
microorganisms

Review

Gut and Reproductive Tract Microbiota Adaptation during
Pregnancy: New Insights for Pregnancy-Related Complications
and Therapy

Martina De Siena 1 , Lucrezia Laterza 1,* , Maria Valeria Matteo 1, Irene Mignini 1, Tommaso Schepis 1,
Gianenrico Rizzatti 1 , Gianluca Ianiro 1 , Emanuele Rinninella 2 , Marco Cintoni 3 and Antonio Gasbarrini 1

����������
�������

Citation: De Siena, M.; Laterza, L.;

Matteo, M.V.; Mignini, I.; Schepis, T.;

Rizzatti, G.; Ianiro, G.; Rinninella, E.;

Cintoni, M.; Gasbarrini, A. Gut and

Reproductive Tract Microbiota

Adaptation during Pregnancy: New

Insights for Pregnancy-Related

Complications and Therapy.

Microorganisms 2021, 9, 473.

https://doi.org/10.3390/

microorganisms9030473

Academic Editor: Pramod Gopal

Received: 21 January 2021

Accepted: 22 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unità Operativa Complessa (UOC) di Medicina Interna e Gastroenterologia, Dipartimento di Scienze
Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
martinadesiena@gmail.com (M.D.S.); mariavaleria31191@gmail.com (M.V.M.);
irene.mignini@gmail.com (I.M.); tommaso.schepis@gmail.com (T.S.); gianenrico.rizzatti@gmail.com (G.R.);
gianluca.ianiro@hotmail.it (G.I.); antonio.gasbarrini@unicatt.it (A.G.)

2 Unità Operativa Complessa (UOC) di Nutrizione Clinica, Dipartimento di Medicina e Chirurgia
Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; emanuele.rinninella@unicatt.it

3 Scuola di Specializzazione in Scienza Dell’Alimentazione, Università di Roma Tor Vergata, 00133 Rome, Italy;
marco.cintoni@gmail.com

* Correspondence: laterza.lucrezia@gmail.com

Abstract: Pregnancy is characterized by maternal adaptations that are necessary to create a welcoming
and hospitable environment for the fetus. Studies have highlighted how the microbiota modulates
several networks in humans through complex molecular interactions and how dysbiosis (defined
as quantitative and qualitative alterations of the microbiota communities) is related to human
pathologies including gynecological diseases. This review analyzed how maternal uterine, vaginal,
and gut microbiomes could impact on fetus health during the gestational period. We evaluated the
role of a dysbiotic microbiota in preterm birth, chorioamnionitis, gestational diabetes mellitus and
pre-eclampsia. For many years it has been hypothesized that newborns were sterile organisms but in
the past few years this paradigm has been questioned through the demonstration of the presence
of microbes in the placenta and meconium. In the future, we should go deeper into the concept of
in utero colonization to better understand the role of microbiota through the phases of pregnancy.
Numerous studies in the literature have already showed interesting results regarding the role of
microbiota in pregnancy. This evidence gives us the hope that microbiota modulation could be
a novel strategy to reduce the morbidity and mortality related to pregnancy complications in the
future.

Keywords: microbiota; pregnancy; vaginal microbiota; endometrial microbiota; placental microbiota;
preterm birth; gestational diabetes mellitus; pre-eclampsia

1. Introduction

During pregnancy, several adaptations occur in the female organism. In fact, from
fertilization until delivery, the maternal body changes and activates a series of physiological
transformations to welcome the new life [1]. Several adjustments in the hemodynamic
state [2] and in respiratory, cardiac [3,4], urogenital [5,6] and gastrointestinal systems [7,8]
occur. The microbiota as a component of human bodies is subject to these modifications
and at the same time it contributes, through the production of active metabolites, to them.
The composition of microbiota is influenced by factors such as the genotype, sex, age,
the immune status, and various environmental factors. Several niches of our body are
colonized by microbes, but the main microbial density could be found on body surfaces
that interact with the external environment such as the respiratory, urogenital, and gas-
trointestinal systems and the skin. The microbiome is the whole genetic heritage of the
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microbiota and it accounts for a total of about 3.3 million genes, able to produce millions
of active metabolites that interact with complex molecular cascades in the host. The most
studied microbiota belongs to the gut and it is well known that gut microbiota play multiple
functions [9], including defense from external pathogens [10] and bidirectional interactions
with the endocrine, metabolic [11], nervous [12,13] and immune systems [14,15]. The
gut microbiota is composed of about 1014 microorganisms including bacteria, eukaryotes,
viruses, and archaea. There are two major phyla named Firmicutes and Bacteroidetes [16]
that account for 80–90% of the intestinal bacterial microbiome (the bacteriome), but there
are also other numerically less represented phyla such as Proteobacteria, Verrucomicrobia,
Actinobacteria and Fusobacteria. The gut microbiome has considerable interindividual
and intraindividual variability depending on the surrounding environment; however, this
is classified into three major subtypes according to the most represented bacterial clusters,
the enterotypes [17]. The prevalence of one enterotype over the others depends on indi-
vidual genes, external environment and eating habits. Particularly, Enterotype 1 is mainly
composed of Bacteroides, Enterotype 2 by Prevotella, and Enterotype 3 by Ruminococcus. The
enterotypes absolve functions that are necessary for the maintenance of intestinal eubiosis.
Thanks to its variability, the microbiome of every human being is extremely unique. We
should imagine the microbiota as a dynamic entity able to actively interact with the dif-
ferent molecular and cellular networks of our organism rather than a compartmentalized
community confined in separated body niches. Eubiosis is the condition characterized by
a quantitative and qualitative balance of all the microbiota components [18] and occurs
when microbes positively interact with each other and with the host for the maintenance
of body homeostasis. Over the entire life, from birth to the elderly, microbiota changes
in response to external stressor events and to new physiological statuses, i.e., pregnancy
or senescence, to guarantee the maintenance of eubiosis [19,20], showing characteristics
of resistance and resilience. Resistance is the property of gut microbiota to remain stable
after a disturbance from the environment; resilience, instead, defines how quickly micro-
biota will recover its initial functional or taxonomic composition after a perturbation. In
fact, during life, the microbiota continuously adapts and dynamically responds to exter-
nal stressor events to ensure homeostasis. Dysbiosis is a qualitative and/or quantitative
alteration of the microbial communities with consequent impairment of all the related
functions. Dysbiosis has been linked to several pathologies such as asthma [21], inflamma-
tory bowel diseases [22,23], obesity [24,25], diabetes mellitus [26], and neurodegenerative
and psychiatric disorders [12,13,27]. However, in many cases it is not clear if microbiota
unbalance represents the etiology or the consequence of human pathologies and, similarly,
the causal mechanism that links dysbiosis to human diseases has to be clarified. Beyond
gut microbiota, the female genital tract microbiota has been largely studied in recent years.
This review will focus on gut and reproductive tract microbiota variations during physio-
logic pregnancy and in case of pregnancy complications, particularly gestational diabetes
mellitus (GDM), pre-eclampsia (PE), and preterm birth (PTB).

2. Materials and Methods

The literature search was performed on PubMed from inception until 26th August
2020 by two authors (M.D.S. and L.L.) independently. The following combinations of terms
were searched: (microbiota OR microbiome) AND pregnancy; gut microbiota AND preg-
nancy; vaginal microbiota AND pregnancy; preterm birth AND dysbiosis; preterm birth
AND vaginal microbiota; pregnancy complication AND dysbiosis; pre-eclampsia AND
microbiota; pre-eclampsia AND dysbiosis; gestational diabetes mellitus AND microbiota;
gestational diabetes mellitus AND dysbiosis. Retrieved papers were firstly selected based
on title and abstracts. Only studies in humans were selected. Then, selected papers were
evaluated in full text. References of pivotal reviews were manually searched to identify
any missed relevant references.
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3. Results
3.1. Physiologic Transformations during Pregnancy
3.1.1. Gut Microbiota and Immunologic Adaptations during Pregnancy

During pregnancy, major changes have been seen in mothers’ gut microbiota. Between
the first (T1) and third trimester (T3) of pregnancy [28], to support the fetus growth, there is
a shift towards communities of microbes implicated in energy production and storage. In
fact, there is an increase in Akkermansia and Bifidobacterium at the genus level and Firmicutes,
Proteobacteria and Actinobacteria at the phylum level. Akkermansia, Bifidobacterium and
Firmicutes have been associated with increased storage of energy, whereas Proteobacteria
and Actinobacteria protect mother and fetus from external infections, acting as proinflam-
matory bacteria. Throughout the gestational period, the condition of the maternal immune
system needs to be considered unique. Thanks to multiple local and systemic adaptations,
the maternal body has become able to establish protection from the external environment
and tolerance towards the fetus at the same time [29]. Thus, the correct term to identify the
maternal immune system transformation is not “suppression” but “modulation” [30]. To
better understand this concept, we should consider the fetus as a semiallograft tissue that
induces immune modifications that are not characterized by weakening or depotentiation.
In fact, during the gestational period, the mother must protect herself and the fetus from
infections and external environment through an active and ready immune response [31].
Furthermore, some studies revealed that depletion of immune system cells determines
early pregnancy termination interfering with development, implantation, and decidual
formation [32,33]. During normal pregnancy, decidua contains macrophages and natural
killer (NK) and regulatory T cells [34,35] and the cooperation between trophoblast and
immune system cells promotes decidua invasion, oxygen and nutrient transport, angio-
genesis and protection against pathogens [36,37]. The immune system is fundamental
and plays a decisive role even before conception with a high impact on fertility [38] influ-
encing recurrent spontaneous abortion [39,40] and promoting the genesis of a hospitable
utero microenvironment for embryo implantation [41]. Table 1 summarizes gut microbiota
alterations in gestational diseases.

Table 1. Alterations of maternal gut microbiota in gestational diseases.

Gestational Diabetes Pre-Eclampsia Pre Term Birth Birth Complications

Increased

Genus
Blautia
Rothia

Bilophila
Eubacterium

Phascolarctobacterium
Fusobacterium

Species
Roseburia Subdoligranulum

Phylum
Bacteroidetes

Genus
Fusobacterium

Veillonella
Blautia

Ruminococcus
Bilophila

Genus
Ureaplasma

Species
Fusobacterium nucleatum
Gemella asaccharolytica

Genus
Mycoplasmataceae ˆ

Leptotrichiaceae ˆ
Veillonaceae ˆ

Species
Sneathia sanguinegens #

Prevotella copri #
Lachnospiraceae spp #
Phascolarctobacterium

succinatutens #

Reduced

Genus
Bacteroides

Parabacteroides Acinetobacter *
Fecalibacterium

Prevotella

Phylum
Firmicutes

Genus
Faecalibacterium

Akkermansia
Methanobrevibacter

* Controversial data in literature, see text for details. ˆ Associated with increased risk of choriamnionitis. # Associated with increased risk of
small newborn size.

3.1.2. Vaginal Microbiota

Studies on asymptomatic reproductive-aged women had shown that the vaginal mi-
crobiota is largely dominated by lactic acid-producing bacteria, most from the Lactobacillus
genus, suggesting a strong relationship between the acidic vaginal environment and the
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healthy state [42,43]. Ravel et al. analyzed, with the next-generation sequencing method,
the vaginal microbiomes from 396 healthy nonpregnant women of different ethnicities.
This study revealed that, in nonpregnant women, vaginal microbiota could be classified
into five major types, representing the community state types (CSTs) [44,45]. Four CSTs
are dominated by Lactobacillus spp.: L. crispatus in CST-I, L. gasseri in CST-II, L. iners in
CST-III, and L. jensenii in CST-V. Instead, CST-IV is composed of facultative anaerobes as
Gardnerella—including Gardnerella vaginalis—Prevotella, Megasphaera, Sneathia, and Clostridi-
ales [46,47]. Although the prevalence of Lactobacillus is considered a marker of a healthy
vaginal microbiome, a significant proportion of apparently healthy women have vaginal
bacterial communities lacking appreciable numbers of Lactobacillus. It is difficult to de-
fine the composition of a universally “normal” microbiome and consequently to establish
which microbial signature can predict pathological events [46]. The vaginal microbiota
is subject to several transformations during a woman’s life [48] according to sexual de-
velopment and sexual activity, menstruation, hygiene practice, and hormonal levels [49].
Vaginal dysbiosis could lead to a reduction in Lactobacillus with a shift toward a micro-
biome with high diversity that has been related to many pathological conditions, including
acquisition and transmission [50] of sexually transmitted infections, pelvic inflammatory
diseases, and adverse pregnancy events, such as PTB and premature preterm rupture of
membranes (PPROM).

Pregnancy is a dynamic state characterized by several physiological events such as
changes in sex hormone levels and immune system modulation. Several studies based on
cultivation-independent molecular techniques demonstrated that gestation has important
effects on the vaginal microbiome [51,52]. It has been observed that the microbial vaginal
community shifts toward a more stable, less diverse and Lactobacillus-dominated state
during pregnancy [53]. Freitas et al. analyzed vaginal microbial profiles in early pregnancy
(11–16 weeks) in healthy women with low risk of adverse outcomes and confirmed that in
these women vaginal microbiomes had lower richness and diversity, lower prevalence of
Mycoplasma and Ureaplasma, and higher Lactobacillus abundance [49–51] when compared
with nonpregnant women. All these modifications are probably a consequence of the
increased levels of estrogen that influence vaginal epithelial maturation, producing an ac-
cumulation of glycogen that is typically used by Lactobacillus for lactic acid production [51].
As such, hormonal changes during pregnancy create a fertile ground for Lactobacillus
proliferation and maintenance with increased production of high-antibacterial molecules
(bacteriocins, H2O2) and lactic acid which lowers the vaginal pH [49]. Establishing the
characteristics of the vaginal microbiome associated with low-risk pregnancy may help to
identify which pregnancies have a higher risk of adverse reproductive outcomes, such as
pregnancy loss or PTB [51], and hopefully to prevent them. Adverse pregnancy outcomes
have been related to an imbalanced vaginal microbiome, as happens in bacterial vaginosis
(BV), a condition characterized by a reduction in Lactobacillus abundance and increase in
anaerobes, such as Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., Bacteroides spp.
These microbial changes are associated with an increase in local activation of the innate
immune system and induction of the inflammatory cascade, which may induce membrane
disruption with PTB or PPROM. Zheng et al. [54], who evaluated the physiological modifi-
cation of vaginal microbial communities in healthy pregnant women throughout gestation,
showed significant variation of Lactobacillus abundance among different trimesters. L.
iners was significantly decreased in the second and the third trimesters but no significant
variations in the abundance of other bacteria, such as Gardnerella, Atopobium, Megasphaera,
Eggerthella, Leptotrichia/Sneathia and Prevotella, were detected. There are controversial data
in the literature in identifying L. iners as beneficial or deleterious for the vaginal micro-
biome [54,55]. This species has unusual characteristics compared with other Lactobacillus
spp., such as lack of growth on de Man Rogosa Sharpe agar and no production of D-lactic
acid, causing a subsequent higher vaginal pH value and reduced H2O2 production [55].
Furthermore, L. iners is increased in women with BV and it offers less protection against
BV, sexually transmitted infections and adverse pregnancy sequelae. Thus, it seems that
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not all Lactobacillus spp. can ensure a healthy vaginal state in the same entity. Several
other studies have investigated other associations between adverse pregnancy outcomes
and changes in the vaginal microbiome. Di Giulio et al. [52] showed an association be-
tween the Lactobacillus-poor vaginal CST IV, a high abundance of Gardnerella or Ureaplasma
and PTB in a predominantly Caucasian cohort. A prospective study including mainly
African-American women, who are known to be at higher risk of PTB [50], showed an
association between premature delivery and an early significant decrease in community
richness and diversity and a subsequent increased microbial instability over the gesta-
tion, thus suggesting that early vaginal microbial fluctuations could represent a marker
of PTB [56]. Two studies have demonstrated an association between preterm labor and
specific bacteria, such as Bacterial Vaginosis Associated Bacterium 1 (BVAB-1) in a high-risk
population for PTB, established based on the history of previous PTB [57]. A longitudinal
analysis of omics data from vaginal samples of a cohort of mainly African women [50]
showed that preterm delivery was associated with significantly lower vaginal levels of
L. crispatus and higher levels of BVAB-1, Sneathia amnii, and a group of Prevotella species.
Furthermore, the analysis of samples collected early in pregnancy (between the 6th and
24th weeks), identified two other taxa, namely, Megasphaera type 1 and TM7-H1, which
were significantly increased in the PTB group and, based on the analysis of vaginal fluid
cytokines, were related to the overexpression of proinflammatory cytokines, consistent
with the concept that microbe-induced inflammation could play a role in the induction of
labor. Since these findings occur in the first few weeks of gestation, the authors suggested
that this microbial and cytokine “signature” can be used as an early predictor of PTB.
Instead, in normal pregnancy, the increase in stability of the Lactobacillus community is
related to the production of antibacterial molecules (bacteriocins) and lactic acid which
lowers the vaginal pH. These modifications help together to prevent ascending bacterial
infections from the vagina through the cervix into the uterine cavity and finally protect the
fetus from complications as PTB. However, the specific mechanisms linking the vaginal
microbiome to pregnancy outcomes are still poorly understood [50,51,54]; thus, additional
studies are needed with the ideal objective to identify microbial signatures associated with
adverse outcomes that may eventually represent a therapeutic target.

3.1.3. Endometrial Microbiota

The human uterus was traditionally considered to be sterile in absence of infections
and the cervix was regarded as a perfect barrier between the vagina and the endometrial
cavity. However, emerging data show the presence of bacteria in the upper reproductive
tract of healthy women [58]. Mitchell et al. found that the most common genera (Lactobacil-
lus, Prevotella) were the same in both uterus and vagina, even if the number of bacteria in
the uterus was significantly lower compared to the vagina [59]. However, while the vagina
is largely dominated by Lactobacillus, it has been observed that uterus harbors also notable
percentages of Pseudomonas, Acinetobacter, Vagococcus and Sphingobium, suggesting the exis-
tence of an indigenous uterine microbiota [60]. Recent studies have investigated the role of
endometrial microbiota on uterine receptivity and pregnancy outcomes, leading to results
that are still controversial. Some authors have found significant differences comparing en-
dometrial microbiota in infertile and healthy women. In particular, infertile women have a
lower percentage of Lactobacillus [61] compared to healthy women. Moreover, Moreno et al.
observed that the presence of a Lactobacillus-dominated microbiota (>90% of Lactobacillus)
correlated with a higher rate of implantation in patients who underwent in vitro fertiliza-
tion [62], suggesting that Lactobacillus may also affect blastocyst implantation. Meanwhile,
other data showed no differences in implantation and pregnancy success related to the
prevalence of Lactobacillus [63]. Due to the difficulties in obtaining samples, evidence on
endometrial microbiota during pregnancy is still lacking. A pilot study by Leoni et al.
analyzed uterine microbiota at a term of normal pregnancies in women subjected to cae-
sarean delivery [64]. They found six genera in almost all patients (Cutibacterium, Escherichia,
Staphylococcus, Acinetobacter, Streptococcus, Corynebacterium) which may represent a “core
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microbiota” of pregnancy. Interestingly, at the end of pregnancy Lactobacillus levels were
very low (0–16%). Further studies are needed to better clarify to what extent uterine
microbiota is involved both in embryo implantation and pregnancy evolution.

3.1.4. A Placental Microbiota: Real Life or Myth?

For years it has been assumed that placentas and fetuses are sterile compartments,
and that microbial colonization occurs only during and after delivery. The placenta has
been considered a physical and immunological barrier functioning as an interface between
maternal and fetal tissues. However, this dogma has been challenged by the advent of
molecular sequencing technologies that detected 16S rRNA in the placenta, amniotic fluid,
and meconium [65]. Stout et al. [56], for the first time, using morphological techniques, iden-
tified the presence of nonpathogenic bacteria from placenta samples both in PTB (54%) and
healthy pregnancies (26%). Aagaard et al. [66] performed a 16S ribosomal DNA-based and
whole-genome shotgun (WGS) metagenomic study, characterizing a unique placental non-
pathogenic microbiota composed of Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and
Fusobacteria, with a taxa profile similar to the human oral microbiome. Collado et al. [67]
also demonstrated the presence of microbial communities in placenta and amniotic fluid of
full-term pregnant women who underwent elective C-section, with a predominance of Pro-
teobacteria (Enterobacter, Escherichia, Shigella, Propionibacterium). In this study meconium’s
microbes seems to be dominated by the Enterobacteriaceae family, suggesting prenatally
stepwise colonization. Some studies have speculated that modification in physiological
placental microbiota may result in disease occurrence for both the mother and the newborn.
Thus, Zheng J. et al. reported that placental microbiota significantly differs between normal-
weight and macrosomic newborns, with higher abundance of Acinetobacter, Bifidobacterium,
Mycobacterium, Prevotellaceae, Dyella, Bacteroidales, and Romboutsia in macrosomia, corre-
lated with an elevation of IGF-1 and insulin and, conversely, with a reduction in leptin
levels [68]. Furthermore, Fischer L. et al. [69] hypothesized in a recent review that the
already described correlation between periodontitis and adverse pregnancy outcomes may
be due to colonization and growth of oral microorganisms into the placental microbial
niche. Tuominen H. et al. [70] also reported altered bacterial microbiota profile in Human
Papillomavirus (HPV) positive placental samples, with an increase in Staphylococcaceae and
a reduction in Enterococacceae, Veillonellaceae, Corynebacteriaceae and Moraxellaceae when com-
pared with HPV-negative placentas. However, whether the changes in bacterial microbiota
predispose one to or result from HPV infection was not clarified. However, the rationale
of the “in utero colonization” hypothesis is based prevalently on animal models [71] and
the data obtained from humans so far contrast with each other. Many researchers reported
evidence refuting the existence of a placental microbiota in healthy pregnancies and its role
in diseases occurrence. Starting from animal models, Malmuthuge et al. [72] analyzed the
ovine fetal environment and intestine and confirmed the fetal in utero sterility during the
third trimester of pregnancy. They concluded that Firmicutes and Proteobacteria reported
in placental samples could be reagent contaminations. Therefore, the risk of sample con-
tamination is the major complaint of the studies confirming the existence of a placental
microbiota; thus, collecting human placentas samples in a sterile way during the delivery
seems to be challenging. Accordingly, Leiby et al. [73] assert that the proofs of placental
microbiome existence are not sufficient either in the setting of physiological deliveries
or spontaneous PTB, due to the high probability of contamination during collection of
samples. Thus, Kevin R. et al. [74] in a cross-sectional study, including placentas collected
after caesarean delivery and technical controls to exclude environmental contamination,
documented no differences between placenta samples and controls in term of abundance of
bacterial 16S rRNA genes. Similarly, Kuperman A. et al. [75] documented no bacterial pres-
ence in 28 human placentas using the 16S rRNA gene amplification. They concluded that
the placenta environment is highly probable to be sterile or else, if a placental microbiota
exists, it is of extreme low biomass with an irrelevant influence on physiopathology issues.
Based on current data, the evidence supporting the hypothesis of a placental microbiota



Microorganisms 2021, 9, 473 7 of 15

is not strong enough to achieve a conclusive opinion. Further studies are necessary to
support a theory rather than the other; actually, the in utero colonization hypothesis—as
suggested by Perez-Muñoz et al. [76]—needs confirmation and improvement, especially
regarding the bias due to sample contamination.

3.2. Major Adverse Pregnancy Outcomes and the Role of Dysbiosis
3.2.1. Gestational Diabetes Mellitus

The rationale behind maternal metabolic adaptations is to ensure continuous energy
supply and nutrients to the developing fetus even during mother fasting periods. In the
early stage of pregnancy, there is a reduction in insulin sensitivity in peripheral body
districts (mainly muscles and adipose tissue) despite a normal insulin secretion. This
condition is called insulin resistance and helps to increase substrates availability for the
fetus and its nutritional needs. However, on the other hand, peripheral tissues show a
reduced response to insulin with the consequent increase in maternal postprandial glucose
values. In women whose pancreatic function is insufficient to overcome insulin resistance,
this adaptation could lead to GDM. GDM is a condition characterized by altered glycemic
values which occur during pregnancy in women who were not diabetic before. Risk factors
for GDM include overweight, previously GDM, a family history of type 2 diabetes and poly-
cystic ovary syndrome [77]. GDM has always raised concerns due to the related adverse
events [78] as large-for-gestational-age newborns and macrosomia [79], leading to further
birth complications [80] such as caesarean delivery, shoulder dystocia (with brachial plexus
injury and fracture) [81], PTB, hyperbilirubinemia, and pre-eclampsia. Microbiota could
play a major role in the pathogenesis of GDM. As previously described, the microbiota
can follow maternal body transformations, including metabolic ones. Several studies have
evaluated how some of the metabolic changes underlying GDM are often accompanied by
such changes in microbiota [82] in several niches where specific microbial alterations could
be used as a disease biomarkers. Zheng et al. [83] analyzed how dynamic changes of gut
microbiota, from the first trimester (T1) to the second trimester (T2), could be correlated
with later development of GDM. Particularly, women who developed GDM exhibited
fewer taxonomic and functional shifts in gut microbiota from T1 to T2 compared with
normoglycemic women. Usually, Blautia, Rothia, and Bilophila are positively associated
with inflammation, insulin resistance, and impaired glucose tolerance while Bacteroides,
Parabacteroides, and Acinetobacter are negatively associated with these alterations. Interest-
ingly, in this study there were no differences in the abundances of these microbes from T1
to T2 in GDM women, suggesting that these gut microbiota may contribute to enhanced
insulin resistance in early pregnancy in this group [83]. The oral Neisseria/Leptotrichia
ratio positively correlates to fasting blood glucose values that reflect the daily secretory
capacity of basal insulin [84]; a low intestinal Faecalibacterium/Fusobacterium ratio corre-
sponds to high blood glucose values [85] and a high vaginal Prevotella/Aerococcus ratio
correlates to high blood glucose values [85]; GDM mothers showed a positive correlation
between maternal fasting glucose and Acinetobacter abundance and a negative correlation
with Prevotella [85]. Guangyong et al. [86] investigated 52 pregnant women for differences
in gut microbiota between GDM patients with successful glycemic control (GDM1) and
patients who failed to achieve glycemic control (GDM2) with lifestyle modifications. They
showed that Blautia and Eubacterium were enriched in GDM2, whereas Faecalibacterium,
Subdoligranulum, Phascolarctobacterium, and Roseburia were enriched in the GDM1 group,
underlining how gut microbiota could participate in the definition of a successful glycemic
control, through the peroxisome proliferator-activated receptor (PPAR) signaling pathway.
However, in the literature, studies are still controversial. Ferrocino et al. [87] showed that
from the second to the third trimesters of pregnancy, there is a higher α-diversity in GDM
microbiota with an increase in Firmicutes and Bacteroidetes and reduction in Actinobac-
teria compared with non-GDM women; other authors have found a positive correlation
between Prevotella increase and HbA1c levels [88]. Finally, some data suggested that the
modifications of maternal microbiota can be transmitted in utero to the fetus through the
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vertical line [89], causing the predisposition of the newborn to develop metabolic syndrome
during childhood [90,91].

3.2.2. Pre-eclampsia

PE is a pregnancy or postpartum pathology characterized by the new onset of hyper-
tension (systolic blood pressure >140 mmHg and/or diastolic blood pressure >90 mmHg)
with or without proteinuria and multiorgan dysfunction [92]. At the basis of the patho-
genesis of PE, there is an altered flow exchange between the uterus and placenta with a
consequent reduction in oxygen supply to placental and fetal tissues [93]. The low oxygen
exchanges determine oxidative stress and placental ischemia. Local placental alterations
stimulate the release of antiangiogenic factors in the systemic maternal blood circulation
with successive vascular dysfunction (arterial hypertension and proteinuria) [94]. However,
some aspects of the genesis of PE remain unclear. Recent studies have investigated the role
of gut microbiota in the onset of this condition. Women with PE showed high levels of
opportunistic pathogens (i.e., Fusobacterium and Veillonella) and less beneficial bacteria (i.e.,
Faecalibacterium and Akkermansia) compared to control [95]. This microbiota imbalance is
also related to blood pressure levels and markers of kidney dysfunction. Liu et al. described
significant differences in the composition of gut microbiota of pregnant women with and
without PE, suggesting a possible relationship between dysbiosis and the development
of the disease. Lv et al. [96] analyzed gut microbiota changes before and after delivery in
early-onset PE and normotensive women, showing a correlation with both maternal blood
pressure levels and newborn features (e.g., Apgar score or newborn birth weight). In fact,
they found an association between high maternal blood pressure and liver enzyme levels
with increased levels of Blautia and Ruminococcus (also associated with obesity and type 2
diabetes) [97,98] and Bilophila and Fusobacterium. On the other hand, they showed that in
PE women there was a reduction in Faecalibacterium, Methanobrevibacter and Akkermansia
compared to controls. Reduced levels of short-chain fatty acid (SCFA)-producing bacte-
ria (Faecalibacterium) and anti-inflammatory bacteria (Akkermansia) would contribute to
increase the risk of high blood pressure levels [99]. In fact, SCFAs are known to reduce sys-
temic blood pressure [100] and inflammation both in mothers and newborns [101]. Chronic
inflammation plays an important role in the pathogenesis of PE and microbiota-derived
metabolites, such as SCFAs and lipopolysaccharides (LPSs), can contribute to the balance
between pro- and anti-inflammatory statuses. In particular, SCFAs are known to reduce
both systemic blood pressure and inflammation. LPS, instead, is a well-known inflamma-
tory factor and it has been observed that in PE patients fecal and plasma concentrations
of LPSs [102] are higher than in healthy controls. Indeed, Wang et al. [103] found that
in PE women in the third trimester there is an increase in Bacteroidetes, Gram-negative
bacteria which contribute to LPS biosynthesis, and a significant reduction in Firmicutes,
Gram-positive bacteria able to produce SCFAs. Moreover, microbiota imbalances in PE
women are related not only with blood pressure levels but also with markers of kidney
dysfunction [95]. PE is not only a pregnancy disease; women that have an episode of PE
show high predispositions to cardiovascular and renal diseases for their entire lives. For
these reasons, it appears of key importance to understand the role of microbiota and other
factors involved in the etiopathogenesis of PE.

3.2.3. Preterm Birth

The major scientific evidence on the correlation between dysbiosis and negative preg-
nancy outcomes are focused on PTB. PTB refers to a delivery that occurs before 37 weeks
of gestation. There are several risk factors/predictors for this condition even if the exact
etiology is not completely understood yet [104]. It is known that up to 70–80% of PTBs
are spontaneous and the remaining 20 to 30% are iatrogenic. It is possible to identify
several risk factors that predispose one to PTB, such as cigarette smoking, unbalanced
diet [105], excessive weight gain/loss [106], previous episodes of PTB [105], short cervical
length [107,108] detected in the second trimester, decidual hemorrhage, and maternal or
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fetal stress [109]. There is a consensus about the protective role played by Lactobacillus
spp. in the vaginal microbiota of healthy reproductive-age women. An alteration of this
vaginal microbiota homeostasis during pregnancy seems to be correlated with PTB. Shi
et al. [110], using a 16s ribosomal RNA sequence method, analyzed samples of vaginal
microbiota from 64 pregnant women to evaluate a possible correlation between premature
labor, preterm delivery, and vaginal microbiota alterations. They found no differences in
vaginal biomarkers and in the prevalence of Lactobacillus and other species during preg-
nancy between threatened premature labor and nonthreatened premature labor groups.
However, the loss of Lactobacillus spp. in vaginal microbiota during pregnancy could
predict preterm delivery. Kacerovsky et al. [111] showed the association between L. crispa-
tus-dominated cervical microbiota and a lower risk of intra-amniotic complications and
early-onset sepsis of newborns with PPROM in 311 women. The presence of L. crispatus in
the cervical microbiota seems to protect pregnant women from intra-amniotic infections.
They also showed that Ureaplasma spp. in vaginal microbiota could be a risk factor for
preterm delivery. In fact, Ureaplasma spp. represent the most commonly identified bacteria
in the amniotic fluid in PPROM. In a large cohort study, Doyle et al. [112] evaluated the
correlation between the placental and fetal tissue microbiome and birth outcomes. They
showed that specific combinations of bacteria were associated with severe chorioamnionitis
(Mycoplasmataceae, Leptotrichiaceae, and Veillonaceae), shorter duration of pregnancy (Fu-
sobacterium nucleatum, Ureaplasma spp. and Gemella asaccharolytica) and smaller newborn
size (Sneathia sanguinegens, Prevotella copri, Lachnospiraceae spp., and Phascolarctobacterium
succinatutens). Kindinger et al. [113] focused on the importance of the species-specific
benefits of different Lactobacillus spp. during pregnancy to predict the risk of preterm/term
birth. They showed how L. crispatus abundance in maternal vaginal microbiota seems
to reduce the risk of PTB compared to L. iners, which is linked with an increased risk of
preterm delivery (<34 weeks). One of the most validated etiologies in the pathogenesis of
PTB is certainly the infection via the ascending pathway from the vagina. Bacterial vagi-
nosis and vaginitis, indeed, represent one of the major known risk factors for PTB. From
the vagina, bacteria could reach the fetal environment and determine amniotic infections
that consequently activate the inflammatory cascade [114]. A novel hypothesis proposed
by Lokken et al. [115] focused on the scant efficacy of the treatment of vaginal infections
during pregnancy on prevention of spontaneous PTB. They suggested that spontaneous
PTB could be mostly related to vaginal microbiota at the time of conception, more than
they are to vaginal infections in later phases. Dysbiosis in such an early phase could
compromise the protective effects of cervical mucus, leading to microbial colonization of
the endometrial surface before fetal membrane development, causing low-level inflam-
mation in the decidua, placenta, and fetal membranes which finally could determine a
chronic inflammatory status that it is associated with PTB and also with low birth weight,
sepsis, bronchopulmonary dysplasia, and neonatal mortality. The production of active
cytokines and enzymes stimulates the maternal inflammatory response with the premature
activation of pathways involved in labor. The premature or pathological activation of
NF-kB stimulates myometrial contractions, cervical remodeling, membrane rupture and
consequent PTB [116]. Prince et al. [117] hypothesized that placental membranes would
retain a microbiome community that varies in association with PTB and chorioamnionitis.
You et al. [118] showed that the number and composition of bacteria in blood samples of
women with PTB is different from women with term delivery. Particularly, several taxa,
such as Bacteroides, Lactobacillus, Delftia, and Pseudomonas, exhibited differential enrich-
ments between women with and without PTB. In fact, in PTB there is an increased number
of Firmicutes and Bacteroidetes and a decreased number of Proteobacteria compared to
controls. The ascension of pathogens from the vagina does not represent the only mecha-
nism at the basis of PTB pathogenesis. Hematogenous spread of microbes with consequent
placental colonization has also been proposed as a potential secondary route of invasion
and infection leading to PTB [119]. The similarity between the oral and placental micro-
biome suggests that the placental microbiome becomes colonized primarily as the result of
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hematogenous bacterial spread via the circulation [120]. However, contradictory data on
maternal periodontitis, that could represent an independent risk factor for PTB, is present
in the literature. Hongyu et al. [121] hypothesized that periodontitis could act as a distant
reservoir of microbes and inflammatory mediators contributing to PTB induction through
secretion of proinflammatory cytokines [122–125]. In conclusion, dysbiosis seems to be
related to PTB; however, further studies are necessary to better understand the correlation
between this pregnancy complication and the specific microbiota alteration.

4. Discussion and Future Outlooks

Recent studies have shown the presence of microbial material in utero, endometrium,
placenta, amniotic fluid, and meconium, questioning the “sterile womb paradigm” and
fortifying the “in utero colonization hypothesis”. Results are still contrasting in the litera-
ture, but the eventual confirmation of the presence of microbiota within the maternal–fetal
interface could open new perspectives strategies in the treatment and prevention of preg-
nancy pathologies and complications. Microbiota can regulate our immune, endocrine,
and metabolic systems during our entire life so it is not surprising that it may also govern
some of the pathogenetic mechanisms of pregnancy-related pathologies and complications.
However, further investigations are necessary to overcome some of the bias that is currently
present in the literature.

In the future, a better understanding of the microbial signature of healthy and patho-
logical pregnancies will help to identify women at risk of pregnancy-related complications
in an early stage of pregnancy and, maybe, also before conception, using non-invasive
methods (i.e., fecal or salivary microbial characterization). This improved early diagnosis
will also offer new preventive strategies based on microbiota modulation through a per-
sonalized nutritional plan including the use of prebiotics and probiotics, selected on the
specific individual dysbiosis, with the possibility of monitoring the effects on microbiota
during the treatment. Based on the vertical transmission of microbiota, the modulation of
maternal microbiota could also help to reduce the risk of the newborn to develop noncom-
municable diseases, such as metabolic diseases, later in life and could be considered the
first form of antenatal primary prevention. Future research will evaluate these aspects and
explore the real potential of microbiota modulation.
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