4,13], we use the latter term throughout this manuscript; Fig 1, bottom panel). Percep-
tion of the “ABA-”sound sequence is influenced by the similarity of the A and B sounds (e.g. dif-
ferences in pitch, location, timbre, etc.) and the presentation rate (for a review see [14]). Given
sufficient time, perception has been shown to inevitably switch back and forth between the alter-
native percepts [15–22] even for stimulus parameter combinations that have been assumed to
strongly promote one of the perceptual alternatives [13].

Fig 1. Schematic depiction of the auditory streaming paradigm (top panel) and its possible perceptual
interpretations grouped into 3 categories (the 3 lower panels).Rectangles depict the “A” and “B” sounds
with the feature difference between them indicated by displacement in the vertical direction. Time flows along
the horizontal direction. Sounds perceived as part of the same stream are connected by lines in the lower
panels. Darker notes with grey background indicate the stream in the foreground (also described with
symbols to the right of each of the lower panels).

doi:10.1371/journal.pone.0154810.g001
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Denham et al. [4] characterized individual switching patterns using transition matrices [23],
which contain the conditional probabilities for transitions between perceptual alternatives. This
method gives a richer characterization of switching behaviour than that provided by the number
of switches or percept proportions and phase durations alone, or even together. If required, all of
these traditional measures can be extracted from the transition matrices. However, by pooling
data firstly from the entire participant set to build a ‘global’ transition matrix, and then by partici-
pant and/or condition, the probabilities of any missing perceptual alternatives, or specific transi-
tions, can be assigned in a principled and unbiased way (for more details, see [23]). This makes
the transition matrices suitable for comparing individuals based on a multidimensional descrip-
tion of their switching patterns without the need for ad hoc probability estimates or for excluding
participants who do not report all the perceptual alternatives. By comparing the Kullback-Leibler
divergence (K-L distance, [24]) metric between transition matrices describing the same listener’s
switching patterns in separate experimental sessions with those of different listeners, Denham
et al. [4] found that switching patterns were significantly more similar within than between lis-
teners even when the sessions were separated by more than a year. This suggests that individuals
display idiosyncratic switching patterns, which are highly stable over time.

Here we asked what other characteristics of individuals may be related to their idiosyncratic
perceptual behaviour displayed in the auditory streaming paradigm. Frontal-lobe functions are
known to affect the perception of ambiguous stimuli (see, e.g., [25–27]).Because executive
functions are usually linked to the frontal lobes [28–30], we decided to explore correlations
between individual differences in three classes of executive functions [31] and switching pat-
terns in the auditory streaming paradigm.

The first executive function class according to Miyake et al. [31] is termed set shifting, which
refers to the ability to shift between tasks or sets of information required to solve that task.
Developmental studies [32,33] showed no significant relation between this ability and individ-
ual differences in ambiguous figure reversals (switching rate). However, to the best of our
knowledge, no adult studies have tested the possible role of set shifting in the perception of
ambiguous stimuli.

The second class of executive functions [31] is updating or working memory, which refers to
the capacity to hold on to relevant information. There is some controversy regarding whether
working memory capacity and working memory updating represent similar or different func-
tions. There is evidence that updating tasks also measure working memory capacity [34] as
well as evidence discriminating the two [35]. It has been shown that larger working memory
capacity was related to longer intervals with no change in perception (termed “perceptual
phase”) in binocular rivalry [36] and reversible figures [37]. Further, individuals with higher
verbal but not spatial working memory capacity were more successful in voluntarily biasing
their perception of ambiguous figures [38].

The third class of executive functions [31] is inhibition, which encompasses three interre-
lated processes, namely interference control, aborting an ongoing response, and inhibition of a
prepotent response [39]. Some neural models of multi-stable perception (e.g., [40,41]) suggest
that inhibition and adaptation are two low-level processes that determine the dynamics of per-
ception of ambiguous stimuli. Neural-level inhibition and inhibition as an executive function
are not equivalent, thus they could affect perception differently. Developmental studies show
that inhibition as an executive function is required for switching between possible interpreta-
tions of ambiguous stimuli [33]. In the current study, we assessed the relationship between
these three classes of executive functions and the switching patterns recorded using the audi-
tory streaming paradigm.

Inter-individual variation in personality traits may also be related to individual differences
in perceptual switching. In addition to the neural-level inhibition and inhibition as an executive
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function described above, it is possible that a third type of inhibition, namely impulsivity—the
lack of inhibition as a personality dimension could also be related to perceptual switching pat-
terns. Only one previous study showed that impulsive individuals switched less than less
impulsive ones, but this study measured impulsivity indirectly [42].

We also explore the effects of some general personality traits, such as the ones measured by
the Five Factor Model (termed “extraversion”, “agreeableness”, “conscientiousness”, “emo-
tional stability”, and “openness”[43]), on the perception of ambiguous stimuli. A classic study
on the relationship between reversal rate and personality found that introverts switch less than
extroverts [44]. Recently, Bosten et al. [45] found that indicators of perceptual behaviour are
related to both extraversion and agreeableness in dichoptic masking, but not in binocular
rivalry or stereo acuity.

Another possibly related personality meta-trait is ego-resiliency (ER), which assesses the
adaptive flexibility of behaviour [46–48]. Individuals with high ego-resiliency are able to flexi-
bly coordinate their behaviour with situational demands and behavioural possibilities in an
adaptive way. They can also be described as having an open-minded experience and informa-
tion-seeking tendency. Individuals with low ego-resiliency tend to perseverate rather than
responding adaptively to environmental demands. Flexibility defined by ER could be a factor
that is related to the individual differences observed in perceptual switching.

In addition, the Internal and External Encoding Styles Scale [49] was considered as a possi-
ble correlate of individual switching patterns in the auditory streaming paradigm. This is based
on the notion that the amount of external information required to activate a pre-existing
schema depends on the encoding style of the individual: the more internal one’s encoding style,
the less information is required and vice versa. Further, the more internal one’s encoding style,
the greater the probability that interpretation of external information will be based solely on
pre-existing schemas. In contrast, the more external one’s encoding style, the more likely it is
that the schema will be modified based on new information. In multi-stability paradigms the
external information is constant, thus internal coding styles might play an important role in
the variability between individuals.

Finally, higher creativity has been previously related to increased rates of switching between
alternative interpretations of ambiguous figures [50,51]. There are several competing and com-
plementary theories of creativity [52] and no consensual definition has yet emerged [53]. Crea-
tivity is typically assessed by measuring ideational fluency, uniqueness or originality, and
flexibility of thinking [54]. The most commonly used measure is that of divergent thinking, the
ability to generate new ideas from a wide range of cues, experiences, ideas, and information
[55]. We included divergent thinking tests to assess creativity in our study.

In summary, the aim of the current study was to identify idiosyncratic switching patterns in
the perception of auditory streaming and to explore their possible correlation with three types
of psychological constructs: executive functions, personality traits, and creativity. Some of
these constructs have been implicated in previous research as being related to the way individu-
als experience ambiguous stimuli, while other constructs included here have so far not been
considered. The current study attempted to conduct an explorative, yet systematic investiga-
tion of possible relationships between these different constructs and individual differences in
multi-stable perception.

Methods

Participants
Fifty-three healthy volunteers (41 female; 18–42 years,Mage = 22.38, SDage = 4.04) participated
in the experiment. All participants reported having normal hearing. None of the participants
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were taking any medication affecting the central nervous system. Participants gave written
informed consent after the experimental procedures had been explained to them. The study
was approved by the institutional review board of the Institute of Cognitive Neuroscience and
Psychology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences,
Budapest, Hungary. Participants either received modest financial compensation or extra credits
in a university course for their participation. One participant’s data was excluded from the
main experiment, because she reported hearing only one perceptual state throughout all test
blocks. Although this is a valid response, the participant is an extreme outlier within the group
whose perceptual tendencies cannot be correctly represented in the statistical analyses. Four
participants were excluded from the analysis based on poor catch-trial matching (see below) in
the auditory streaming task. Thus, the sample analysed was based on forty-eight participants
(37 female; 18–42 years;Mage = 22.46, SDage = 4.19).

Measures
Auditory perceptual task. Sinusoidal tones of 75 milliseconds (ms) duration (including

10 ms rise and fall times) with an intensity of 45 dB sensation level (hearing threshold mea-
sured individually for each participant with a staircase procedure using the experimental
sounds) were presented according to the auditory streaming paradigm (a cyclically repeatin-
g”ABA-”pattern; Fig 1, top panel). The frequency difference was 4 semitones with the”A” tone
frequency set at 400 Hz and”B” tone at 504 Hz. The stimulus onset asynchrony (SOA, onset to
onset time interval) was 150 ms. Participants were presented with eleven four-minute-long
sequences with an additional ca. 40 second catch-trial segment (see the Test procedure section)
appended without a break to the end of each block. Tones were delivered through Sennheiser
HD600 headphones by an IBM PC computer using the Cogent 2000 toolbox [56] under
MATLAB [57].

Listeners were instructed to mark their perception continuously in terms of four possible
categories: a) “integrated” (ABA-; Fig 1, second panel; response: depressing one of the two
response keys), b) “segregated” (A-A-/B—; Fig 1, 3rd panel; depressing the other response
key), c) “combined” (-AB-/—A or -BA-/A; Fig 1, bottom panel; simultaneously depressing
both response keys), and d) “none” (no repeating pattern perceived; releasing both response
keys). Participants received both instructions and training to help them identify the different
perceptual categories. The description of the integrated percept emphasized hearing all tones
as part of a single repeating pattern with a galloping rhythm. The description of the segregated
percept emphasized hearing two isochronous sound streams in parallel, one in the foreground,
the other in the background, each with a uniform (one slower, the other faster) delivery rate.
The description of the combined percept emphasized the perception of two parallel streams of
sound, at least one of which included a repeating pattern composed of both high and low
tones. Finally, the “none” choice allowed listeners to indicate that they did not hear any repeat-
ing pattern or could not decide between the patterns previously described to them. The left and
right arrow keys of a standard Hungarian IBM PC keyboard were used as response keys with
their roles counterbalanced across participants. Participants were instructed to keep one or
both keys depressed for as long as they continued hearing the corresponding pattern but to
switch to another combination as soon as their perception changed. They were asked to employ
a neutral listening mind-set (termed “neutral instructions”; for a detailed discussion of the
instructions, see [13]). The state of the response keys was continuously recorded at a nominal
sampling rate of 10Hz.

Participants were trained to indicate their perception in terms of the above listed four cate-
gories without hesitation. Training started with the participant listening to six one-minute long
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demonstration sequences, each promoting the perception of one of the alternatives shown in
Fig 1. The integrated percept was introduced by using a smaller frequency difference between
the “A” and “B” tones (1ST; 400 and 426 Hz, respectively) than the parameters chosen for the
experiment, while the segregated percept was initially demonstrated by using a larger frequency
difference (890 Hz). Subsequently, the two segregated and the three combined percepts in Fig
1. were demonstrated by emphasizing the corresponding repeating tone pattern within an
auditory streaming sequence with the parameters used in the experiment. Emphasis was cre-
ated by attenuating by 18 dB those tones which were not part of the intended foreground
stream and their timbre was also manipulated by including eight harmonics with equal weights
(thus promoting perception of the normal-intensity puretones as a single coherent sequence).
After the response key assignment and the “none” choice were explained to the participant,
training continued in blocks of six sequences separated by short silent intervals. The first
sequence was one-minute-long and its parameters were identical to those used in the experi-
ment. This was followed by five sequences of 6–9 s, each, one sequence for each of the catego-
ries the participant was required to identify. The order of the five short sequences (small-
frequency-difference sample and the 4 attenuated-intensity tones examples), which served as
catch trials, was randomized separately for each training block. The training was completed
when the participant made the intended response for at least 80% of the presentation time dur-
ing the catch trials or when 20 training blocks had been delivered. During the training blocks,
the experimenter gave feedback and further help as needed. No participant was rejected on the
basis of the accuracy of their responses within the training blocks.

A ca. 40-second long catch-trial period, consisting of the five 6–9 s long segments of the
example patterns used in the demonstration blocks, was appended to the end of each four-min-
ute stimulus block in the experiment, with the purpose of checking correct response assign-
ment for the non-ambiguous patterns throughout the experiment. The order of the catch-trial
patterns was randomized across participants and blocks with each pattern appearing only once
within a catch-trial period. If the average of the catch-trial matching performance across per-
ceptual patterns and blocks during the experiment was below 60%, the participant was
excluded.

Executive functions. Inhibition, updating, and shifting [31] were assessed as follows. Inhi-
bition was measured using a computerized version of the Stroop task [58,59] using E-Prime 2.0
[60]. The colours red, green, and blue were used, and participants were instructed to press the
arrow key assigned to the colour appearing on a 15.6” screen with a resolution of 1366 x 768
pixels as quickly as possible. Participants were approximately 60cm away from the screen and
stimuli had a width of 12cm and height of 3cm, giving them a vertical visual angle of 2.9° and
horizontal visual angle of 11.4°. The arrow keys were used as response keys: “up” was paired
with red, “left” was paired with blue, and “right” was paired with green. The task consisted of
four conditions, each measured by 60 trials and delivered in three stimulus blocks. The first
block was the neutral-word condition. In this condition, the names of the three colours
appeared on the screen written in black. In the neutral-colour condition (2nd block) four “X”
letters appeared in one of the three colours. The number of the “X” letters was decided by the
average number of letters (4) in the Hungarian names of the colours used in the experiment.
The third and final block mixed together the congruent and the incongruent condition in equal
proportion. In congruent trials, the colour names appeared in their respective colours, whereas
in the incongruent trials, the colour names appeared in one of the other two colours. The par-
ticipants’ task was to press the correct response key as quickly and accurately as they could.
The stimuli were shown on the screen until one of the response keys was depressed. This was
followed by a blank screen for 250 ms. The Stroop interference effect was measured in the fol-
lowing way: first, the median reaction times of the correct responses measured in the colour-
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neutral and word-neutral conditions were averaged to get a neutral reaction time; second, the
neutral reaction time was subtracted from the median reaction time of the correct responses in
the incongruent conditions. Thus, a smaller reaction time difference indicates stronger inhibi-
tory control of a prepotent response. The task was run using E-prime 2.0.

The executive function of updating was measured using a computerized version of the N-
back task [61] using PsychoPy2 [62]. The same screen and viewing distance was used as in the
Stroop task (see above). Stimuli had a width and height of 5cm each, giving visual angles of
4.8°. The task consisted of three blocks, each with 50 trials, of which 20 trials contained targets.
14 different capital letters were used as stimuli. Each letter was presented for 500 ms followed
by a blank screen for 250 ms. In the first stimulus block, the participant’s task was to press a
key when the current stimulus matched the preceding one (1-back condition). In the second
and the third stimulus block, the letters to be matched were separated by one (2-back condi-
tion) and two letters (3-back condition), respectively. Responses were recorded during the 500
ms intervals of letter presentation but not during the 250-ms blank intervals. A response that
was made within 500 ms from the onset of a target letter was scored as a hit, whereas a response
within that time frame for a non-target was coded as a false alarm. Corrected Recognition Rate
(CRR) was calculated for each condition using the following formula: (Hits / Targets)–(False
alarms / Non-targets). The 1-back condition showed a ceiling effect, thus only the CRRs from
the 2- and 3- back conditions were taken into account for further analysis.

Shifting was measured by semantic fluency [63], where participants were asked to name as
many animals as they could. Unknown to them, they had one minute to complete the task.
Responses were written down by the experimenter. During the spontaneous production of
words, participants often name animals from various subcategories, such as African animals or
pets. Shifts between these subcategories or semantic clusters can be used to assess the shifting
executive function. Identification and analysis of the clusters was based on the protocol of
Troyer and colleagues [63,64], adapted to Hungarian by Mészáros, Kónya, and Csépe [65] and
was scored by an independent rater. Cluster-size was given as the length of the cluster minus
one, such that a single word from a category was regarded as a cluster of the size zero, while for
example, a cluster with five consecutive words belonging to the same category had the size
four. The average cluster size and the number of subcategory changes (number of clusters
minus one) were used as the output measures. All participants had at least 18 correct
responses.

Personality questionnaires. Participants completed four personality questionnaires on a
computer using E-prime 2.0 software [60]. Computer-based administration helped to ensure
that all participants responded to all questions, thus, there were no missing values in the final
dataset.

First, they completed the ER89 questionnaire [66], which measures ego-resiliency (ER). The
ER89 is a 14-item questionnaire, where participants have to indicate to what extent the items
apply to them on a four-level Likert scale from “Does not apply to me at all” to “Applies to me
very much”. In the Hungarian version [48], ER is measured using eleven items of the question-
naire (Cronbach’s α = .639 for the current sample).

Participants then filled out the Big Five Inventory [67] (Hungarian adaptation by personal
communication from Z. Vass, Károli Gáspár University of the Reformed Church in Hungary),
which measures the big five traits: Extraversion (8 items, α = .768 for the current sample),
Agreeableness (nine items, α = .740), Conscientiousness (9 items, α = .833), Emotional stability
(8 items, α = .855), and Openness (10 items, α = .806). Participants were instructed to rate the
items on a 5-level Likert scale ranging from”I strongly disagree” to “I strongly agree”.

The next inventory was the UPPS Impulsive Behavior Inventory (Hungarian adaptation by
personal communication from G. Orosz, Hungarian Academy of Sciences [68]). This inventory
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consists of 45 items that assess the four different aspects of impulsivity, labelled Urgency (12
items, α = .850 for the current sample), (lack of) Premeditation (11 items, α = .881), (lack of)
Perseverance (10 items, α = .862), and sensation seeking (12 items, α = .881). Items on the
questionnaire are scored on a 4-level Likert scale from ‘‘I strongly agree” to ‘‘I strongly
disagree”.

Next, the Internal/External Encoding Style Questionnaire (NISROE [49]) was completed
(the Hungarian version was adapted by the authors following the protocol of [69]). NISROE
measures the internal and external encoding styles on 21 items using a 6-level Likert scale rang-
ing from”I strongly disagree” to “I strongly agree”. As suggested by Lewiczki [49], only items 5,
8, 11, 15, 18, and 21 are used to calculate the final score on the questionnaire (α = .708 for the
current sample).

Finally, participants filled out the Balanced Inventory of Desirable Responding (BIDR;
[70,71] Hungarian adaptation by personal communication from G. Orosz, Hungarian Acad-
emy of Sciences). This questionnaire uses 20 items to measure two dimensions, self-deceptive
positivity (SDP, α = .790) and impression management (IM, α = .562), to assess individual sen-
sitivity to social expectations. Respondents indicate their agreement with items on a seven-level
Likert scale ranging from “Not true” to “Very true”. The scores of this questionnaire can be
used to identify respondents whose responses are likely to be affected by implicit expectations
present in the social context. We have reported in a separate paper that the social desirability
bias as measured by the BIDR did not have a significant effect on perception [72] in the present
dataset. Therefore, the data obtained with this instrument will not be reported here.

Creativity. Creativity was measured through two divergent thinking tasks, because this
aspect of creativity can be best assessed in laboratory settings [73]. The first task was the Use of
Objects Task [74], in which participants were instructed to produce as many novel uses as they
could for three common objects (brick, paperclip, and newspaper). They had one minute for
each word. Their voice was recorded and later transcribed. The second task was caption gener-
ation [73] in which participants were instructed to write as many captions as they could for
three “New Yorker Magazine” cartoons, which were provided to the authors by R. E. Jung
(University of New Mexico) through personal communication. Participants had two minutes
for each of the cartoons and recorded the captions using paper and pen. All participants pro-
duced at least one response for each task.

Three independent raters (2 females) with MA in psychology (age: 25–28 years; M = 26.33,
SD = 1.53) assessed the responses using the consensual assessment technique [75–77]. They
rated 283 captions and 1106 uses of common objects in a randomized order on a 6-level Likert
scale ranging from “Not creative at all” to “Very creative”. Raters were instructed to attempt to
achieve a normal distribution of the assigned levels and creativity was not defined to them.
Inter-rater reliability was assessed as adjusted inter-class correlations with the Reliability Cal-
culator 1.5 (Mangold International GmBH). Inter-rater reliability was .811 for the Use of
Objects and .706 for the caption generation task, both being acceptable values. Item ratings
were averaged and linearly transformed to the 0–1 range, separately for the two tasks. The aver-
age of the two task-ratings were taken into account as the Composite Creativity Index (CCI,
inter-rater reliability = .797) of each participant.

Procedure
The experimental session started with the questionnaires followed by the auditory streaming
sequences and ended with the executive function and creativity tasks. The order of the ques-
tionnaires was fixed, whereas the tasks within the executive functions and creativity categories
were counterbalanced across participants. The auditory streaming segment consisted of the
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training part followed by 11 experimental blocks. During the first five blocks, participants
reported their perception according to the neutral instructions described above. For three of
the remaining blocks, participants were instructed to hold on to each percept as long as they
could (Hold condition) while still reporting their perception faithfully. For the remaining three
blocks, participants were instructed to switch to another percept as soon as they could (Switch
condition) while also marking their perception truthfully. The order of these two biased condi-
tions was counterbalanced across participants. Data obtained in the two biased instruction con-
ditions have been reported separately [72]. Only the data recorded using the neutral
instructions are reported here. Breaks were included when switching tasks and between blocks
as needed. The session, including questionnaires, lasted altogether for ca. 180 minutes.

Data analysis
Variables were grouped into four categories based on the different aspects of cognition they
represent: perceptual variables (8), personality or questionnaire-based variables (11), executive
function variables (5), and creativity variables (3). Normality was assessed using the skewness
and kurtosis of each variable distribution. Reliability of the questionnaires was assessed using
Cronbach’s alpha. Data were analysed using MATLAB 2014a [57] and R 3.2.1. [78].

Pre-processing perceptual data from the auditory streaming paradigm. Perceptual
phases shorter than 300ms were discarded from the data recorded in the auditory streaming
paradigm, because these were assumed to result from inaccurate switching between key combi-
nations (see [79]). The data removed by this pre-processing step amounted to 0.5% of the total
record duration.

Transition matrices were constructed from the perceptual reports using the method
described in [4,23]. Each transition matrix had 4 rows and 4 columns (each corresponding to
one of the 4 alternative perceptual classes, described previously) with elements representing the
conditional probability of the percept changing from the one assigned to the column (starting
percept) to the one assigned to the row (next percept; including the probability of no percept
change). The conditional probabilities were estimated for each listener and block separately
(block transition matrix), but also for each listener (by pooling data from all blocks for each lis-
tener: listener transition matrix), and for the whole experiment (by pooling all data from all
neutral blocks for all participants: global transition matrix). Denham et al. [23] showed that the
global transition matrix can be used to estimate missing data for individual listeners (i.e., tran-
sitions that were not observed for a given listener) and listener transition matrices can be used
to estimate missing data for the each individual's block transition matrices. Therefore, this pro-
cedure was employed to provide a principled method for assigning default values in the event
of missing data. Because the switching patterns obtained in the very first experimental block
substantially differed from those obtained in the subsequent blocks [72], data from the first
block were excluded. Four participants did not experience the combined percept. In the whole
sample 37.67% of the sixteen possible transitions were missing. Most of the missing transitions
were related to the ‘none’ percept, whose overall proportion was less than 0.8% in the data.
Since we did not analyse the ‘none’ responses, the effective proportion of missing transitions
was 13.19%.

Perceptual variables. Most previous studies investigating individual differences in percep-
tual multi-stability (e.g., [21]) measured perceptual variables, such as the proportions and aver-
age phase durations of the alternative perceptual reports as well as the number of switches
between the alternative perceptual reports. In order to allow comparisons between the current
and previous results, the mean number of switches, and the proportions and mean phase dura-
tions of the integrated, segregated, and combined perceptual reports were estimated from the
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listener transition matrices. Variables for the “none” perceptual report were not analysed,
because the overall proportion of this percept was less than 0.8%. The remaining variables
characterizing the perception of the tone sequences were used in the analyses to be reported
(see below).

Motivated by the idea that some listeners might discover the perceptual alternatives faster
than others, we also analysed the time to discover all three perceptual alternatives, which is a
potential source of individual differences in the data. This new measure provides information
about the viability of the possible perceptions. Short discovery times suggest that all alternatives
are relatively easy to perceive for the given participant, whereas long discovery times suggest
that some perceptual alternatives are less viable; i.e. more difficult to discover and/or less able
to win the competition for perceptual dominance. The measure was calculated by means of
simulation: the listener transition matrices were used to simulate switching behaviour. Each
simulation was run until all patterns were discovered. For each listener, the median duration of
1000 simulation runs was used as the “Time to discover all patterns” value. Lower values indi-
cate quicker discovery of all perceptual patterns. The descriptive statistics of all variables are
included in the S1 Table.

Testing the presence of idiosyncratic switching patterns. In order to determine whether
a given listener showed an idiosyncratic switching pattern, the intra-individual and inter-indi-
vidual similarities were calculated for each participant and compared using Wilcoxon’s Signed
Rank test. Intra-individual similarity was assessed by calculating the K-L distance values
between each pair of the 4 (2nd to 5th) block transition matrices of the same listener. Inter-
individual similarity was assessed by calculating the K-L distance values between transition
matrix pairs for each combination having one of the 4 blocks of one listener and one of the 4
blocks of every other listener. In the Wilcoxon’s Signed Rank test, one-tailed assessment of sig-
nificance was employed, because intra-individual similarity was expected to be lower than
inter-individual similarity if the listener showed an idiosyncratic switching pattern. In previous
studies (e.g. [3]), inter-individual variability was investigated using the number of switches
measure. Therefore, we repeated the above analysis using the number of switches. The possibil-
ity of a different number of listeners being identified as having an idiosyncratic switching pat-
tern by the two methods was tested with McNemar’s test [80].

Multidimensional Scaling of the transition matrices. Based on the K-L dFistances
between the listener transition matrices, Multi-Dimensional Scaling (MDS [81]) was used to
find the main dimensions characterising listeners’ perceptual switching behaviour in the audi-
tory streaming paradigm. MDS is similar to factor analysis, but instead of using the covariance
matrix of the investigated variables, it uses a distance measure between the points in order to
extract the underlying dimensions. The scree test [82], which evaluates the stress values of the
dimension configurations was used to decide on the number of dimensions to be used. The
stress value assesses how well the observed distance matrix is reproduced by an MDS configu-
ration. A linear stress criterion was used as an index of the goodness-of-fit, which is the stress
normalized by the sum of squares of the inter-response distances. The scree test indicated that
three dimensions were sufficient for describing the transition matrix space of the listeners'
switching patterns (MDS stress = .0408).

Interpretation of the MDS dimensions was attempted by correlating them with the percep-
tual variables. Because some of the variables did not have a normal distribution, and a normal-
ity transformation could have distorted their magnitude, Spearman’s rank-order correlations
were used for this analysis. The significance levels of the correlations were determined by two
randomization (permutation) methods. In the first approach, the distribution of the correlation
coefficients under the null hypothesis was estimated for each perceptual variable separately, by
permuting the values of the given perceptual variable and correlating them with the given MDS
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dimension 10,000 times. The p-value of the observed correlation was established as the propor-
tion of random correlations higher than or equal to the observed value (more precisely, the
absolute values of the correlation coefficients were compared to obtain a two-tailed test). The
second method controlled for the family-wise error rate of the above procedure by registering
the highest (absolute) correlation between the given MDS dimension and all perceptual vari-
ables in each permutation run, and using the distribution of these maximal coefficients to com-
pute the p-value of the observed correlations [83,84].

Correlations between perceptual and other variables. Spearman’s correlations were used
to test the relationship between the MDS dimensions and personality, executive functions, and
creativity variables. Correlations between these variables and the perceptual variables were also
tested. Family-wise error correction was done as described in the section titled ‘Multidimen-
sional Scaling of the transition matrices’, separately for the four groups of variables described
at the beginning of the Data Analysis section. For correlations with significant p-values after
family-wise error correction (marked as pfwe), both types of p-values are reported. The correla-
tion matrix between the perceptual variables and the executive functions, personality traits,
and creativity is included in S2 Table with p-values without family-wise error correction.

Results

Idiosyncratic Switching Patterns
42 of 48 participants (87.5%) showed significantly higher intra-individual similarity than inter-
individual similarity, and hence an idiosyncratic switching pattern, as assessed by transition
matrix distances. Using the number of switches to measure individual similarity, the number
of listeners showing idiosyncracity was numerically, but not significantly (McNemar’s test:
p = .424) lower: 38 of 48 participants’ number of switches (79.17%) was distinguishable from
that of the rest of the participants (for individual results with Wilcoxon Z values see Table 1).

Correlates of the Perceptual Variables
High scores on the Stroop task (indicating less inhibition) were negatively related to the dura-
tion of the segregated phases (r(48) = -.370, p = .012, pfwe = .049) and positively to the mean
number of switches (r(48) = .372, p = .008, pfwe = .036). The average cluster size in the fluency
task as a measure of set shifting was positively related to the proportion of the integrated per-
ceptual reports (r(48) = .374, p = .009, pfwe = .043). This suggests that the ability to access a
higher number of elements within a cluster in one run during the fluency task correlates with
increased experience of the integrated perceptual state.

Of the personality dimensions, Ego-resiliency (r(48) = .443, p = .002, pfwe = .018) was posi-
tively related to the proportion of the combined percept. Thus, ego-resilient individuals experi-
ence more combined percepts than ego-brittle ones. None of the other personality scores nor
any of the creativity measures were significantly linked to any of the perceptual variables. For
the other correlation coefficients, see S2 Table.

Multi-Dimensional Scaling and Correlations with the MDS Dimensions
The first MDS dimension was related to all perceptual variables with the exception of the pro-
portion of segregated (Fig 2. and Table 2). Its most prominent correlates are the proportion of
combined (r(48) = .998, p< .001, pfwe < .001), the proportion of integrated (r(48) = -.800, p<
.001, pfwe < .001), the time to discover all patterns (r(48) = -.568, p< .001, pfwe < .001), and
the number of switches (r(48) = .534, p< .001, pfwe = .001). Based on these correlations we
term this dimension “Exploration”, because participants who switched more, required less
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time to discover all patterns, reported more combined (the least common perceptual organiza-
tion,M = 19%, SD = 16%) and fewer integrated experiences (the most frequently experienced
perceptual organization,M = 45%, SD = 15%) are placed at one end of the range in this dimen-
sion. At the other end of the range are the participants who switched less, required more time
to discover all perceptual patterns, and experienced more integrated but fewer combined per-
ceptual reports. The second dimension was linked only to the proportions of the segregated (r
(48) = -.899, p< .001, pfwe < .001) and the integrated perceptual reports (r(48) = .571, p<
.001, pfwe < .001). Based on these correlations, we term this dimension “Segregation”, because
it separates the participants who experienced more integrated and less segregated percepts
from those showing the opposite pattern. The third dimension was not linked significantly to
any of the perceptual variables.

Ego-resiliency (r(48) = .444, p = .002, pfwe = .020) was positively related to the Exploration
dimension. These results suggest that individuals scoring higher on Ego-resiliency are likely to
be more explorative than those who score lower on this meta-trait. It appears that this explor-
ative tendency is one of the main sources of the explained variance between the participants in

Table 1. Participants with idiosyncratic switching patterns based on transition matrices (Trans. Mat.) and number of perceptual switches (# of
Switches) byWilcoxon's Z values.

Participant Trans. Mat. # of Switches Participant Trans. Mat. # of Switches

1 -3.174** -2.702** 25 -3.239** -1.981*

2 -3.505*** -2.281* 26 -1.933* -1.381

3 -3.413*** -1.439 27 -3.222** -1.822 *

4 -1.875* -1.914* 28 -3.208** -1.961*

5 -3.966*** -0.484 29 -1.635 -4.035***

6 0.257 -0.207 30 -0.171 -3.045**

7 -2.580** -1.038 31 -3.295*** -2.955**

8 -3.939*** -2.446** 32 -3.908*** -2.590**

9 -2.470** -1.594 33 -2.841** -1.796*

10 -1.089 -1.849* 34 -2.726** -1.154

11 -4.158*** -3.211** 35 -2.416** -1.704*

12 -2.477** -3.627*** 36 -2.653** -0.508

13 -3.724*** -3.507*** 37 -1.753* -2.386**

14 -4.222*** -1.212 38 -2.758** -2.663**

15 -3.775*** -2.504** 39 -3.333*** -3.786***

16 -3.954*** -1.865* 40 -0.407 -1.703*

17 -1.665* -2.217* 41 -3.550*** -2.187**

18 -3.522*** -2.631** 42 -3.007** -2.622***

19 -2.206* -2.562** 43 -0.392 -1.691*

20 -4.222*** -1.813* 44 -3.778*** -1.678*

21 -3.266** -1.341 45 -3.846*** -2.477**

22 -3.732*** -3.391*** 46 -1.717* -2.528**

23 -2.367** -1.892* 47 -4.220*** -1.719*

24 -1.998* -3.062** 48 -3.346*** -2.934**

Participant = participant number, Trans. Mat. = Wilcoxon’s Signed Rank test Z-values from the transition matrix based testing, # of Switches = Wilcoxon’s

Signed Rank test Z-values number of switches based testing

*** p < .001

** p < .01

* p < .05

doi:10.1371/journal.pone.0154810.t001
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this multi-stable perceptual situation. No other personality trait, executive function, or creativ-
ity measure was significantly related to any of the MDS dimensions. All correlation coefficients
between the perceptual variables and the executive functions, personality traits, and creativity
can be found in the table of S2 Table.

Discussion
The aim of this study was to explore the executive function, personality trait, and creativity-
related correlates of inter-individual variability of switching patterns in multi-stable auditory
perception. Most participants displayed an idiosyncratic perceptual switching pattern both in
terms of the number of switches and in their patterns of switching, as characterized by the

Fig 2. The Kullback-Leibler distances between listener transition matrices visualized on the
dimensions extracted by Multi-Dimensional Scaling. Coloured numbers mark the participants.

doi:10.1371/journal.pone.0154810.g002

Table 2. Spearman’s Rank Order correlation coefficients between the Multi-Dimensional Scaling
dimensions and the perceptual variables.

MDS X MDS Y MDS Z

Proportion of integrated -.800*** .571*** .035

Proportion of segregated -.242 -.899*** .024

Proportion of combined .998*** -.057 -.086

Duration of integrated -.436* .074 .103

Duration of segregated -.428* -.309 .211

Duration of combined .282 .047 .222

Number of switches .534** -.056 -.102

Time to discover all -.568*** .291 .179

MDS X = the first dimension of the MDS, MDS Y = the second dimension of the MDS, MDS Z = the third

dimension of the MDS, Duration of integrated/segregated/combined = average phase duration of the

integrated/segregated/combined perceptual reports, Number of switches = average number of switches,

Time to discover all = time to discover all patterns.

*** pfwe < .001

** pfwe < .01

* pfwe < .05

doi:10.1371/journal.pone.0154810.t002
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transition matrices. Thus, the finding of Denham et al. [4] who studied six participants in
numerous sessions, was replicated for a larger sample and with only four perceptual alterna-
tives (as opposed to the 7 alternatives used in [4]). Numerically, a higher number of partici-
pants were identified as having an idiosyncratic perceptual switching pattern using the
transition matrix description than using the number of switches, although the difference was
not significant. Thus the number of switches proved to be a useful indicator of individual dif-
ferences even though the transition matrix contains additional information about the dynamics
of perceptual switching.

The main dimensions on which listeners’ switching patterns differed from each other were
identified as Exploration (positively correlated with the proportion of combined, and the num-
ber of switches, whereas negatively correlated with the proportion of integrated and the time to
discover all patterns) and Segregation (positively correlated with the proportion of the inte-
grated perceptual reports and negatively with that of the segregated perceptual reports). We
found that only a personality meta-trait termed Ego-resiliency [46] (ER) was significantly
related to the Exploration dimension. Further, ER was also significantly related to the propor-
tion of the combined percept, which is the least common perceptual organization experienced
in the current auditory streaming paradigm and which is also the most prominent perceptual
correlate of the Exploration MDS dimension. Exploration can be defined as “any behaviour or
cognition motivated by the incentive reward value of uncertainty” ([85], p. 2) and it is important
to note that “the brain addresses these questions both consciously and unconsciously” ([85],
p. 2). This measure can indicate an unconscious tendency to explore as much of the environ-
ment as possible to reduce uncertainty. However, a conscious, top-down type of exploration is
also possible during the task. It is not possible to decide between these two alternatives based
on the present data, but it seems that the flexibility and open-minded experience-seeking ten-
dency of the individual measured with ER is related to this explorative tendency during the
auditory streaming task. No other personality, executive-function, or creativity measure used
in the current study was significantly correlated with this or the other two MDS dimensions.

Two executive functions, inhibition and shifting, were significantly related to individual dif-
ferences in perceptual variables. Higher inhibition levels were related to longer average segre-
gated phase durations and to a lower number of switches. Developmental findings reported
that more inhibition is required to be able to switch [33]. Children start to switch between pos-
sible interpretations of multi-stable stimuli at about the age of 5, as they are not able to switch
before that. Frontal functions are required for switching (e.g. [25]), and frontal brain areas are
also developing during this period and up to puberty [86]. Thus, it is possible that the positive
relationship between the number of switches and inhibition observed in developmental studies
represent the parallel maturation of these functions, thus the relationship is due to a shared
source. It should be noted that there are large differences between the current and the refer-
enced developmental studies both in the stimuli and the instructions used. The significant rela-
tionship found between the duration of the segregated phases and inhibition (as measured by
the Stroop task) is compatible with models of auditory stream segregation based on competi-
tion between alternative groupings of sound (proto-objects; e.g. [87]), as in these models
proto-objects mutually inhibit each other. However, the actual mechanisms by which inhibi-
tion as an executive function affects auditory stream segregation are not yet known.

Shifting was significantly related to the proportion of integrated perceptual reports, with
higher shifting values corresponding to lower proportions of integrated perceptual reports. In a
developmental study of multi-stable perception, Wimmer and Doherty [33] found that shifting
is not required for the development of the ability to switch between alternative interpretations
of an ambiguous stimulus. Thus, perhaps, shifting is related to fine-tuning the individual
switching patterns, rather than being a necessary prerequisite of switching. Again, however,
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one should note that Wimmer and Doherty [33] used a different measure of shifting, and dif-
ferent stimuli and instructions for this measurement, which may also explain the differences in
the results. Finally, as for the third main executive function, previous studies indicated a link
between working memory capacity and inter-individual variability in perceptual multi-stability
[36,37]. The current results did not provide corroborative evidence for these findings.
Although some studies showed that working memory capacity tasks may also measure updat-
ing and vice versa [34], other evidence suggests that the two are different constructs [35].
Future research is needed to investigate whether the working memory capacity and working
memory updating have different effects on individual differences in different forms of percep-
tual multistability.

Neural models of perceptual multi-stability are generally based on the assumption that
there are three effects responsible for switching between alternative interpretations [40,41,88].
The first one is adaptation, which refers to the characteristic that the perceptual system gradu-
ally adapts to the dominant interpretation; thus explaining the inevitability of switching. The
second one is inhibition, which underlies the competition for dominance by inhibiting the cur-
rently non-dominant perceptual alternatives. Thus, this mechanism promotes stability by help-
ing to maintain the current perceptual organization. The third factor is noise, which is
responsible for the non-periodic, stochastic dynamics of switching behaviour. So, increasing
inhibition leads to fewer switches and longer phase durations. Kondo et al. [89] found that the
higher the concentration of the GABA inhibitory neurotransmitter in the auditory cortex, the
fewer the switches and longer the phase durations experienced by participants in the auditory
streaming paradigm. We observed two similar effects for the shifting and the inhibition execu-
tive functions: more shifting was related to lower proportions of the integrated percept, the per-
cept that is typically dominant for a long period of time at the beginning of the stimulus block
[13], whereas higher inhibition was related to lower switching rates (longer phase durations).
Although shifting and inhibition as executive functions are different from neural-level adapta-
tion and inhibition, they may represent top-down modulators of these low-level mechanisms.

In summary, the current study identified idiosyncratic switching patterns in an auditory
multi-stability paradigm. We found that the dimension on which individuals primarily differed
from each other was related to the number of switches, time required to discover all possible
perceptual patterns, and the relative proportions of the least and most common percepts. This
dimension of inter-individual differences was termed Exploration. It was significantly associ-
ated with Ego-resiliency, a meta-trait describing adaptive flexibility to meet the challenges of
the environment. Individuals with high ego-resiliency were more explorative on the Explora-
tion dimension than individuals with lower ego-resiliency. Inter-individual differences in the
inhibition and shifting executive functions were found to be related to some indicators of per-
ceptual switching. We assume that these executive functions may modulate the neural-level
processes of inhibition and adaptation, which have been suggested as two important factors
governing multi-stable perception. Future research may help to clarify commonalities and dif-
ferences between the various multi-stable perceptual phenomena (i.e., modality, level of repre-
sentation) and how the various individual capabilities (including working memory capacity)
and personality traits interact in their effect on them.
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S1 Table. Descriptive statistics of the measured variables.Mean (SD) = the mean and the
standard deviation of the variable, Min = the minimum of the variable, Max = the maximum of
the variable, α = Cronbach’s alpha in the case of the personality questionnaires and inter-rater
reliability in case of Creativity tasks, MDS X = the first dimension of the MDS, MDS Y = the
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second dimension of the MDS, MDS Z = the third dimension of the MDS, Duration of inte-
grated = average phase duration of the integrated percept in seconds, Duration of segregated =
average phase duration of the segregated percept in seconds, Duration of combined = average
phase duration of the combined percept in seconds, Number of switches = average number of
switches, Time to discover all = time to discover all patterns (in seconds), Stroop RT = median
reaction time on the Stroop task in seconds, 2-Back CRR = Corrected Recognition Rate on the
2-back condition of the N-back task, 3-Back CRR = Corrected Recognition Rate on the 3-back
condition of the N-back task, Fluency cluster size = average cluster size in the semantic fluency
task, Fluency number of switches = average number of switches in the semantic fluency task,
CCI = Composite Creativity Index.
(DOCX)

S2 Table. Spearman Rank Order correlation coefficients between the perceptual and the
executive functions, personality traits, and creativity.MDS X = the first dimension of the
MDS, MDS Y = the second dimension of the MDS, MDS Z = the third dimension of the MDS,
Duration of integrated = average phase duration of the integrated percept in seconds, Duration
of segregated = average phase duration of the segregated percept in seconds, Duration of com-
bined = average phase duration of the combined percept in seconds, Number of switches =
average number of switches, Time to discover all = time to discover all patterns (in seconds),
Stroop RT = median reaction time on the Stroop task in seconds, 2-Back CRR = Corrected Rec-
ognition Rate on the 2-back condition of the N-back task, 3-Back CRR = Corrected Recogni-
tion Rate on the 3-back condition of the N-back task, Fluency cluster size = average cluster size
in the semantic fluency task, Fluency number of switches = average number of switches in the
semantic fluency task, CCI = Composite Creativity Index. ��� p< .001, �� p< .01 � p< .05
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