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A small molecule inhibitor MCC950 ameliorates

kidney injury in diabetic nephropathy by inhibiting

NLRP3 inflammasome activation
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Background: Diabetic nephropathy (DN) is a lethal diabetic microvascular complication

characterized by chronic low-grade inflammation. The NOD-like receptor pyrin domain-

containing protein 3 (NLRP3) inflammasome is implicated in the progression of DN.

MCC950 is a selective and potent inhibitor of NLRP3; however, its efficacy in DN requires

further investigation.

Methods: To investigate the efficacy of MCC950 in DN, eight-week-old type 2 diabetic

db/db mice received injections of MCC950 intraperitoneally (10 mg/kg) twice per week for

12 weeks. Urinary albumin-to-creatinine ratio (ACR) and neutrophil gelatinase-associated

lipocalin (NGAL), renal function, pathological changes, markers of podocyte and fibrosis

and NLPR3/caspase-1/IL-1β expression in the renal cortices of db/db mice were evaluated.

High-glucose (HG)-treated rat glomerular mesangial cells were treated with various concen-

trations of MCC950 for 48 hrs. Markers of fibrosis and NLPR3/caspase-1/IL-1β expression

in the glomerular mesangial cells were measured.

Results: The NLRP3 inflammasome was activated in db/db mice and HG-induced mesan-

gial cells by upregulating NLRP3/caspase-1/IL-1β pathway. Inhibition of the NLRP3 inflam-

masome with MCC950 reduced the production of active caspase-1 and active IL-1β in db/db

mice and HG-induced mesangial cells. MCC950 reduced serum creatinine, urinary ACR and

NGAL, attenuated mesangial expansion with increased matrix and tubular dilatation, alle-

viated thickened glomerular basement membrane (GBM) and foot process fusion without

affecting body weight and blood glucose levels in db/db mice. MCC950 increased the

expression of podocin in db/db mice, and decreased the expression of TGF-β1, fibronectin,

collagen I and α-smooth muscle actin (α-SMA) in renal cortices of db/db mice and HG-

induced mesangial cells.

Conclusion: MCC950 ameliorated renal function, thickened GBM, podocyte injury and

renal fibrosis in db/db mice, and decreased the production of fibrosis markers in HG-induced

mesangial cells. MCC950 effectively ameliorated diabetic kidney injury by inhibiting

NLRP3/caspase-1/IL-1β pathway, which may be a potential therapeutic strategy to prevent

the progression of DN.
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Introduction
Diabetic nephropathy (DN), a common diabetic microvascular complication, is the

primary cause of end-stage renal disease (ESRD) worldwide.1,2 Type 2 diabetes

mellitus (T2DM) patients occupy almost 50% of new cases of ESRD in the US
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population.1,3 Patients with ESRD as a result of diabetes

require renal replacement therapy, contributing to consid-

erable individual and socioeconomic costs worldwide.4

Recent studies have reported persistent inflammation in

circulatory and renal tissues; in particular, NLRP3 inflam-

masome-mediated inflammation is crucial to the pathogen-

esis of DN.2,5 NLRP3 inflammasome activation is

upregulated in type 2 diabetic patients.6 NLRP3 is

a useful biomarker discriminating DN patients from type

2 diabetic patients.7 In the innate immune system, nucleo-

tide-binding oligomerization domain (NOD)-like receptors

(NLRs) are pattern recognition receptors that recognize

pathogen-associated molecular patterns and danger-

associated molecular patterns (DAMPs).8 Upon detection

of cellular stress, intracellular NOD-like receptor pyrin

domain-containing protein 3 (NLRP3) combines with

apoptosis-associated speck-like protein (ASC) that con-

tains a caspase recruitment domain (CARD) and binds

pro-caspase-1 to form the NLRP3 inflammasome.9,10 The

NLRP3 inflammasome promotes pro-caspase-1 self-

cleavage to generate the active caspase-1 p10/p20 tetramer

that induces pro-IL-1β maturation and activates IL-1β p17

secretion.2,5 NLRP3 inflammasome activation occurs both

in innate immune cells and in nonimmune cells intrinsic

renal cells (mesangial cells, podocytes and epithelial

cells);11,12 therefore, targeting the NLRP3 inflammasome

may be a promising therapeutic strategy for DN.2

MCC950 is a highly selective, potent small molecule

inhibitor of NLRP3; it has been associated with the treat-

ment of several diseases.13,14 Early NLRP3 inhibition by

MCC950 prevented kidney fibrosis in a murine model of

crystal nephropathy.15 MCC950 reduced renal inflamma-

tion, fibrosis and dysfunction in mice with established

hypertension.16 NLRP3 inflammasome inhibition by

MCC950 reduced atherosclerotic lesion development.17

MCC950 attenuated severe, steroid-resistant asthma.18

The cytotoxicity of MCC950 was tested using human kid-

ney and liver cell lines HEK293 or HepG2, and no evidence

of toxicity was found.14 Nevertheless, the efficacy of

MCC950 for DN requires further study. The db/db mouse

was identified initially in 1966 at Jackson Labs19 and is

widely used as a mouse model of type 2 diabetic nephro-

pathy, because db/db mice and patients with DN share

similar renal pathological changes.20 To demonstrate

whether MCC950 protects against progression of DN, we

used type 2 diabetic db/db mice in vivo and glomerular

mesangial cells in vitro to investigate NLPR3/caspase-1/

IL-1β expression and the efficacy of MCC950.

Materials and methods
Animals
Seven-week-old diabetic male db/db (C57BLKS/J-leprdb/

leprdb) mice and non-diabetic male db/m littermates

(C57BLKS/J-leprdb/+) were purchased from the Model

Animal Research Center of Nanjing University (Nanjing,

China). The mice were maintained in a room with con-

trolled environment (23±3°C, 50%±20% humidity, 12-hr

light/dark cycle) with free access to water and food. All

procedures were carried out according to the approved

Institutional Animal Care and Use Committee protocol of

China Medical University (Number: 16095M). The mice

were randomly divided into three groups (n=10 per group).

For the MCC950 treated group (db/db+MCC950), db/db

mice were treated with 10 mg/kg of MCC950 (Selleck

Chemicals, Houston, USA) twice per week intraperitone-

ally from 8 weeks of age to 20 weeks of age. The control

(db/m) and untreated groups (db/db) received an equal

volume of vehicle (saline). The treatment lasted 12

weeks. Body weight (BW) was measured weekly, and

fasting blood glucose levels were measured every 4

weeks. All mice were sacrificed at 20 weeks of age. All

mice were anesthetized with pentobarbital, and blood sam-

ples were collected by orbital vein bleeding. Kidney

weight (KW) was measured after cardiac perfusion as

described previously.21 Renal cortical samples were har-

vested for subsequent studies.

Cell culture
The rat mesangial cell line HBZY-1 was purchased from

the China Center for Type Culture Collection (Wuhan,

China) and were cultured in low-glucose (5.5 mmol/L)

DMEM (Hyclone, SH30021, USA) with 10% FBS

(Bioind, 04–001-1A, USA), 100 μg/mL streptomycin

and 100 U/mL penicillin (Gibco, 15140-122, USA). The

cells were routinely cultured at 5% CO2 and 37°C with

saturated humidity, digested and passaged after 85% cell

confluence. At 24 hrs after cell passaging and attachment,

the cells were divided into five groups and cultured for

48 hrs: 1) the normal-glucose group (NG) that received

5.5 mmol/L glucose (Sigma, A24940-01,USA); 2) the

high-glucose group (HG) that received 30 mmol/L glu-

cose with vehicle (DMSO); 3) the 0.01 μM MCC950

group (0.01) that received 30 mmol/L glucose with 0.01

μmol/L MCC950; 4) the 0.1 μM MCC950 group (0.1)

that received 30 mmol/L glucose with 0.1 μmol/L

MCC950 and 5) the 1 μM MCC950 group (1) that
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received 30 mmol/L glucose with 1 μmol/L MCC950.

We tested cell viability at 0 and 48 hrs by light micro-

scopy and trypan blue exclusion.

Blood examination
Serum samples were used to measure serum creatinine

and blood urea nitrogen (BUN) on a VITROS 950 auto-

matic biochemical analyzer (Johnson & Johnson, New

Brunswick, NJ).

ELISA assay
Mice were housed in individual metabolic cages, and 24-hr

urine samples were collected every 4 weeks. Urinary albu-

min and neutrophil gelatinase-associated lipocalin (NGAL)

were determined with a mouse ELISA kit (Cloud-Clone

Corp, CEB028Mu, SEB388Mu, China) in accordance

with the manufacturer’s instructions. Urinary creatinine

concentrations were determined with a creatinine assay kit

(NJJCBIO, C011-2, China). Urinary albumin excretion was

expressed as urinary albumin concentration versus creati-

nine concentration ratio (ACR, μg/mg). ELISA kits were

also used for the measurement of levels of IL-1β in renal

cortical tissue homogenates and cell culture supernatants

(CUSABIO, E08054m, E08055r, China) in accordance

with the manufacturer’s instructions.

Histologic analysis
Renal cortices were fixed in an alcohol-formalin-acetic acid

solution (AFA) and were embedded in paraffin. The sec-

tions (3 μm) were stained with HE, periodic acid-Schiff

(PAS) and Masson trichrome. The semi-quantitative index

was used to evaluate the degree of glomerular sclerosis by

PAS staining and tubulointerstitial damage by Masson

staining, based on an average of 20 glomeruli per mouse.

Glomerular sclerosis was scored from 0 to 5 as follows: 0,

normal; 1, the mesangial matrix and slight glomerular

damage and/or hyalinosis involving <10% of the glomer-

ulus; 2, 10–20%; 3, 20–30%; 4, 30–40%; and 5, >40%.

Tubular damage was scored by the percentage of injured

tubules (tubular dilation, interstitial inflammation and fibro-

sis) from 0 to 5 as follows: 0, normal; 1, tubular lesion

<10%; 2, 10–20%; 3, 20–30%; 4, 30–40%; and 5, >40%.22

Two pathologists performed a blinded analysis of all

sections.

Transmission electron microscopy (TEM)
Renal cortices (1 mm3) were fixed with 2.5% glutaralde-

hyde at 4°C and were examined using a transmission

electron microscope (H-7650, Olympus, Japan). Electron

micrographs were used to determine the glomerular base-

ment membrane (GBM) thickness and podocyte foot pro-

cess width as previously described.23

Immunohistochemistry (IHC)
The deparaffinized and rehydrated sections (3 μm) of par-

affin-embedded renal cortices were subjected to heat-

mediated antigen retrieval and incubated with 3% H2O2

for 10 mins. Sections were then incubated overnight at 4°

C with primary antibodies against proliferating cell nuclear

antigen (PCNA) (Wanleibio, wl02208, 1:200), phosphor-

nuclear factor-κB p65 (p-NF-κB) (Wanleibio, wl02169,

1:100), podocin (Abcam, ab181143, 1:500), fibronectin

(Proteintech, 15613-1-AP, 1:200), α-SMA (Abcam,

ab5694, 1:50), NLRP3 (Cell Signaling Technology,

15101, 1:200), caspase-1 (Abcam, ab1872, 1:25) or IL-1β
(Cell Signaling Technology, 12242, 1:100). For PCNA,

p-NF-κB and podocin, the percentage of a positively stained

area over the whole glomerular area was calculated. For

other antibodies, the micrographs were quantified blindly

using Image-Pro Plus 6.0 software and were expressed as

the ratio of integrated optical density to the whole area.

Each renal section was counted for at least 10 images.

Western blot (WB) analysis
Total proteins from renal cortices were extracted with ice-

cold RIPA lysis buffer (Beyotime, China), and protein con-

centrations were measured by BCA Protein Assay Kit

(Beyotime, China). Equal amount of proteins was separated

by SDS-PAGE and transferred to PVDF membranes

(Millipore, USA). Membranes were blocked in 5% nonfat

milk at room temperature for 1 hr and then incubated over-

night at 4°C with primary antibodies to podocin (Abcam,

ab181143, 1:2000), TGF-β1 (Proteintech, 18978, 1:1000),

collagen I (Proteintech, 14695, 1:1000), α-SMA (Abcam,

ab5694, 1:1000), NLRP3 (CST, 15101, 1:500), caspase-1

(Abcam, ab1872, 1:400), IL-1β (CST, 12242, 1:500) and β-
actin (ZSGB-BIO, TA-09,1:3000). After incubation with

the appropriate secondary antibodies (Abbkine, 1: 10,000)

at room temperature for 1 hr, target bands were detected by

enhanced chemiluminescence substrate (Abbkine, USA).

EachWestern blot was performed at least three times. Semi-

quantitative analysis was measured using ImageJ software.

RNA extraction and real-time qPCR
Total RNA from renal cortices was extracted using TRIzol

(Invitrogen, USA). Reverse transcription was performed
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using a Prime Script reverse transcription reagent kit (9108,

TaKaRa Bio, Japan), and RNA (1 μg) was reverse tran-

scribed into cDNA. Real-time qPCR was performed using

TB Green reagent on an ABI 7500 real-time PCR System

(RR820A, TaKaRa Bio, Japan) in accordance with the

manufacturer’s instructions. In vivo experiments, the primer

sequences of mice used for mRNA detection were as fol-

lows: TGF-β1, forward 5ʹ-CAACAATTCCTGGCGTTAC

CTTGG-3ʹ and reverse 5ʹ-GAAAGCCCTGTATTCCGTCT

CCTT-3ʹ; fibronectin, forward 5ʹ-ATGAGGAGGTCC

AAATCG-3ʹ and reverse 5ʹ-GAACGGCGTCCAAGA

G-3ʹ; Collagen I, forward 5ʹ-TGCCGTGACCTCAAG

ATGTG-3ʹ and reverse 5ʹ-CACAAGCGTGCTGTAG
GTGA-3ʹ; β-actin, forward 5ʹ-GAGACCTTCAACACCC

CAGC-3ʹ and reverse 5ʹ-ATGTCACGCACGATTTCCC-3ʹ.

In vitro experiment, the primer sequences of cells were

generated for mRNA detection: TGF-β1, forward 5ʹ-

ATGGTGGACCGCAACAAC-3ʹ and reverse 5ʹ-GAGC

ACTGAAGCGAAAGC-3ʹ; fibronectin, forward 5ʹ-AC

GGTGGCAACTCAAAC-3ʹ and reverse 5ʹ-GGGAAG

TGGCACAAGG-3ʹ; Collagen I, forward 5ʹ-AAACGGG

AGGGCGAGTG-3ʹ and reverse 5ʹ-CATAGGACATC

TGGGAAGCAA-3ʹ; β-actin, forward 5ʹ- GGAGATTA

CTGCCCTGGCTCCTAGC-3ʹ and reverse 5ʹ-GGCCG

GACTCATCGTACTCCTGCTT-3ʹ. PCR was carried out

at 95°C for 30 s, followed by 40 cycles each of 95°C for

5 s, 60°C for 34 s. The relative quantitative expression was

calculated by 2−ΔΔCt method.21 Each group was examined

in triplicate.

Immunofluorescence
The cells were fixed in 4% paraformaldehyde for 15 mins at

room temperature after washing with PBS, permeabilized for

30 mins with 0.5% Triton X-100 in PBS and blocked for 1 h at

37°C with 5% BSA. The cells were incubated with caspase-1

(Abcam, ab1872, 1:25) overnight at 4°C in a humidified cham-

ber. After washing with PBS, cells were incubated with sec-

ondary antibody (Abbkine, A23420, 1:500) for 1 hr at 37°C in

a darkened humidified chamber. Cell nuclei were stained with

DAPI. Fluorescence was observed using a confocal laser

scanning microscope (Nikon A1R, Japan).

Statistical analysis
Quantitative data were presented as mean ± standard error

of mean from three independent experiments. Statistical

analysis was performed using GraphPad Prism 7.0 soft-

ware. Differences between several groups were evaluated

with ANOVA. Differences between two groups were

assessed using the Student's t-test. A value of P<0.05

was regarded as statistically significant.

Results
MCC950 decreased the urinary

albumin-to-creatinine ratio and improved

renal function and pathological changes in

db/db mice
BWand blood glucose were higher in db/dbmice than in non-

diabetic db/mmice; however, BWand blood glucose in db/db

mice were not affected byMCC950 treatment (P>0.05, Figure

1A and B). The ratio of kidney weight to body weight (KW/

BW) in db/dbmicewas lower than that of db/mmice; however,

the KW/BWratio showed no statistical difference between the

db/db and db/db+MCC950 groups (P>0.05, Figure 1C).

Serum creatinine of db/db mice was higher than that of db/m

mice, and MCC950 significantly blunted the diabetes-induced

increase in serum creatinine (P<0.05, Figure 1D). There was

no significant difference in BUN between the db/m, db/db and

db/db+MCC950 groups (P>0.05, Figure 1E). Compared to db/

m mice, urinary albumin to creatinine ratio (ACR) of db/db

mice was greater and was effectively reduced by MCC950

treatment (P<0.05, Figure 1F). The degree of decreasing urin-

ary ACR increased with the prolongation of treatment time

(F=13.95; P<0.01). Urinary NGAL as a marker of tubular

injury was also reduced by MCC950 treatment in db/db mice

(P<0.05, Figure 1G). HE, PAS and Masson’s staining showed

mesangial matrix expansion, glomerular hypertrophy, tubular

dilation and interstitial inflammation in db/db mice (Figure

1H). The glomerular sclerosis index and tubulointerstitial

damage index were higher in db/db mice than in db/m mice

(P<0.05, Figure 1I and J). However, both were significantly

attenuated byMCC950 treatment, withMCC950 ameliorating

the glomerular sclerosis and tubular damage of DN.

Expression levels of PCNA and p-NF-κB were greater in the

nucleus of glomeruli in db/db mice than in db/m mice, which

confirmed that mesangial cells were proliferated and activated,

and were inhibited byMCC950 treatment as measured by IHC

(P<0.05, Figure 1K–N).

MCC950 attenuated podocyte injury in

db/db mice
Electron microscope images showed that the increased GBM

thickness and foot process width were significantly attenuated

byMCC950 treatment (P<0.05, Figure 2A–C). Lower expres-

sion of podocin as a marker of podocyte in renal cortical tissue
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of db/dbmice was increased by MCC950 treatment with IHC

and WB (P<0.05, Figure 2D–G). MCC950 prevented dia-

betes-induced podocytes injury.

MCC950 alleviated renal fibrosis in db/db

mice
Expression levels of fibronectin and α-smooth muscle

actin (α-SMA) (both of which are markers of fibrosis)

were greater in db/db mice than in db/m mice, and were

inhibited by MCC950 treatment as measured by IHC

(P<0.01, Figure 3A–D). MCC950 treatment also sup-

pressed the increase in fibrosis marker protein levels

caused by TGF-β1, collagen I and α-SMA in db/db mice,

as measured by WB (P<0.05, Figure 3E–H). Furthermore,

mRNA expression levels of TGF-β1, fibronectin and

collagen I were significantly decreased by MCC950 treat-

ment in db/db mice (P<0.05, Figure 3I–K). MCC950

effectively prevented the progression of renal fibrosis in

db/db mice.

MCC950 inhibited diabetes-induced renal

NLRP3 inflammasome activation in db/db

mice
The renal expressions of NLRP3, caspase-1 and IL-1β
were higher in db/db mice than in db/m mice as shown

by IHC and were reduced by MCC950 treatment (P<0.01,

Figure 4A–F). MCC950 also decreased NLRP3 protein

expression in db/db mice as measured by WB (P<0.05,

Figure 4G–H). The activities of caspase-1 and IL-1β were

greater in db/db mice and were inhibited by MCC950
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treatment. The activities of caspase-1 and IL-1β were

determined by WB according to their protein expression

levels from the immature form to active form (P<0.05,

Figure 4G, I and J). Higher expression of IL-1β in renal

cortical tissue of db/db mice was decreased by MCC950

treatment by ELISA (F=6.331, P<0.05, Figure 4K).

Therefore, MCC950 inhibited NLRP3 inflammasome acti-

vation and the activities of caspase-1 and IL-1β.

MCC950 inhibited HG-induced NLRP3

inflammasome activation in mesangial cells
Mesangial cells showed higher NLRP3 protein expression

after 48-hr stimulation with HG, as well as higher levels of

mature caspase-1 and IL-1β than in the NG group, that were

inhibited by 0.1 μM or 1 μM MCC950 treatment. MCC950

inhibited NLRP3 inflammasome activation, accordingly dis-

turbing the transformation of pro-caspase-1 into mature cas-

pase-1 and the production of mature IL-1β p17 (P<0.05,

Figure 5A–D). Immunofluorescent images showed higher

caspase-1 expression in the HG group that was diminished

by 0.1 μM or 1 μMMCC950 treatment (P<0.05, Figure 5E).

Higher expression of IL-1β in the supernatant of the HG

group was decreased by 0.1 μM or 1 μMMCC950 treatment

by ELISA (F=7.218, P<0.05, Figure 5F).

MCC950 decreased expression of fibrosis

markers by inhibiting NLRP3

inflammasome activation in mesangial cells
Protein levels of fibrosis markers TGF-β1, collagen I and

α-SMA were higher in the HG group, as demonstrated on

A B
0.20

0.15

G
B

M
 th

ic
kn

es
s 

(μ
m

)

0.10

0.05

0.00

db/m db/db db/db+MCC950

db/m db/db db/db+MCC950

C
0.3

Fo
ot

 p
ro

ce
ss

 w
id

th
 (μ

m
)

0.2

0.1

0.0
db/m db/db db/db+MCC950E

G

15 Podocin

P
od

oc
in

 p
os

iti
ve

ly
 s

ta
in

ed
/g

lo
m

er
ul

us
P

od
oc

in
/β

-a
ct

in

10

5

0
db/m db/db db/db+MCC950

0.0

0.5

1.0

1.5

2.0

db/m db/db db/db+MCC950

D db/m

P
od

oc
in

Podocin

db/db db/db+MCC950

F db/m db/db db/db+MCC950

β-actin

Figure 2 MCC950 attenuated podocyte injury in db/db mice.

Notes: (A) Representative images of podocyte ultrastructure shown by transmission electron microscopy from db/m, db/db and db/db+MCC950 groups at 20 weeks of age

(TEM×15000). (B) GBM thickness (yellow arrows). (C) Foot process width (red arrows). (D) Representative immunohistochemical images and (E) immunohistochemical

scores of renal sections for podocin staining. Bar =50 μm. (F–G) Western blot analysis of podocin in renal cortical tissue. Data represent means ± SEM (n=10). #P<0.05 and
##P<0.01 versus db/m mice; *P<0.05 and **P<0.01 versus db/db mice.

Abbreviations: TEM, transmission electron microscopy; GBM, glomerular basement membrane; SEM, standard error of mean.

Zhang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:121302

http://www.dovepress.com
http://www.dovepress.com


WB; these levels were significantly inhibited by 0.1 μM or

1 μM MCC950 treatment (P<0.05, Figure 6A–D). The

similar results were obtained by RT-qPCR. MCC950 pre-

vented HG-induced increases mRNA expression levels of

TGF-β1, collagen I and fibronectin in mesangial cells

(P<0.05, Figure 6E–G).

Discussion
Chronic low-grade sterile inflammation and proinflammatory

cytokines release are thought to be crucial mechanisms in the

progression of DN.24,25 In DN, the NLRP3 inflammasome is

an intracellular platform that converts pro-caspase-1 and pro-

IL-1β into active forms (caspase-1 p10/p20 and IL-1β p17)

responding to danger signals and triggers inflammatory pro-

grammed cell death called pyroptosis.26,27 Pyroptosis

features cell swelling and subsequently rupturing the cell

membrane, causing massive leakage of cytosolic contents,

further promoting killing by a secondary phagocyte, contri-

buting to the expansion of the inflammatory response.28–30

MCC950 is a selective small molecule inhibitor of NLRP3

that blocks canonical and non-canonical NLRP3 activation at

nanomolar concentrations.13 In recent studies, MCC950

reduced liver inflammation and fibrosis by suppression col-

lagen I, α-SMA and hepatic connective tissue growth factor

expression in a mouse model of non-alcoholic

steatohepatitis.31 MCC950 also exerted protective effects in

cholestatic liver injury and liver fibrosis by suppression

hepatic expression of the pro-fibrotic markers (TGF-β1, α-
SMA and Col1a1) in a mouse model of bile duct ligation.32

MCC950 protected human retinal endothelial cells against
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HG-induced dysfunction.33 MCC950 ameliorated protei-

nuria, pathological changes and podocyte foot process effa-

cement in lupus-prone mice.34 Based on these studies, we

proposed a model of the possible mechanism of action of

MCC950 in DN (Figure 7). In our study, we usedMCC950 to

intervene in type 2 diabetic db/db mice in vivo and HG-

induced mesangial cells in vitro. The efficacy of MCC950

for the treatment of DN in db/db mice has not been reported

previously. MCC950 effectively inhibited expression of

NLRP3 and the conversion to active forms of caspase-1

and IL-1β in both renal cortices of db/db mice and in HG-

induced mesangial cells. MCC950 suppressed renal inflam-

mation by inhibiting NLRP3 inflammasome activation, the

mechanism of by which MCC950 ameliorated kidney injury

in DN.

Albuminuria is the most impotent clinical feature of

DN, primarily caused by an impaired glomerular filtra-

tion barrier. Urinary ACR is the most important marker

for evaluating early renal decline and diagnostic basis in

diabetic nephropathy.3 Podocytes are the weakest link in

the glomerular filtration barrier.35 Podocyte damage

gives rise to albuminuria in DN36 and NLRP3 inflamma-

some activation in podocytes contributes to podocyte

loss.12,34 Podocytes are highly differentiated epithelial

cells. Podocyte damage leads to irreversible renal

decline.37 In this study, MCC950 treatment ameliorated

podocyte foot process effacement and thickened GBM in

db/db mice. Podocin is a glomerular slit diaphgram

protein between neighboring podocytes, and a critical

component of glomerular filtration barrier,38 that plays
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a key role in maintaining the normal structure and func-

tion of podocytes.37 Decreased expression of podocin

suggests that podocyte foot processes fuse,39 destroying

the glomerular filtration barrier, resulting in production

of albuminuria.40 In our study, the expression of podocin

was markedly elevated by MCC950 treatment in db/db

mice. Therefore, MCC950 protected against podocyte

injury to reduce urinary ACR and improved renal func-

tion in db/db mice.

The typical pathological features of early DN are glo-

merular hypertrophy, thickened glomerular basement

membrane and mesangial expansion with increased matrix

deposition.1 Renal fibrosis of both glomerular and tubu-

lointerstitial compartments, characterized by extracellular

matrix (ECM) accumulation, is recognized as a basic

mechanism leading to diabetic glomerular disease.41,42

Mesangial cells as intrinsic renal cells secrete a large

number of proinflammatory and profibrotic cytokines

responding to injury in DN.41 IL-1β has been

demonstrated to stimulate production of TGF-β1, fibronec-
tin, collagen I and mesangial proliferation.24,25,43 The

positive PCNA and p-NF-κB immunohistochemistry stain-

ing also confirmed the proliferation and activation of

mesangial cells in db/db mice. Therefore, we chose mesan-

gial cells in vitro to study the mechanism of MCC950 in

DN. TGF-β1 is a major cytokine secreted by mesangial

cells that mediates the development of DN. It has many

biological activities such as regulating cell proliferation,

differentiation and migration. TGF-β1 is also a key cyto-

kine mediating collagen deposition in kidney, including

promoting the production of ECM, inhibiting the degrada-

tion of ECM and participating in renal fibrosis.44 ECM in

patients with DN is produced by mesangial cells and is

primarily composed of fibronectin, collagen IV and a few

collagen I. The expression of collagen I is low level in

normal kidney tissue; however, it is significantly increased

under high glucose stimulation. The expression of α-SMA

in normal mesangial cells is very weak. However, the
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expression of α-SMA in mesangial cells is increased under

high glucose stimulation, suggesting that mesangial cells

undergo phenotypic transformation from resting state to

secretion/proliferative state.45 In our study, MCC950 sig-

nificantly decreased mesangial cells proliferation and the

expression levels of fibrosis markers (TGF-β1, fibronectin,

collagen I and α-SMA) both in renal cortices of db/db

mice and in HG-induced mesangial cells.

Urinary NGAL as a marker of renal tubular injury is

also an important marker for evaluating early progressive

renal decline in type 2 diabetes mellitus.3 Inflammatory

cell infiltration in the tubules and interstitium is also one of
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the pathological changes of DN, leading to renal fibrosis.

In glomerular diseases, the development of glomerular

inflammation precedes interstitial fibrosis.41 Furthermore,

NLRP3 inflammasome activation also occurs in intrinsic

renal cells such as tubular epithelial cells.11,12 Knockdown

of NLRP3 alleviated high glucose-induced epithelial-to-

mesenchymal transition in human renal tubular cells.46

MCC950 inhibited NLRP3 inflammasome activation in

tubular epithelial cells of db/db mice. These also can

explain how MCC950 significantly decreased urinary

NGAL as a marker of renal tubular injury and fibrosis

markers in db/db mice. MCC950 also ameliorated patho-

logic changes, including glomerular sclerosis and tubular

damage in db/db mice. These data suggested that MCC950

prevents renal fibrosis from renal decline by inhibiting

NLRP3 inflammasome activation in DN. Nevertheless,

one limitation of this study is that we only used mesangial

cells in vitro to study the mechanism of MCC950. In the

future, we will further investigate the role of MCC950 in

podocytes. However, there are always some differences

between mice model and human, and so, this efficacy of

MCC950 in DN requires further clinical investigation.

We found thatMCC950 treatment improved renal function

and pathologic changes in db/db mice without affecting BW

and blood glucose levels. H.L. Kammoun et al confirmed the

same results that MCC950 did not impact BW and blood

glucose levels in db/db mice.47 Inhibition of the NLRP3

inflammasome by MCC950 ameliorated kidney injury in

DN; the renoprotection of MCC950 for DN occurred indepen-

dently of BW and blood glucose levels.

Conclusion
The data presented in this study suggested that MCC950

effectively ameliorates kidney injury in DN, independent of

BW and blood glucose levels. MCC950 inhibited NLRP3

inflammasome activation to reduce the production of active

caspase-1 and IL-1β. These phenomena might result in

reducing urinary ACR and urinary NGAL, improving

renal function and alleviating podocyte injury and renal

fibrosis. Therefore, MCC950 may be a promising therapeu-

tic strategy to prevent the progression of DN.
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