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� Abstract
Building automated cancer screening systems based on image analysis is currently a hot
topic in computer vision and medical imaging community. One of the biggest challenges
of such systems, especially those using state-of-the-art deep learning techniques, is that
they usually require a large amount of training data to be accurate. However, in the medi-
cal field, the confidentiality of the data and the need for medical expertise to label them
significantly reduce the amount of training data available. A common practice to overcome
this problem is to apply data set augmentation techniques to artificially increase the size of
the training data set. Classical data set augmentation methods such as geometrical or color
transformations are efficient but still produce a limited amount of new data. Hence, there
has been interest in data set augmentation methods using generative models able to syn-
thesize a wider variety of new data. VitaDX is actually developing an automated bladder
cancer screening system based on the analysis of cell images contained in urinary cytology
digital slides. Currently, the number of available labeled cell images is limited and therefore
exploitation of the full potential of deep learning techniques is not possible. In an attempt
to increase the number of labeled cell images, a new generic generator for 2D cell images
has been developed and is described in this article. This framework combines previous
works on cell image generation and a recent style transfer method referred to as doodle-
style transfer in this article. To the best of our knowledge, we are the first to use a doodle-
style transfer method for synthetic cell image generation. This framework is quite modular
and could be applied to other cell image generation problems. A statistical evaluation has
shown that features of real and synthetic cell images followed roughly the same distribu-
tion. Finally, the realism of the synthetic cell images has been assessed through a visual
evaluation performed with the help of medical experts. © 2019 The Authors. Cytometry Part A

published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

� Key terms
bladder cancer; urinary cytology; bright-field microscopy; synthetic cell images;
deep learning; style transfer

Research for building automated cancer screening systems based on image analysis has
been of increasing interest in medical imaging and computer vision community (1–3).

Before providing a final diagnosis, these systems usually need to solve preliminary
tasks such as detection, segmentation, and classification. Deep learning has set the new
state-of-the-art algorithms for such computer vision tasks. The main drawback of these
algorithms is that they usually require large training data sets to outperform classical
machine learning algorithms.

In the medical field, the acquisition of large data sets can be difficult due to data
confidentiality constraints. Furthermore, the amount of labeled data might be limited
by financial restrictions when medical expertise is required for the labeling process.

For training deep learning models in computer vision tasks, it is a common
practice to apply data set augmentation techniques in order to artificially increase
the size of the data set. Basic data set augmentation methods such as geometrical or
color transformations are efficient but still are limited in the variety of the new
images they can produce. Hence, the recent trend of data set augmentation methods
is toward the use of generative models that can generate a wider diversity of new
images (4–8).
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Several previous studies have built frameworks for syn-
thetic cell image generation for cytology slides, usually special-
ized for specific illumination technique (bright field,
fluorescence) and data format (2D images, 3D images, and
2D/3D images + time).

For 2D/3D cell image generation, these works range from
isolated cell image generation (9–11), grouped cells image gen-
eration (12) to whole cellular population image genera-
tion (13,14).

In these studies, the most common strategy is to combine
a biological shape model to describe and generate the cell com-
ponents morphology with textures models describing cell com-
ponents textures, lighting conditions, and signal transmission
of the optical system (9,12,14). Aberrations at various scales
are usually considered, from local deformations (such as optical
blur or sensors noise) to whole-slide aberrations (such as
uneven illumination).

Different approaches for biological shape modeling exist,
such as differential geometric based methods (10), shape ini-
tialization combined with random deformations model (12), or
shapes generation by sampling and inverting invertible shape
descriptors (14).

Regarding texture modeling, nonparametric and proce-
dural methods are more often used. For example, Ref. (12)
uses a stochastic method with Perlin noise to generate new
cell texture samples, whereas Ref. (14) uses respectively
patch-based texture synthesis and a deformations model to
generate nucleus and cytoplasm textures.

More recently, Ref. (11) has proposed a different kind of
approaches for fluorescent cell image generation based on gen-
erative adversarial networks (GANs). Compared to the
methods sequentially generating cell morphology, cell textures,
light conditions, and signal transmission of the optical system,
GANs are able to jointly generate shape and textures to obtain
synthetic cell images similar to real cell images. Nevertheless,
GANs are hard to train (unstable training, unbalance between
discriminator and generator, etc.) and usually require a large
amount of data to produce realistic synthetic images. This
makes these approaches not practical for cells generation.

Shape models combining a shape initialization with ran-
dom deformations might not be representative of the real defor-
mations undergone by the cell. Therefore, considering this
shape modeling could lead to unrealistic generated cell
morphology.

To generate a new cell morphology, represented by a seg-
mentation mask with nucleus and cytoplasm shapes, the
framework uses an approach in the same spirit of Ref. (14).
First, the method consists in approximating a joint probability
density function of invertible nucleus and cytoplasm shape
descriptors describing statistically the whole cell morphology.
Then, from the approximated joint probability density func-
tion, new nucleus and cytoplasm shape descriptors are sam-
pled and inverted to generate a new cell segmentation mask
with dependent nucleus and cytoplasm shapes.

Concerning textures modeling, Perlin-noise-based textures
synthesis seems to be more adapted for simple and homoge-
neous textures synthesis. Patch-based textures synthesis requires

a large set of patches from the same cell to reproduce realistic
cell textures which is not practical for small cell images.

To transfer real cell textures onto a synthetic cell segmen-
tation mask, the style transfer method of Ref. (15) has been
applied. This method, referred to as doodle-style transfer in
this work, allows to transfer different textures from real seg-
mented cell examples to the corresponding parts of a generated
synthetic cell segmentation mask. This approach does not need
an explicit modeling step to mimic local aberrations of the
optical system as the doodle-style transfer method transfers
real cell textures that already contain this visual information.

For a given cell class, the proposed framework consists
in applying the cell segmentation masks generation procedure
to obtain a new cell segmentation mask containing morpho-
logical specificities of the cell class. Then, textures of a real
example cell from this class are transferred onto the generated
segmentation mask via the doodle-style transfer method.
With this procedure, the presented framework is able to gen-
erate synthetic cell images for any cell class with any illumi-
nation condition.

First, the data set used for synthetic cell image generation
is described. Second, this article introduces the procedures to
generate synthetic cell segmentation masks and how to trans-
fer real cell textures onto generated cell segmentation masks.
Finally, to assess the realism of the generated cell images
using the developed framework and their similarity with real
cell images, both statistical and visual evaluations have been
conducted on a set of generated cell images.

MATERIAL AND METHODS

Data Set Description

This work is made in the context of developing an automated
bladder cancer diagnosis system based on the analysis of urinary
cytology digital slides. Given a digital slide, the diagnosis pro-
duced by the screening system depends mainly on the detection
of cells coming from the urothelium called urothelial cells and
on the distinction between healthy and atypical ones. A particu-
lar focus will be put on this class of cells in this article.

The exploited urinary cytology digital slides are produced
via the following protocol: first, urine sample is obtained from a
patient, filtered, and spread onto a glass slide. Then, the glass
slide is colored with a Papanicolaou stain (16) by immersing it
into several dyes baths. The Papanicolaou staining enhances
contrast between nucleus and cytoplasm and accentuates mor-
phological and textural differences between healthy and atypical
urothelial cells. Finally, the physical slide is scanned with a digi-
tal slide scanner Hamamatsu NanoZoomer S60 (Hamamatsu
Photonics, Massy, France) able to scan a single slide on several
focal plans with 40× magnification corresponding to a 230 nm/
pixel scale.

Once the digital slide is obtained, anatomical
cytopathologists annotate different objects considering different
labels: object type, position on the slide, cell status (healthy or
atypical), etc. Several different biological objects are likely to
appear on a digital slide such as urothelial cells, Malpighian cells,
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polymorphonuclear neutrophils, etc. Consequently, the anatomi-
cal cytopathologist annotations can be very diversified.

In this work, only labeled urothelial cell images have
been considered. Additionally, to learn how to generate the
shape of urothelial cells, some of the labeled urothelial cell
images have been manually segmented. From this process, we
have obtained a data set made of:

• 500 segmented healthy urothelial cell images with their
corresponding segmentation masks.

• 500 segmented atypical urothelial cell images with their
corresponding segmentation masks.

Some examples of healthy/atypical urothelial cells with their
corresponding segmentation masks can be found in Figure 1.

The use of the urinary cytology digital slides was autho-
rized by the Agence Nationale de Sécurité Médicament et des
Produits de Santé (ANSM) and the Comité de Protection des
Personnes as part of the clinical trial VisioCyt1.

Cell Segmentation Masks Generation

In the nucleus shape modeling proposed by Ref. (14), nucleus seg-
mentation masks are converted into discretized contours by

sampling points evenly spaced on the masks boundary. From each
nucleus discretized contour, Fourier shape descriptors are com-
puted to summarize the nucleus shape information. This statistical
population of nucleus shape descriptors is used to approximate the
probability density function of training nucleus shape descriptors

fd with a probability density function bf d. Finally, new nucleus

shape descriptors are drawn from bf d, and inverted to get
nucleus contours and thus new nucleus segmentation masks.

The proposed cell segmentation masks generation
method follows the same idea as Ref. (14), but it generates
correlated nucleus and cytoplasm contours with a realistic
nucleus position into the cell. To achieve this, a joint proba-
bility density function of the nucleus and cytoplasm elliptical
Fourier shape descriptors (17) is approximated. Figure 2 sum-
marizes the whole process for cell segmentation masks gener-
ation proposed in this article.

The cell segmentation masks generation method can be
decomposed into a learning stage:

1. Given a cell class, for each training cell segmentation mask,
a pair of nucleus and cytoplasm discretized contours is
retrieved with the algorithm marching squares (18).

Figure 1. Crop of urinary cytology digital slide (a), examples of one healthy urothelial cell (b), and one atypical urothelial cell (c) with their

segmentation masks. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Summary diagram illustrating the process for cell segmentation masks generation. During the learning stage (a), training

nucleus and cytoplasm shape descriptors are computed from the training cell segmentation masks and the joint probability density

function of these descriptors is approximated with a density ^f d . During the sampling stage (b), ^f d is used to sample new shape

descriptors ~d that are inverted to get new cell segmentations masks. [Color figure can be viewed at wileyonlinelibrary.com]
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2. For each pair of nucleus and cytoplasm discretized contours,
pair of elliptical Fourier shape descriptors is computed and
concatenated. The concatenated nucleus and cytoplasm shape
descriptors denoted d describe a whole cell morphology.

3. The joint probability density function of the nucleus and
cytoplasm shape descriptors fd is approximated with a
Gaussian mixture model (GMM) whose probability den-

sity function is denoted by bf d. bf d describes statistically
the whole cell morphology of the given class.

and a sampling stage:

4. bf d is used to sample new concatenated nucleus and cyto-

plasm shape descriptors denoted ~d.
5. For each concatenated nucleus and cytoplasm shape

descriptors ~d, nucleus and cytoplasm shape descriptors are
inverted separately with the truncated Fourier series expan-
sion formula detailed in Supplementary Eq. (6) to obtain a
new pair of nucleus and cytoplasm discretized contours.

6. Each new pair of nucleus and cytoplasm discretized con-
tours is converted into a cell segmentation mask.

The computation and inversion principle of elliptical Fourier
shape descriptors are fully detailed in Supplementary Section A.1.

Texture Transfer onto a Synthetic Cell

Segmentation Mask

Texture synthesis
Li and Wand (19) have proposed a texture synthesis method

to synthesize a texture xt 2Rht ×wt × 3 visually similar to a ref-

erence texture xs 2Rhs ×ws × 3 using the feature maps of xs and
xt computed on a pretrained convolutional neural network ϕ.

Their method assumes that any texture can be described
by L sets of local statistics computed respectively on the feature
maps of L different layers of ϕ. Therefore, as the reference tex-
ture xs can be described by its L sets of local statistics, they
propose to generate the texture xt by optimizing xt pixels so as
to match the L sets of local statistics of xt with those of xs.

In their method, each set of local statistics is made of all
possible fixed-size volume patches extracted from the feature
maps at a specific layer of ϕ. From now on, these patches will
be referred as neural patches to avoid confusion with patches
extracted directly on the image.

Then, to generate the new texture xt, the pixels of xt are
randomly initialized and optimized so as to match the L sets
of neural patches of xt with those of xs. The matching process
between a set of neural patches of xt and a set of neural pat-
ches of xs is done through the minimization of a distance
between the two sets. The distance between a set of neural
patches of xt and a set of neural patches of xs corresponds to
a sum of distances between each neural patch of xt with its
nearest neural patch of xs.

The drawback of this method is that the use of local infor-
mation with the neural patches of xs is not sufficient to capture
global arrangement of the textures in xs. Consequently, the dif-
ferent textures of xs and their relative positions might be
unintentionally mixed in the generated image xt.

To better control the spatial layout of the synthesized
textures, Ref. (15) has extended the method of Ref. (19). This
new method referred as doodle-style transfer will be pres-
ented in the next section.

Layout aware texture synthesis: Doodle-style transfer
The method proposed by Ref. (15) aims at synthesizing
the image xt by transferring the different textures of the
image xs delimited by its segmentation mask ms onto the
corresponding parts of the segmentation mask of the image xt
denoted mt. Therefore, in the method of Ref. (15), the inputs
are the reference texture xs, its segmentation mask ms, and
the segmentation mask mt of the image to be synthesized xt.
The textures from each region of the source image will be
transferred to the corresponding region of the target image.
In our case, segmentation masks ms and mt are made of three
regions: background, cytoplasm, and nucleus.

To control the layout of the synthesized textures, Ref.
(15) introduces semantic information contained in the seg-
mentation masks ms and mt into the neural patches of xs and
xt. Including ms and mt provides information on the localiza-
tion of the different textures in xs and where they have to be
synthesized on the image xt.

To introduce semantic information into the neural pat-
ches of xs and xt, Ref. (15) proposes to concatenate the binary
masks with the feature maps before extracting neural patches.
The problem is that the deeper you go into the trained neural
network ϕ, the smaller the feature maps are and therefore
they cannot be concatenated with the binary masks due to
dimensions mismatch.

To bypass this problem, Ref. (15) suggests to down-
sample the binary masks as the downsampling performed in
ϕ. The binary masks downsampling is performed through a
model D made of successive average poolings. Thus, at a spe-
cific layer and for a given image, feature maps and
downsampled masks can be concatenated. But before
concatenating them and extracting neural patches, the down-
sampled masks are weighted by multiplying them by a hyper-
parameter γ. This hyperparameter allows balancing between
spatial constraints and features similarity during neural pat-
ches matching of xs and xt.

Finally, like Ref. (19), once the sets of neural patches of
xs have been computed, xt is randomly initialized and opti-
mized to match its sets of neural patches with those of xs.
The matching of the sets of neural patches of xt with the sets
of neural patches of xs is achieved via the minimization of a
cost function Ltotal with respect to xt.

A summary diagram of the doodle-style transfer tech-
nique is presented in Figure 3. For further technical details on
the loss function Ltotal, the regularization term and the
involved hyperparameters (α1,…, αL), λTV, the reader may
refer to Supplementary Section A.2.

Full Pipeline for Synthetic Cell Image Generation

Cell textures and cell morphology are correlated. Two cells
with significantly different morphologies are likely to have
different textures. Hence, we should not transfer textures of
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any real cell image on any segmentation mask, otherwise
transferred textures might not be compatible with the mor-
phology of the target segmentation mask.

To ensure that the textures of the source cell image are
plausible regarding the morphology of the target mask on
which they are going to be synthesized, the target mask is
chosen in order to be geometrically similar to the source seg-
mentation masks.

For a given cell class, once the joint probability density

function of the nucleus and cytoplasm shape descriptors bf d
was approximated as described in Section 2.2, a synthetic cell
can be generated as follows:

1. select a source real image and its corresponding segmen-
tation mask (xs, ms),

2. compute the shape descriptor ds of the source segmenta-
tion mask,

3. draw shape descriptors dt from bf d until kds− dtk2 is
lower than a given tolerance ε,

4. invert the drawn shape descriptors to obtain the target
synthetic segmentation mask mt, and

5. transfer the source texture xs on mt using the method
described in Section 2.3.2.

RESULTS

Synthetic Urothelial Cell Segmentation Masks

For each cell class (healthy urothelial cell, atypical urothelial
cell), the cell segmentation masks generation method described
in Section 2.2 has been applied. The number of considered har-
monics in the elliptical Fourier shape descriptors and the num-
ber of components of the GMM were empirically and
respectively set to 10 and 30. In our experiments, the tolerance
ε of Step 4 of the synthetic cell image generation pipeline

described in Section 2.4 is set to 10−1. Examples of synthetic
segmentation masks are reported in Figure 4.

We notice in Figure 4 that synthetic healthy urothelial
segmentation masks present smooth and circular nucleus.
Cytoplasm shapes are more irregular but, in practice, this is
observed on real healthy urothelial cells. The synthetic healthy
urothelial cell segmentation masks seem to present nuclear
cytoplasmic ratios quite low which is a common characteristic
of real healthy urothelial cells.

In Figure 4, nucleus shapes of synthetic atypical urothelial
segmentation masks are more irregular than those observed on
synthetic healthy urothelial cell segmentation masks. Further-
more, nuclear cytoplasmic ratios are significantly higher for
synthetic atypical urothelial cell segmentation masks than syn-
thetic healthy urothelial cell segmentation masks. In practice,
this difference of nuclear cytoplasmic ratios is observed and is
one of the Paris system criteria (20) used by anatomical
cytopathologists to differentiate an atypical urothelial cell from
a healthy urothelial cell.

Synthetic Urothelial Cell Images

Hyperparameters
For each cell class (healthy urothelial cell, atypical urothelial
cell), the doodle-style transfer method described in Section 2.3.2
was applied on a set of synthetic urothelial cell segmentation
masks with the hyperparameters detailed in Figure 5.

Average generation time
All the experiments have been conducted with a Nvidia
GeForce RTX 2080 Ti GPU (Nvidia, Santa Clara, CA). The
generation time mainly depends on generated image size. For
an average image size of 10,032 pixels, the measured average
generation time is 24.63 s.

This is the result of the costly optimization used in the
doodle-style transfer method. Indeed, each optimization step

Figure 3. Summary diagram of the doodle-style transfer technique. [Color figure can be viewed at wileyonlinelibrary.com]
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to minimize the cost function Ltotal with respect to xt implies
to perform a forward and a backward pass into the trained
neural network ϕ (VGG19 (21) in our case) to compute
respectively the feature maps and the gradients. These heavy
computations due to the large size of the trained neural net-
work ϕ make the optimization time consuming.

A possible solution for this problem would be to use offline
doodle-style transfer methods inspired from (22) work that sep-
arates learning and generation stages. These methods include an
additional neural network ΦW of parameters W whose role is to
generate the image xt given a triplet (xs,ms,mt). In fact, during
the learning stage, the total loss is no longer minimized with
respect to xt but with respect to the weights W. Then, once ΦW

is trained and given an input triplet (xs,ms,mt), it can transfer
the textures of xs ontomt only with inference.

Nonetheless, the architectures of ΦW, presented so far in
the literature, can only transfer textures from a single real cell
image xs. Consequently, several models must be trained to
transfer textures from several real cell images xs which can be
constraining.

Examples of synthetic cell images
For each cell class (healthy urothelial cell, atypical urothelial
cell), synthetic urothelial cell images have been generated by
applying the doodle-style transfer method on triplets (xs,ms,
mt) generated as described in Section 2.4. Some of them are
presented on Figure 6 (1st to 3rd line).

In Figure 6, other types of generated objects are also pres-
ented. These generated objects include Malpighian cells (4th
line), polymorphonuclear neutrophils (5th line), cells with differ-
ent staining (Hematoxylin Eosin Safran [HES]) / Papanicoalou
staining protocol (6th line) or cells scanned with different illumi-
nation technique such as FITC fluorescence (7th line).

From the synthetic urothelial cells of the three first lines,
we can infer that the doodle-style transfer method is capable of
transferring each texture of the real cell image xs delimited by
its segmentation mask ms onto a synthetic cell segmentation
mask mt. The textures in the synthetic cell images xt are not
mixed as we are able to clearly distinguish each cell component.

By visually inspecting the synthetic urothelial cell images
xt, the method produces quite realistic cell images. It ensures
smooth colors and textures transitions between components
boundaries. Indeed, for all synthesized images xt, the color
transitions from the nucleus to the cytoplasm and from the
cytoplasm to the background are comparable to those from
real cell images xs.

From one real cell image xs to another, we clearly see
that the varying depth of field and the optical system aberra-
tions (blur, uneven illumination, noise, etc.) can cause the cell
boundaries to be more or less sharp with color variations. For
instance, the image xs in the (2nd line, 1st column) shows a
sharp cell boundary with a uniform white light halo whereas

Figure 4. Examples of generated healthy urothelial segmentation masks (a) and generated atypical urothelial segmentation masks (b) by

sampling and inverting elliptical Fourier shape descriptors as described in Section 2.2.

Figure 5. Hyperparameters of the doodle-style transfer technique

used for both cell classes.
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the image xs in the (2nd line, 5th column) reveals a more
blurred cell boundary with color variations ranging from light
blue to pink. Usually, so as to make the synthetic cell image
generation framework capable of handling these variations,
varying light conditions and signal transmission of the used
optical system are modeled (12,14). With the presented
framework, as it can be noticed on the generated images xt,
these modeling steps are no longer required as, by transfer-
ring the textures of the real cell image xs onto the generated
segmentation mask mt, the true light conditions and signal
transmission of the optical system are directly replicated.

Furthermore, the framework is quite generic and flexible
for synthetic cell image generation as long as we are dealing
with 2D cell images that can be roughly segmented. Indeed,
as it can be seen in Figure 6 from line 4th to 7th, the pres-
ented framework is able to generate other cellular objects

(Malpighian cells, polynuclear neutrophils), to handle differ-
ent staining (HES)/staining protocols and illumination tech-
nique (FITC fluorescence). It can be noticed on the last line
of the Figure 6 that the doodle-style transfer technique man-
ages to produce realistic cell images even when the real and
synthetic cell segmentation masks are non-well-defined due
to the nature of the illumination technique.

Synthetic Cell Images Evaluation Methods

To assess the quality of the synthetic urothelial cell images,
two types of image evaluation have been carried out. First, to
test the similarity between real and synthetic urothelial cell
images, multiple statistical equivalence tests have been carried
out on features extracted on sets of synthetic urothelial cell
images and the sets of real urothelial cell images used to gen-
erate them. This evaluation has been done so as to show that

Figure 6. Examples of synthetic healthy urothelial cell (1st ! 3rd line, 1st ! 4th column) and synthetic atypical urothelial cells (1st ! 3rd

line, 5th ! 8th column) generated from the presented framework. From left to right: real cell image xs, real cell segmentation mask ms,

synthetic cell segmentation mask mt generated with the method described in Section 2.2 and synthetic cell xt generated with the doodle-

style transfer method described in Section 2.3.2. From line 4th to line 7th, other types of objects are presented such as Malpighian cells

(4th line), polynuclear neutrophils (5th line), cells with different staining (HES) / Papanicolaou staining protocol (6th line) and cells scanned

with a different illumination technique (FITC fluorescence) (7th line). [Color figure can be viewed at wileyonlinelibrary.com]
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features extracted on real and synthetic cell images followed
roughly the same distributions. Then, a visual evaluation has
been performed to test if the generated urothelial cell images
could fool the eyes of medical experts.

Statistical evaluation of synthetic urothelial cells
To assess the similarity between real and synthetic urothelial
cell images with a statistical test, relevant features that
describe well cell images should be used.

For this statistical evaluation, we have decided to choose
some of expert features often used in cytological images (23,24)
and local binary patterns features (25) that have been proven to
be efficient as texture features for medical image analysis (26).
These features can be split into three categories and are the
following:

• Geometrical: nucleus and cell areas, nuclear cytoplasmic
ratio, lengths of semi-major axis and semi-minor axis of
ellipses fitted on the nucleus and cytoplasm contours, elon-
gations of nucleus, and cytoplasm.

• Color: mean color on each image channel.
• Textures: median and standard deviation of local binary

patterns computed with radius r 2 {3, 4} and a number of
points np = 8.

Regarding the choice of the statistical test, when one
wants to prove that two samples of features come from differ-
ent distributions, parametric/nonparametric two sample tests,
such as t-test (27) or Kolmogorov–Smirnov test (28), are the
relevant statistical tests to use. In this case, the objective is to
prove that the null hypothesis, assuming that the distributions
are the same, can be rejected.

In our case, as we are trying to prove the contrary (similar-
ity between the real features distribution and the synthetic fea-
tures distribution), hypotheses should be reversed in order to
still control Type-I error. These statistical tests are referred to as
equivalence tests. Furthermore, because each synthetic cell
image can be paired with the real cell image that has been used
for the synthetic cell morphology generation and the textures
transfer, a paired equivalence statistical test is more appropriate.

For both cell classes (healthy urothelial, atypical
urothelial), by visually inspecting the histograms of extracted
features on a set of 500 real and 500 synthetic cell images, it
seems reasonable to assume that each feature is distributed
according a normal distribution with same variance.

From this assumption, we can carry out a paired two
one-sided t-test (TOST) (29) for each feature to test whether
or not they come from the same distribution. Because the
number of performed TOST statistical tests will be as many
as the number of distinct features, a Bonferonni correction on
the P-values (30) will be applied.

In the TOST statistical test, we have two samples
(y1, …, yn) and (z1, …, zn) that contain respectively indepen-
dent and identically distributed random variables according
N μ1,σð Þ and N μ2,σð Þ distributions. In our case, the first
sample and the second sample will respectively correspond to
real and synthetic features of the 500 real and the 500

synthetic urothelial cell images. The TOST hypotheses are
defined as following:

H0 : μ1−μ2 < −ε2 and ε1 < μ1−μ2
H1 : −ε2 ≤ μ1−μ2 ≤ ε1

�

For all the statistical tests, a reasonable margin around
the mean of real features μ1 is set to:

−ε1,ε2½ �= qN 0,1ð Þ
40% σ,qN 0,1ð Þ

60% σ
h i

where qN 0,1ð Þ
x corresponds to the xth percentile of the stan-

dard normal distribution and σ is recomputed for each
feature.

For each cell type (healthy urothelial cell, atypical urothelial
cell), all the TOST statistical tests were carried out independently
on the 16 distinct features computed on the set of 500 real cell
images and the set of 500 synthetic cell images. The corrected P-
values were all significant which prove to some extent that real
and synthetic urothelial cells share common features. The P-values
of each test are available on Supplementary Tables S1 and S2.

Visual evaluation of synthetic urothelial cells
To test the realism of the synthetic urothelial cell images, six
human evaluators have been asked to carry out a visual evalu-
ation. Among these evaluators, three were biologists specifi-
cally accustomed to analyze urothelial cell images.

Each evaluator had to answer to 100 evaluations for each
cell class (healthy urothelial cell, atypical urothelial cell), thus a
total number of 200 evaluations. During each of these evalua-
tions, the participant was seeing simultaneously four urothelial
cell images (one synthetic image and three real images) dis-
played in a random order and had a maximum of 10 s to iden-
tify the synthesized image. In the case where the timer finished,
a random answer was automatically selected.

In case of perfect synthetic images, a person answering ran-
domly during the evaluations would have one chance out of four
to select the synthetic image so an average identification rate of
25% on all the evaluations. Thus, the closer from 25% the aver-
age identification rate is the more realistic the synthetic images.
All these evaluations have been made through a graphical user
interface that can be seen in Supplementary Figure S3. After all
the evaluations were completed, the results were aggregated by
computing the average identification rates for each cell class:

• synthetic healthy urothelial cell: 37.6% and
• synthetic atypical urothelial cell: 38.4%.

Overall, both average identification rates are not so far
from 25% which indicates that synthetic urothelial cell images
are often hardly distinguishable from real urothelial cell
images and can fool the eyes of medical experts.

DISCUSSION

In this article, a new framework for synthetic bright-field
urothelial cell image generation is presented.
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For different cell classes, the framework can generate syn-
thetic cell segmentation masks with correlated nucleus and
cytoplasm shape. Furthermore, it can transfer the different tex-
tures of a real cell image delimited by its segmentation mask
onto a generated segmentation mask. This new framework
does not need to explicitly model the optical system aberra-
tions. The local aberrations are replicated directly through the
texture transfer and the effects of the global aberrations are
not significant since only small areas are generated.

Applied to the urothelial cell image generation problem,
the framework has managed to synthesize realistic urothelial
cell segmentation masks. Morphological characteristics
(shape, size, nuclear cytoplasmic ratio, and boundaries
smoothness), usually observed and used to differentiate real
healthy and real atypical urothelial cells, are visible in the syn-
thetic segmentation masks. Regarding the textures of syn-
thetic urothelial cells, the doodle-style transfer method
ensures smooth textures and colors transitions between
nucleus/cytoplasm and cytoplasm/background boundaries.

For the evaluation of this approach, a visual evaluation
has shown that synthetic urothelial cell images are hardly dis-
tinguishable from real urothelial cell images. A statistical eval-
uation shows that geometrical and textural features are shared
between real and synthetic cell images.

Doodle-style transfer requires a heavy optimization step
at each image generation. This implies a relatively slow gener-
ation time. This could be reduced by applying offline doodle-
style transfer methods that separate learning and generation
stages.

The synthetic cell image generator presented in this arti-
cle is demonstrated for unique isolated cells, but the proposed
approach could be generalized to the generation of small
groups of cells. The texture transfer step of the generation
pipeline should not be modified. Only the mask generation
step would have to be adapted to the synthetic conglomerate
generation task.

A major future work will also be to evaluate the impact
of data set augmentation using this approach on various clas-
sification and segmentation tasks for cytology images.

AVAILABILITY

The Python code for the cell segmentation mask generator
and the doodle-style transfer method described in this article
are available at https://gitlab.com/vitadx/articles/generic_
isolated_cell_images_generator.
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