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Abstract

Purpose: The aim of this study was to develop and assess the performance of

supervised machine learning technique to classify magnetic resonance imaging (MRI)

voxels as cancerous or noncancerous using noncontrast multiparametric MRI (mp-

MRI), comprised of T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI),

and advanced diffusion tensor imaging (DTI) parameters.

Materials and methods: In this work, 191 radiomic features were extracted from

mp-MRI from prostate cancer patients. A comprehensive set of support vector

machine (SVM) models for T2WI and mp-MRI (T2WI + DWI, T2WI + DTI, and

T2WI + DWI + DTI) were developed based on novel Bayesian parameters optimiza-

tion method and validated using leave-one-patient-out approach to eliminate any

possible overfitting. The diagnostic performance of each model was evaluated using

the area under the receiver operating characteristic curve (AUROC). The average

sensitivity, specificity, and accuracy of the models were evaluated using the test

data set and the corresponding binary maps generated. Finally, the SVM plus sig-

moid function of the models with the highest performance were used to produce

cancer probability maps.

Results: The T2WI + DWI + DTI models using the optimal feature subset achieved

the best performance in prostate cancer detection, with the average AUROC, sensi-

tivity, specificity, and accuracy of 0.93 � 0.03, 0.85 � 0.05, 0.82 � 0.07, and

0.83 � 0.04, respectively. The average diagnostic performance of T2WI + DTI mod-

els was slightly higher than T2WI + DWI models (+3.52%) using the optimal radio-

mic features.

Conclusions: Combination of noncontrast mp-MRI (T2WI, DWI, and DTI) features

with the framework of a supervised classification technique and Bayesian optimiza-

tion method are able to differentiate cancer from noncancer voxels with high accu-

racy and without administration of contrast agent. The addition of cancer

probability maps provides additional functionality for image interpretation, lesion

heterogeneity evaluation, and treatment management.
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1 | INTRODUCTION

Prostate cancer (PCa) is the most diagnosed cancer among men,

and the second leading cause of cancer death in Australia.1 Multi-

parametric magnetic resonance imaging (mp-MRI) is used as a

complementary PCa diagnosis method to prostate-specific antigen

(PSA) test, digital rectal examination, and transrectal ultrasound

(TRUS)-guided biopsy for the detection and assessment of PCa.2,3

Accurate spatial delineations of PCa lesions using mp-MRI have

many benefits. It can assist with treatment decisions and margins,

enable focal treatments specifically targeting the lesion, or facili-

tate increases in radiotherapy doses (boosts) to the lesions. It may

also play a role in evaluation of response to treatment. Mp-MRI-

based delineation is made difficult by low contrast, potential dis-

cordances between the results of the different pulse sequences,

and the similarities between the appearances of benign and malig-

nant lesions. Recent advances of machine learning (ML) techniques

have the potential to improve the efficiency, accuracy, and consis-

tency of prostate mp-MR delineations.4,5 A combination of ML

technique and human observer may provide the optimal accuracy

for PCa delineation.5

According to the Prostate Imaging Reporting and Data System

(PI-RADS), the clinical guidelines for mp-MRI include T2-weighted

imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic con-

trast enhancement (DCE).6 Several studies have investigated the

potential of ML using T2WI, DWI, DCE, and diffusion tensor imaging

(DTI).7,8 DCE has a minor role in the PI-RADS V2 guidelines, limited

to confirming peripheral zone (PZ) DWI-based PI-RADS3 findings.

While some studies have shown additional benefit for PZ,9 other

studies have not shown a benefit including a recent study using a

DTI sequence.10 DCE also requires a contrast agent adding to cost,

time, and risk.8 DTI is an extension to DWI, which evaluates aniso-

tropic water diffusion in tissue structures using different gradient

directions. Previous studies confirmed the utility of DTI to evaluate

normal and cancerous prostate anatomy employing the widely used

parameters of fractional anisotropy (FA) and mean diffusivity (MD).

DTI can also yield several other quantitative parameters that to our

knowledge have not been evaluated in the prostate using ML,

including axial diffusivity (AD) and volume ratio (VR).11 Therefore

incorporation of DTI including these new parameters could improve

PCa delineation with ML techniques.

The majority of previous prostate tumor delineation techniques

have performed a binary cancer or noncancer voxel-based classifica-

tion. However producing a statistical probability of tumor presence

may be useful for the noninvasive assessment of cancer hetero-

geneity and response to treatment. In addition, it may be useful to

guide dose prescription for dose painting-based treatment planning

for PCa radiation therapy. Groenendaal et al. developed a logistic

regression statistical model of the probability of tumor presence in

PZ on a voxel level (2.5 mm3) using T2W, DWI, and DCE-MRI.12

Development of more advanced ML models that derive tumor prob-

ability should therefore be beneficial to PCa diagnosis and treat-

ment.

The aim of this study was to develop and assess the perfor-

mance of supervised ML technique to classify voxels on noncon-

trast mp-MRI as cancerous or noncancerous to delineate

intermediate- and high-risk biopsy-proven disease of PZ. The

method combines radiomic features extracted from T2WI and DWI

incorporating advanced DTI parameters and develops a support

vector machine (SVM) method to determine a voxel-based cancer

probability.

2 | MATERIALS AND METHODS

2.A | Patients

Seventeen men with high PSA and positive PCa biopsy were

included in this study. All patients underwent 16-core (S16C) 8-zone

transrectal and transperineal ultrasound-guided biopsy at least

6 weeks before the MRI scan. All patients signed written consent

prior to participating in this study, which was approved by the local

health district human research ethics committee. One patient with

Parkinson disease was excluded due to image distortion artifacts,

leaving 16 patients. Clinical information of the patients is summa-

rized in Table 1.

The inclusion criteria were as follows: (a) patients with biopsy-

proven PCa with complete clinical data, (b) patients without any con-

traindication of using MRI and (c) at least 6 weeks after the biopsy.

The exclusion criteria were as follows: (a) data with insufficient qual-

ity, (b) prior PCa treatment, (c) presence of hip prosthesis, (d) pelvic

nodal involvement, and (e) men with intellectual impairment who

would have difficulty giving informed consent to the study.

All patients underwent contrast-free T2WI, DWI, and DTI. One

main limitation of prostate diffusion MRI is the sensitivity to motion

and prostate movement, such as air–tissue interfaces.13 In an

attempt to overcome this limitation, all patients were restricted to a

low-fiber diet 24 hours before scan14 and were asked to empty

Abbreviations: AC, Attenuation Coefficient; ADC, Apparent Diffusion Coefficient; AUROC,

Area Under Receiver Operating Characteristic curve; CFS, Correlation-based Feature

Selection; Cl, Linear Anisotropy; Cp, Planar Anisotropy; Cs, Spherical Anisotropy; CV,

Coefficient of Variation; DCE, Dynamic Contrast Enhancement; DTI, Diffusion Tensor

Imaging; DWI, Diffusion-Weighted Imaging; FA, Fractional Anisotropy; GLCM, Gray-Level

Co-occurrence Matrix; λ1, Axial diffusivity; MD, Mean Diffusivity; ML, Machine Learning;

Mp-MRI, Multiparametric Magnetic Resonance Imaging; PCa, Prostate Cancer; PI-RADS,

Prostate Imaging-Reporting and Data System; PSA, Prostate-Specific Antigen; PZ, Peripheral

Zone; RA, Relative Anisotropy; RBF, Radial Basis Function; RD, Radial diffusivity; ROC,

Receiver Operator Characteristic; ROI, Region Of Interest; SVM, Support Vector Machine;

T2WI, T2-Weighted Imaging; TRUS, Transrectal Ultrasound; VD, Volume Diffusivity
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bladder and received a rectal laxative (Microlax®, Sanofi-Winthrop,

Colombiers, France) before MRI sessions. These protocols showed a

reduction in prostate gland shift in PCa patients treated with radio-

therapy.15

2.B | Image acquisition

Mp-MRI examinations were carried out on a 3 tesla MRI scanner

(Skyra, Siemens Healthineers, Germany) equipped with a phase array

coil. The full mp-MRI parameters are exhibited in Table 2. Mp-MRI

scans were obtained 6–8 weeks after prostate biopsy to avoid hem-

orrhage artifacts as suggested by PI-RADS V2.16 Furthermore, T1-

weighted MRI scans were acquired for patients and bleeding arti-

facts were not observed.

2.C | Image preprocessing

T2WI images were bias corrected using the N4ITK bias correction

method with 3D Slicer software (www.Slicer.org) to eliminate

intensity bias due to differing coil sensitivities. The N4ITK algorithm

is based on nonparametric nonuniform intensity normalization (N3),

with improvement in B-spline smoothing strategy. The N4ITK opti-

mization parameters included: B-spline order of 3, B-spline grid reso-

lution of (1,1,1), a shrinkage factor of 4, a maximum number of 100

iterations at each of the three resolution levels, and a convergence

threshold of 0.001. Noise reduction was then applied using a median

filter with a 3 × 3 square window.17

To allow comparison between different patient T2WI intensities,

four biological targets were considered for potential use as a refer-

ence for image standardization: femoral bone marrow, ischioanal

fossa, obturator-internus muscle, and urine. The biological reference

reproducibility was assessed by the interpatient coefficient of varia-

tions (%interCV). The tissue with the highest reproducibility (lowest

%interCV) was used for intensity standardization using median + in-

terquartile intensity range method.18

For high b-value DWI, noise reduction was applied using a diffu-

sion anisotropic filter and bias corrected using the N4ITK bias cor-

rection method using 3D Slicer. Then, high b-value DWI and

apparent diffusion coefficient (ADC) maps were co-registered with

T2WI using a rigid and affine co-registration method to correct

motion misalignment and eddy current distortion in 3D Slicer.

The DTI volume was registered to b-value = 0 s/mm2 with an

affine and rigid body registration to correct for eddy current distor-

tion artifacts and motion artifacts using ExploreDTI software (http://

www.ExploreDTI.com).19 For noise reduction, an adaptive anisotropic

diffusion filter was applied using the log-Euclidean anisotropic filter

available from the software package, MedINRIA.20 The filtered ten-

sor images were imported into DTIStudio and used to generate

eigenvalues (primary [λ1], secondary [λ2], and tertiary [λ3]).
20 Subse-

quently, these three eigenvalues served to calculate 20 DTI features

using Matlab 2015b software (Mathworks, USA). Then, these maps

were co-registered with T2WI using a rigid and affine co-registration

method in 3D Slicer. All DWI and DTI upsampled to T2WI original

matrix size.

2.D | Lesion segmentation

All images were individually assessed by two experienced radiolo-

gists; one radiologist with more than 20 years and one with 12 years

of experience in prostate radiology. In both cases, image assessment

was performed in conjunction with the biopsy-reported cancer loca-

tion. Radiologists visually matched ADC map, baseline image (b-

value = 0 s/mm2), and corresponding T2WI slice locations and gland

anatomy (apex, mid-gland area, and base). The cancer regions of

interest (ROI)s on separate multiple slices for each patient were

manually outlined independently by each radiologist in PZ on T2WI

using OsiriX software (OsiriX V.0.9.0, Pixmeo, Geneva, Switzerland).

The cancer ROIs were in most cases on adjacent slices but not

always and so a three-dimensional cancer ROI was not constructed.

PZ boundaries were delineated by either one of radiologists. The

agreement for each cancer ROI between the two radiologists was

assessed (Radiologist #1; n = 50 and Radiologist #2; n = 49) using

TAB L E 2 Multiparametric magnetic resonance imaging (mp-MRI)
sequence parameters used for this study.

T2WI DWI DTI

Sequence TSE Single shot EPI Single shot EPI

Echo time (ms) 96 65 101

Repetition time (ms) 1400 4600 11300

Flip angle (°) 135° 90° 90°

Field of view (mm2) 200 × 200 260 × 260 260 × 260

Slice thickness (mm) 4 4 4

Slice gap (mm) 0 0 0

Fat saturation No Yes Yes

b-values (s/mm2) n/a 50, 400, 800 0, 1600

Voxel size (mm2) 0.8 × 0.8 2.0 × 2.0 1.7 × 1.7

Number of direction n/a 3 30

Acquisition time (min) 3.45 4.19 6.62

T2WI: T2-weighted imaging; DWI: diffusion-weighted imaging; DTI: dif-

fusion tensor imaging; TSE: turbo spin echo; EPI: echo planar imaging;

min: minutes; n/a: not available.

TAB L E 1 Clinical information of the recruited peripheral zone (PZ)
prostate cancer patients.

Mean � SDa Range

Age(years) 70.21 � 10.59 52–87

PSA (ng/mL) 18.92 � 11.49 1.3–37.2

Biopsy Gleason score Number of patients (total = 16) %

3 + 4 3 18.7

4 + 3 6 37.5

4 + 5 5 31.2

5 + 4 2 12.5

aSD, standard deviation.
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the Dice similarity index. In order to maximize the identification

accuracy of the cancer regions, only the overlap between cancer

ROIs (n = 47) was used for training and testing.21 Radiologist #1

delineated a ROI with volume 0.14 cc that Radiologist #2 did not

identify. Also there was no overlap between two ROIs with vol-

ume <0.25 cc selected by two radiologists. Therefore, these three

ROIs were excluded from the study. The rest of PZ (i.e., the PZ

excluding cancer ROIs) was then used as the noncancer ROIs. Fig-

ure 1 shows the scheme of the full prostate lesion segmentation

process.

2.E | Supervised machine learning

The voxel-by-voxel approach offers for a precise tumor analysis.22 In

this study, voxel-based analysis was used to develop a ML system

for cancer prediction. Figure 2 shows a schematic diagram of the

implemented in the current study.

2.E.1 | Radiomic feature extraction

In this study, 191 different features were extracted from each voxel

within cancer and noncancer ROIs on mp-MRI using Matlab 2015b

software (Mathworks, USA). These quantitative features comprised

171 features from T2WI, high b-value DWI and ADC map, and 20

diffusivity and anisotropy features from DTI.

Features were derived for each voxel of T2WI, high b-value

DWI, and ADC map according to the following five main categories:

1. Gray-level features; image intensity of standardized T2WI, DWI,

and ADC map.

2. Fifteen first-order texture features: mean, 25th percentile, 75th

percentile, variance, standard deviation, median, interquartile

range, mode, minimum, maximum, range (maximum - minimum),

skewness, kurtosis, entropy, and energy; extracted over a sliding

window.23 Texture feature evaluation requires rather large win-

dows in order to obtain meaningful descriptions of their content.

However, small windows are required in order to accurately

locate the boundaries between different textured regions. In this

study, a 9 × 9 voxel sliding window was used for texture features

extraction.24

3. Nineteen second-order texture features: variance, standard devia-

tion, contrast, maximum probability, energy, entropy, correlation,

maximum correlation coefficient, inertia, inverse, homogeneity,

dissimilarity, cluster shade, sum of average, sum of variance, sum

of square, sum of entropy, difference variance, and difference

entropy; extracted over a 9 × 9 voxel sliding window using a

gray-level co-occurrence matrix (GLCM).25

4. Six edge-based features extracted to evaluate the local intensity

variations; Roberts, Prewitt, Sobel, Canny, Roberts, and log.26

5. Sixteen gradient-based features derived in three directions (hori-

zontal-x, vertical-y, diagonal-xy) and the magnitude was measured

using Sobel, Prewitt, and Robert gradient operators and Central

and Intermediate difference gradient methods.

Twenty quantitative diffusivity and anisotropy features were

extracted from DTI volumes using tensor eigenvalues (λ1, λ2, and

λ3).11 The most common prostate DTI measures are MD and FA. In

this study, eight anisotropy parameters (FA, relative anisotropy (RA),

volume ratio (VR), linear (Cl), planar (Cp) and spherical (Cs)

anisotropies, attenuation coefficient (AC), and mode) and 12

diffusivity parameters (MD, axial diffusivity (λ1), two orthogonal

diffusivities to λ1 λ2 and λ3ð Þ and four radial diffusivities (RD, λ1�λ2,

λ1�λ3, and λ2�λ3),
27 in addition to novel DTI parameters,

volume diffusivity (VD ¼ λ1λ2λ3), and surface diffusivities

F I G . 1 . All patients underwent 16-core (S16C) transrectal and transperineal ultrasound guided biopsy. Axial, coronal, and sagittal T2WI and
axial DWI were acquired at least 6 weeks after biopsy. The two radiologists (R1 and R2) visually matched biopsy report and MRI. Then, cancer
regions of interest (ROI)s were delineated by radiologists (blue and green colors). The agreement for each ROI between the two radiologists
was calculated and used as cancer ROI (red color). Peripheral zone (PZ) boundaries (white color) were delineated by either radiologist.
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(Se1e2 ¼ λ1λ2, Se1e3 ¼ λ1λ3 and Se2e3 ¼ λ2λ3) ) were extracted from DTI

volumes.11

2.E.2 | Feature selection

The extracted voxel features from the different image volumes rep-

resent multidimensional feature vectors. However, some of these

features are either irrelevant, weakly discriminating or are duplicative

and therefore can be removed without loss of information. Feature

selection is an important component of ML as it simplifies the classi-

fication model, decreases training time and enhances generalization

by reducing overfitting. In this study, a correlation-based feature

selection (CFS) method was used to extract global features for each

model, based on the premise that useful feature subsets contain fea-

tures that are predictive of the class but uncorrelated with one

another. The CFS method computes a heuristic measure of the

“merit” of a feature subset from pairwise feature correlations and a

formula adapted from test theory.28 The CFS method was applied to

the training data set to find the optimal feature set. Before perform-

ing feature selection, each of the extracted features was normalized

to be more sensitive to the classification model using the minimum–-
maximum scale method so that the minimum value was 0 and maxi-

mum value was 1.

2.E.3 | Classification and validation

The cancer voxels and noncancer voxels were utilized from all

patients in the training data sets. Consider the training data set

xi ,yið Þi¼1,...,n of n input vectors of m features, where xi∈Rm,

i¼1, :. . .,n, and xi ¼ xi,1,xi,2, . . .,xi,m½ �, along with their corresponding

labels ðyiÞi¼1,...,n, where yi∈ �1, þ1f g for i¼1, :. . .,n. For a linearly

separable training data set, hard-margin SVM is based on margin

maximization between two classes and is defined as:

flin xð Þ¼ x,wh iþb

where w is the normal vector to the hyperplane and b is the inter-

cept of the decision boundary.

However, linear SVM is usually not successful in practice and

nonlinear SVM is required.29 The training data set are represented

as points and SVM transforms them into feature space by a nonlin-

ear function ψ and the linear SVM is trained for the transformed

samples ψ xið Þf gni¼1.

fnonlin xð Þ¼ hψ xð Þ,wiþb

In this study, a nonlinear SVM using a radial basis function (RBF)

kernel (RBF-SVM) K x,xið Þ¼ exp �γkx�xikð Þ was used for classifica-

tion. Bayesian optimization of SVM regularization parameter C and

the Gaussian kernel shape parameter γ was used to find the optimal

values within an interval of [10−4, 103] using tenfold cross valida-

tion.30 The performance of the model for discrimination of cancer

and noncancer voxels was measured using the area under receiver

operating characteristic curve (AUROC). RBF-SVMs were developed

on the training data sets using the reduced features.

Overfitting is a common and serious problem. To reduce overfit-

ting, a leave-one-patient-out approach was used for model validation

for assessing how the classification model will generalize an indepen-

dent data set.31 Then, a comprehensive set (4 × 16) of different

RBF-SVM models (T2WI, T2WI + DWI, T2WI + DTI, and T2WI +

DWI + DTI) were developed and optimized using the training data

sets. For each model, the data set was divided into two parts, a

training set (15 patients) and a test set (one patient). The test data

sets were used to validate the optimized classification models and

the average sensitivity, specificity, and accuracy of the models were

measured. A nonparametric Mann–Whitney U-test was applied to

compare the diagnostic performance of different model sets using

IBM SPSS statistic version 0.24.0 software (IBM Corp., Armonk, NY,

USA) and P < 0.05 was considered to indicate statistical significance.

Additionally, Dice similarity index between radiologists’ agreement

and output of models with the highest diagnostic performance were

also calculated.

2.E.4 | Probability map

The output of the binary SVM model for input xi ¼ xi,1,xi,2, . . .,xi,m½ � is
a decision function f xð Þ such that sign f xð Þð Þ belongs to one of two

classes labels �1, þ1f g and can be used to estimate the labels, can-

cer and noncancer. However if the model gives the degree of cer-

tainty about the label, then the output of the model can be

F I G . 2 . General work flow diagram of the
supervised machine learning system and
probability map generation for peripheral
zone (PZ).
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described as a probability ðyijxiÞ instead of a binary �1=1 label. A

sigmoid function was fitted to the SVM decision function to derive

the probability distribution:32

P ðyi ¼1jxiÞð Þ≈PA,B fð Þ≡ 1
1þexp AfþBð Þ ,wheref¼ fnonlin xð Þ

A and B are two scalar parameters that are learned by the algorithm.

The parameters A and B are optimized by minimizing the local nega-

tive log-likelihood:

� ∑
n

k¼1
tk log pkð Þþ 1� tkð Þlog l�pkð Þ

where, pk denotes the output of the sigmoid and tk the probability

target. To solve this problem model-trust minimization algorithm

based on Newton’s method was used.

3 | RESULTS

For T2WI intensity standardization, the urine demonstrated the

least consistency between patients (%interCV = 35.7%), while

ischioanal fossa provided the best overall consistency considering

interpatient variability (%interCV = 10.6%). Thus, T2WI intensity

standardization was performed by dividing the original signal inten-

sity of T2WI by the median + interquartile range intensity of

ischioanal fossa.

The overall Dice similarity index between the radiologist cancer

ROIs was 0.78 � 0.21. Two ROIs selected by two radiologists with

volumes <0.5 cc and >0.25 cc had an average Dice similarity index

of 0.54 � 0.02 but the use of the overlap of the two radiologists

improves the certainty in the cancer ROI as far as possible.

3.A | Feature extraction and selection

The total number of radiomic features calculated using T2WI, DWI,

and DTI were 57, 114, and 20, respectively. Figure 3 shows some

examples of extracted radiomic feature maps from T2WI, high b-

value DWI, and DTI.

Subsets of features were selected for each of the four different

classification sets using a correlation-based approach. The feature

selection method also reports the relative importance of the selected

features in terms of their predictive capability. Due to leave-one-pa-

tient-out validation method, the number of selected features was

different for different model sets. However, a number of common

features were selected among all model sets. These features are

called commonly selected features.

For the T2WI models the most common important features were

the intensity of T2WI, first-order texture features (standard deviation

map and minimum) and second-order texture features (cluster shade

and sum entropy). Homogeneity and energy of second-order texture

features were important for only two of the T2WI models.

For the T2WI + DWI models, the ADC map from DWI had the

highest predictive capability for the discrimination of the cancer and

noncancer voxels. The most common effective additional features

selected were T2WI signal intensity, T2WI first-order texture feature

(minimum) and T2WI second-order texture feature (sum entropy),

high b-value DWI intensity; high b-value DWI second-order texture

features (entropy and cluster shade), ADC second-order texture fea-

tures (sum variance, energy, and sum entropy), and ADC gradient-

based features (Roberts in diagonal direction). Other less frequent

features selected by the T2WI + DWI models were second-order

texture features of T2WI (homogeneity and energy), first-order tex-

ture feature of ADC (skewness), and edge-based feature of ADC

(Canny).

For the T2WI + DTI models, the signal intensity of T2WI, sum

entropy of T2WI, diffusivity features extracted from DTI (VD,λ1�λ2,

AC, trace, and RD), and anisotropy features from DTI (FA) were

commonly selected and had high predictive capability. Other less fre-

quently selected features were second-order texture features of

T2WI (homogeneity and energy) and VR and RA features from DTI.

For the T2WI + DWI + DTI models, the volume diffusivity map

from DTI had the most common effective predictive performance.

The additional radiomic features were T2WI intensity, second-order

texture feature of T2WI (sum entropy), DWI intensity, second-order

features of high b-value DWI (entropy and cluster shade), second-

order texture features of ADC (sum variance and sum entropy), gra-

dient-based feature of ADC map (Robert in diagonal direction), diffu-

sivity feature of DTI (VD, λ1�λ2, AC, and RD), and anisotropy

feature of DTI (FA). Other less frequently selected features were

second-order texture features of T2WI (homogeneity and energy),

first-order texture feature of ADC (skewness), edged-based feature

of ADC (Canny), and VR and RA features from DTI. The Pearson

correlation heat maps of the most common extracted features for

T2WI, T2WI + DWI, T2WI + DTI, and T2WI + DWI + DTI models

are displayed in Fig. 4. To generate the correlation coefficient maps,

the commonly selected features at each voxel of ROI were summa-

rized into mean value per ROI. Then the Pearson correlation coeffi-

cient of the mean values among ROIs for all data sets (training and

test) were calculated and the corresponding maps generated.

3.B | Classification and validation

The kernel parameters of C and γ for each model with the minimum

objective function value for a total of 30 for function evaluation iter-

ations are summarized in Table 3. T2WI + DWI + DTI models

achieved the largest value of γ, which indicates the more peaked the

corresponding transformations of the feature vectors with the higher

capacity of the models. The kernel parameters control the trade-off

between error due to bias and variance in the model. Using the opti-

mal parameters, the RBF-SVM models were developed and the

receiver operating characteristic curves of the set of T2WI, T2WI +

DWI, T2WI + DTI, and T2WI + DWI + DTI models using leave-

one-patient-out approach plotted for the discrimination of cancer

and noncancer voxels (Fig. 5). For each model and corresponding

curve plotted in Fig. 5, the data set was divided into two parts, a

training set (15 patients) and a test set (one patient) and a
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comprehensive set (4 × 16) of different RBF-SVM models were gen-

erated. The T2WI + DWI + DTI models using the optimal feature

subset achieved significantly higher diagnostic performance using

training data sets in PCa voxel discrimination, with the average

AUROC of 0.93 � 0.03, range [0.92–0.95] than T2WI, T2WI + DWI,

and T2WI + DTI (P < 0.01). The trained models derived were used

on the test data sets. The average AUROC, accuracy, sensitivity, and

specificity of models using the test data sets are summarized in

Table 3. The voxel-based T2WI + DWI + DTI models detect cancer

voxels in PZ with the average sensitivity, specificity, and accuracy of

0.85 + 0.05, 0.82 + 0.07, and 0.83 + 0.04, respectively. Our results

demonstrated that adding DWI and/or DTI to T2WI can significantly

improve the sensitivity, specificity, and accuracy of PCa identification

in PZ compare to T2WI alone (P < 0.01). Furthermore, combination

of T2WI, DWI, and DTI can significantly improve the sensitivity,

specificity, and accuracy of PCa compare to T2WI + DWI (P < 0.05).

The specificity of T2WI + DTI model was significantly higher than

T2WI + DWI (P < 0.05). However, there was no significant differ-

ence in sensitivity and accuracy between T2WI + DWI and T2WI +

DTI models (P > 0.05). Figure 6 shows boxplots of sensitivity,

F I G . 3 . Examples of extracted features from multiparametric magnetic resonance imaging (mp-MRI) from a 68-yr-old prostate cancer patient
with serum prostate-specific antigen (PSA) of 21.0 ng/ml, who was diagnosed with biopsy-proven Gleason grade 4 + 3 in the left peripheral
zone (PZ). Magnetic resonance imaging (a) axial T2WI with delineation of PZ (white) and cancer (red) regions of interest (ROI)s, (b) standard
deviation of T2WI, (c) energy map of T2WI, (d) sum average of high b-value DWI, (e) apparent diffusion coefficient (ADC) map, (f) sum entropy
of ADC, (g) λ3, (h) attenuation coefficient (AC) of DTI and (i) volume diffusivity of DTI.
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specificity, and accuracy of SVM models using test data sets. The

average Dice similarity index of the segmentation using T2WI +

DWI + DTI models on a voxel level by comparing the predicted

segmentation with the radiologist agreement was 0.82 � 0.16,

range: 0.69–0.92.

3.C | Binary and probability maps

The T2WI + DWI + DTI models were used to generate binary

and probability outputs of different models in the entire PZ of

test data sets. Figure 7 shows the T2WI, binary output, and pos-

terior probability of the T2WI + DWI + DTI RBF-SVM models for

PZ for three patients with different Gleason scores. In addition,

the overlap between two radiologist segmentations of the tumor

on T2WI figures allows us to visually assess the efficacy of the

models.

First example of Fig. 7 is a 70-yr-old patient with serum PSA of

11.60 ng/ml who was diagnosed with biopsy-proven 4 + 5 Gleason

grade in the right PZ. AUROC of this model for differentiating can-

cer from noncancer voxels using the training data set was 0.95. This

model successfully identified the dominant lesion with sensitivity

and spasticity of 0.87 and 0.90, respectively, on the test patient.

Second example is a 68-yr-old PCa patient with biopsy-proven Glea-

son grade 4 + 3 in the left PZ (PSA of 21.0 ng/ml). The correspond-

ing AUROC of RBF-SVM model using the training data set was 0.94.

The sensitivity and specificity of the second model on the test

patient were 0.93 and 0.78, respectively. Third example is a PCa in

an 81-yr-old PCa patient with serum PSA of 1.27 ng/ml, who was

diagnosed with biopsy-proven 3 + 4 Gleason grade in the left PZ.

AUROC of the corresponding RBF-SVM model was 0.92. For this

patient, although the probability map demonstrated the high proba-

bility of abnormality in the area depicted by the radiologists, the

F I G . 4 . Pearson correlation heat maps of the commonly selected features for T2WI, T2WI + DWI, T2WI + DTI, and T2WI + DWI + DTI
models from first-order texture features, second-order texture features, edge and gradient-based features of T2WI, apparent diffusion
coefficient (ADC) map, high b-value DWI, and diffusivity and anisotropy feature of DTI with correlation score bar range [−1, 1] on the right
side.
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model did not include all the voxels inside the cancer ROI. This

model identified the cancer lesion with sensitivity and specificity of

0.71 and 0.83, respectively.

4 | DISCUSSION AND CONCLUSION

In the current study, we developed multiple voxel-based ML models

using an RBF-SVM classification algorithm and Bayesian optimization

method for detection of PCa in PZ. We have shown that our ML

technique with an RBF-SVM and CFS approach can identify most of

the radiologist reported PCa voxels in PZ. The average AUROC for

the combination of T2WI, DWI, and DTI was 0.93 � 0.03 for dis-

criminating cancer and noncancer voxels. Our results are comparable

to the performance of previously reported studies for voxel-based

ML of PCa using mp-MRI in either PZ using different classification

algorithms, such as SVM or linear discrimination analysis.5,33 Never-

theless, due to different data sets and factors used in previous stud-

ies, it is difficult to make comparisons between results. In this study,

we only considered cancer to be present if identified by both radiol-

ogists; hence only voxels within the radiologist overlap regions were

considered cancer. In total, 47 cancer regions were identified by

both radiologists. T2WI + DWI + DTI models positively identified

cancer voxels within all cancer ROIs or lesions. In that sense, all

lesions were detected. Using the voxel results the positive results

within the radiologist lesions had an average sensitivity of

0.85 � 0.05 (i.e., on average of 85% of the voxels within the lesion

were identified as cancer — true positives). The results would be

F I G . 5 . Support vector machine using a
radial basis function (RBF-SVM)
classifications performance of T2WI,
T2WI + DWI, T2WI + DTI, and
T2WI + DWI + DTI using leave-one-
patient-out approach for the selected
features when combined with correlation-
based feature selection (CFS) method. For
each model and corresponding curve, the
data set was divided into two parts, a
training set (15 patients) and a test set
(one patient) and a comprehensive set
(4 × 16) of different RBF-SVM models
were generated.

TAB L E 3 The most commonly selected and average of optimal kernel parameters for T2WI, T2WI + DWI, T2WI + DTI, and
T2WI + DWI + DTI models and estimated AUROC, sensitivity, specificity, and accuracy results � standard deviation of a comprehensive set of
support vector machine using a radial basis function (RBF-SVM) models.

T2WI T2WI + DWI T2WI + DTI T2WI + DWI + DTI

Commonly selected features/total features 5/57 11/114 8/77 13/191

AUROC 0.72 � 0.02 0.83 � 0.02 0.86 � 0.07 0.93 � 0.03

C(×10−4) 3.52 � 0.07 2.21 � 0.04 2.28 � 0.05 1.02 � 0.02

γ 291.32 � 8.25 321.14 � 11.27 303.89 � 15.57 350.38 � 112.30

Sensitivity (%) 0.70 � 0.11 0.79 � 0.07 0.83 � 0.07 0.85 � 0.05

Specificity (%) 0.56 � 0.09 0.75 � 0.06 0.80 � 0.08 0.82 � 0.07

Accuracy (%) 0.61 � 0.10 0.77 � 0.08 0.81 � 0.05 0.83 � 0.04

AUROC, area under receiver operating characteristic curve; CI, confidence interval.
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used clinically as visual guidance to the presence of lesions. How-

ever, for voxel-based methods if individual voxel results used to

denote lesion presence there will be a very high false-positive num-

ber. Therefore, evaluating the diagnostic performance of voxel-based

ML based on the false-positive detected areas is not reliable enough

due to the areas giving rise to individual false-positive voxel.34 Such

a diagnostic technique may allow for faster patient evaluations while

helping to increase diagnostic consistency. This study demonstrated

the feasibility of voxel-based ML systems using contrast-free MR

and the achieved diagnostic performance was consistent with the

other studies. DTI provides additional information about microstruc-

ture of the prostate tissue due to the restricted movement of water

molecules in tissues. Mp-MRI using DTI achieved better diagnostic

performance for PCa in PZ without the potential side effects of

DCE-MRI from injection and long acquisition time.24,35,36 There has

been an increasing interest in utilizing high b-value diffusion MRI to

improve the specificity of high-grade PZ PCa detection despite their

lower signal-to-noise ratio.37 In this study, a b-value of 1600 s/mm2

was used to improve specificity of cancer detection. We acquired

high-quality prostate DTI in 30 different gradient directions to

improve signal-to-noise ratio without endorectal coil.38,39 Most pros-

tate DTI studies emphasized MD and FA parameters in cancer and

noncancer tissues.40,41 In this study, multiple DTI maps were gener-

ated to evaluate more structured or packed organization of cancer

cells and/or tissue.42 This study also investigated four additional

quantitative DTI parameters for PCa detection, namely volume

diffusivity and three surface diffusivity maps. In this study we found

that sum entropy of T2WI have the potential to differentiate

between PCa and noncancerous prostate voxels for T2WI, T2WI +

DWI, T2WI + DTI, and T2WI + DWI + DTI models. Sum entropy

provides the texture pattern of inhomogeneity inside the tumors.

The ADC map from DWI had the highest predictive capability

for the discrimination of the cancer and noncancer voxels for

T2WI + DWI models. ADC is a measure of the magnitude of diffu-

sion of water molecules within tissue. Due to cellularity of cancer

tissue, this magnitude is significantly different between cancer and

noncancer tissues.

For T2WI + DTI and T2WI + DWI + DTI models, diffusivity

parameters of DTI (e.g., VD) demonstrated highly successful discrimi-

nation between cancer and noncancer voxels. Diffusivity parameters

of DTI calculate the magnitude of diffusion of water molecules in

multiple different direction (at least six directions) while anisotropy

features describes the degree of anisotropy of a diffusion process.

This study showed that Haralick-based texture features over a

9 × 9 sliding window extracted from T2WI, DWI, and ADC map

of DWI can improve differentiation between cancer and non-

cancer tissue.43 There is no single optimum window size at which

the best result can be achieved. However, a small window size

such as 3 × 3 does not provide sufficient information about lim-

ited intensities and gray-level variation and using a large window

size (e.g., 15 × 15) increase the chance of mixing up benign and

malignant voxels. Experimental results suggested median window

F I G . 6 . Boxplot comparing the
sensitivity, specificity, and accuracy
statistics of support vector machine using
a radial basis function (RBF-SVM)
classifiers using leave-one-patient-out
validation approach. Mann–Whitney U-test,
**P < 0.01, *P < 0.05 and n.s. P > 0.05.
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size of 9 × 9 as the best window size for prostate texture feature

on MRI.24,44,45

Overfitting with small sample size is a common problem in ML.31

To eliminate biased estimation, the training and test data sets were

separated for model validation using a leave-one-patient-out

approach, all features normalized using the min–max scale method,

features selected from training pool using a leave-one-patient-out

approach, and model parameters optimized using Bayesian optimiza-

tion technique. These models successfully predict unseen test data

set with high performance, thus highlighting the non-overfitting

properties of classifiers.

Quantitative evaluation of the diagnostic performance of differ-

ent classification algorithms for prostate mp-MRI demonstrated that

SVM yields the maximum AUROC and the highest accuracy.24

Although mostly used for binary classification, SVM can be adapted

to calculate probabilities. The probability map produced in this study

can be used as a useful tool to evaluate tumor heterogeneity and

response to treatment.

The low number of patients is a limitation of this study, and the

results can only be considered preliminary at this stage. Studying a

cohort with more widely spread Gleason scores, supported by stan-

dard anatomic specimens, is warranted. Another limitation of this

study is that classification and validation were based on radiologists’

determination rather than section histology. Radiologist reporting

performance cannot be perfect, and some errors are inevitable.

However, this has been offset by only considering intermediate and

high-grade cancer in this study and by using the concordance of two

expert radiologists to minimize this uncertainty. In addition, cancer

ROIs were selected as the overlap between two radiologists’ delin-

eation, and noncancer ROIs were selected as the rest of PZ. How-

ever, noncancer ROIs might contain cancerous voxels, which is

another limitation of the current study.

In conclusion, we have developed two classes of discrimination:

a binary (cancer vs noncancer) and a probability RBF-SVM in this

study. Binary output of SVM makes it impossible to distinguish

lesion heterogeneity. A combined supervised ML technique and

radiomic approach appeared as a feasible tool to predict cancer

lesion on noncontrast mp-MRI. The probability output of the models

provide useful practical cancer recognition information for malig-

nancy risk assessment. The binary classification is a subclass of the

F I G . 7 . Examples of T2WI, binary map, and probability map for three prostate cancer patients with Gleason score of 4 + 5, 4 + 3, and
3 + 4, respectively. Delineations of peripheral zone (PZ) (white) and cancer (red) regions of interest (ROI) overlay on T2WI were performed by
concordance of two experience radiologists.
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RBF-SVM probability models. This probability map conveys a human

readable result that the radiologist may use during patient evalua-

tion. False-positive results in binary and probability maps remain a

challenge. The Bayesian optimization method was used to minimize

the false-positive diagnosis on the binary and probability maps.
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