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ABSTRACT Pseudomonas sp. strain L5B5 is an antimicrobial-producing bacterium
isolated from an air sample collected in a pyrite mine in Lousal, Portugal. Genomic
analyses predicted genes involved in virulence factors. Here, we report the complete
genome sequence of this bacterium, which consists of a circular chromosome with a
length of 6,811,662 bp.

T he genus Pseudomonas is a very abundant group found in antagonistic environments;
some interact with plants, some are useful as growth-promoting and biocontrol agents,

and some are parasites, such as Pseudomonas aeruginosa and Pseudomonas syringae, two
opportunistic pathogens for plants and animals (1). Pseudomonas are also found in subterra-
nean environments, including mines, where some of them are able to remove heavy metals,
which is useful for bioremediation (2, 3).

Mining is one of the oldest ways of producing and extracting minerals, and it has been
intrinsically linked to the economic and social evolution of human beings. Lousal Mine
(Grândola, Portugal) was closed in 1988 because the mined ores were no longer viable
economically. Afterwards, within the environmental, social, economic, and heritage con-
text, the mining area was remediated and rehabilitated in 2010, a geo-tourism center cre-
ated, and a mining gallery opened to visitors (4).

The airborne Pseudomonas sp. strain L5B5 was isolated using a surface air system
(Duo SAS, model Super 360). The sample was managed as described by Porca et al.
(5). The culture medium was Trypticase-soy-agar (TSA; BD), and the culture plate
was incubated at 28°C after picking a single colony. DNA extraction was performed
using the Canvax HigherPurity bacterial genomic DNA isolation kit (Córdoba, Spain)
with RNase treatment.

Genomic DNA was sequenced using both the NovaSeq 6000 (Illumina, USA)
and SMRT RS II (PacBio, Menlo Park, CA) platforms. A TruSeq DNA PCR-free library
was constructed using 150-bp paired-end short reads (Illumina); an SMRT library
(insert size, 20 kb), constructed following the instructions for the Pacific
Biosciences SMRTbell prep kit, was used for de novo sequencing. Default parame-
ters were used for all software unless otherwise specified. The long reads were
assembled using Canu v2.1.1 (6) and Circlator v1.5.5 (7) to circularize and orien-
tate the chromosome. Pilon v1.24 (8) was employed for assembly improvement.
Annotation was carried out using the NCBI Prokaryotic Genome Annotation
Pipeline (9) and Sma3s v2 (10) with the “uniprot” flag. antiSMASH v6.0 (11), with
the detection parameters in “strict” mode and all extra features on, was used to
predict and annotate the secondary metabolite biosynthesis gene clusters. The
Virulence Factors of Pathogenic Bacteria Database (VFDB), through Vfanalyzer, was used
for virulence factors prediction (12). The Comprehensive Antibiotic Resistance Database
(CARD), through Resistance Gene Identifier (RGI) software, was launched for prediction of
the resistome (13). The closest relatives of L5B5 were identified using the JSpecies Web
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tool (14), and the average nucleotide identity was calculated using the BLAST (ANIb) and
MUMmer (ANIm) algorithms.

The PacBio sequencing generated a total of 140,791 subreads, averaging
10,080 bp long, for a genome coverage of .208�, whereas the Illumina sequencing
produced a total of 19,767,134 reads for a genome coverage of .435�. A tetra cor-
relation search against the JSpecies database linked the LSB5 genome with the
genomes of the type species Pseudomonas aestus CMM1215 and P. protegens CHA0
and with the biotechnologically useful strains P. protegens Cab57 and P. protegens
Pf-5. The ANIb and ANIm values were below the 95% threshold suggested for spe-
cies differentiation.

Table 1 provides a comparison of the relationship between L5B5 and related strains,
as well as their functional characterization. L5B5 showed a more dynamic secondary
metabolism, as well as an increased presence of virulence factors and genes involved
in the resistome, with respect to the related genomes.

Data availability. The whole-genome shotgun project for Pseudomonas sp. L5B5
has been deposited at DDBJ/ENA/GenBank under the accession number listed in
Table 1. The version described in this paper is the first version. The BioProject accession
number is PRJNA769239, and the raw data have been deposited in the Sequence Read
Archive (SRA) under accession numbers SRR16308509 and SRR16308510, for the long
and short reads, respectively.
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