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The profound impact of the gut microbiome on host health has led to a revolution in
biomedical research, motivating researchers from disparate fields to define the specific
molecular mechanisms that mediate host-beneficial effects. The advent of genomic
technologies allied to the use of model microbiomes in gnotobiotic mouse models has
transformed our understanding of intestinal microbial ecology and the impact of the
microbiome on the host. However, despite incredible advances, our understanding of
the host-microbiome dialogue that shapes host physiology is still in its infancy. Progress
has been limited by challenges associated with developing model systems that are both
tractable enough to provide key mechanistic insights while also reflecting the enormous
complexity of the gut ecosystem. Simplified model microbiomes have facilitated detailed
interrogation of transcriptional and metabolic functions of the microbiome but do not
recapitulate the interactions seen in complex communities. Conversely, intact complex
communities from mice or humans provide a more physiologically relevant community
type, but can limit our ability to uncover high-resolution insights into microbiome
function. Moreover, complex microbiomes from lab-derived mice or humans often do not
readily imprint human-like phenotypes. Therefore, improved model microbiomes that are
highly defined and tractable, but that more accurately recapitulate human microbiome-
induced phenotypic variation are required to improve understanding of fundamental
processes governing host-microbiome mutualism. This improved understanding will
enhance the translational relevance of studies that address how the microbiome
promotes host health and influences disease states. Microbial exposures in wild mice,
both symbiotic and infectious in nature, have recently been established to more readily
recapitulate human-like phenotypes. The development of synthetic model communities
from such “wild mice” therefore represents an attractive strategy to overcome the
limitations of current approaches. Advances in microbial culturing approaches that
allow for the generation of large and diverse libraries of isolates, coupled to ever more
affordable large-scale genomic sequencing, mean that we are now ideally positioned to
develop such systems. Furthermore, the development of sophisticated in vitro systems
is allowing for detailed insights into host-microbiome interactions to be obtained. Here
we discuss the need to leverage such approaches and highlight key challenges that
remain to be addressed.

Keywords: microbiome, model system, synthetic communities, gnotobiotic, wild mice, translation, model
microbial communities
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INTRODUCTION

As a species, humans are surrounded by and inhabited by trillions
of microorganisms, encompassing bacteria, fungi, archaea, other
eukaryotic organisms such as parasites and protists, as well as
viruses (Gill et al., 2006; Parfrey et al., 2011; Hallen-Adams
and Suhr, 2017; Koskinen et al., 2017; Nkamga et al., 2017;
Gregory et al., 2020) that are collectively referred to as the
microbiome. Decades of work have established the profound
role of the microbiome in shaping host physiology and its
capacity to regulate a wide variety of health and disease
states. The rapid growth of microbiome research, spurred by
technological innovations, has resulted in remarkable discoveries
that have altered our conceptualization of the role played by
this complex ecosystem in host health. Furthermore, these
efforts have uncovered several features that highlight the
therapeutic potential of the microbiome. First, dysfunction of
the microbiome or host responses to the microbiome have
been implicated in the pathogenesis of myriad human diseases,
including, undernutrition and its associated maladies (Smith
M. I. et al., 2013; Kau et al., 2015; Blanton et al., 2016;
Charbonneau et al., 2016; Wagner et al., 2016; Cowardin et al.,
2019), metabolic diseases such as obesity (Ley et al., 2005;
Turnbaugh et al., 2006, 2008, 2009b; Hildebrandt et al., 2009;
Ridaura et al., 2013), cardiovascular disease (Kelly et al., 2016),
cancer and its susceptibility to treatment (Arthur et al., 2012;
Buc et al., 2013; Sivan et al., 2015; Vétizou et al., 2015), food
allergy (Feehley et al., 2019), multiple sclerosis (Berer et al.,
2017; Cekanaviciute et al., 2017), and inflammatory bowel disease
(IBD) (Manichanh et al., 2006; Frank et al., 2007; Gevers et al.,
2014; Britton et al., 2019). Second, there is significant inter-
personal variation in microbiome composition and/or function
across individuals (Turnbaugh et al., 2009a; Qin et al., 2010;
Schloissnig et al., 2013) that can impact host phenotypes, and
thus, microbiome composition represents a personalized risk
factor for the development of disease (Smith M. I. et al., 2013;
Subramanian et al., 2014; Alavi et al., 2020). Third, microbiota
repair, where specific microbial taxa or microbial consortia are
introduced to communities lacking these microbes, has proven
effective in restoration of beneficial microbiome-mediated effects
(van Nood et al., 2013; Buffie et al., 2015; Blanton et al., 2016;
Caballero et al., 2017; Di Luccia et al., 2020), underscoring the
potential of microbiome manipulation for therapy.

This has prompted a flurry of exploration from researchers
across a wide-array of disciplines to provide a systematic
understanding of the microbiome and its interaction with the
host, especially in defining the features that shape microbiome
composition and function, as well as uncovering how the
microbiome imparts its beneficial or deleterious effects on
host physiology. Investigation of these processes has typically
followed a trajectory beginning with identifying disruptions to
microbiome composition, commonly referred to as dysbiosis,
followed by in vivo animal studies whereby transplantation of
microbiomes from donors exhibiting a phenotype of interest
is used to assess how much, if any, of the donor phenotype
can be transmitted by the microbiome. These studies are
essential to establish a causal role for the microbiome and

microbe(s) in question. This process is exemplified by studies
of malnutrition (obesity and undernutrition) and IBD. Obesity
is associated with an altered gut microbiome composition (Ley
et al., 2005; Turnbaugh et al., 2008, 2009b; Hildebrandt et al.,
2009), and the gut microbiome from these individuals or obese
mice promotes increased adiposity and metabolic dysfunction
upon transplantation to germ-free recipient mice relative to
healthy donor controls (Turnbaugh et al., 2006; Ridaura
et al., 2013). Likewise, individuals suffering from undernutrition
have disrupted gut microbiomes, and transplantation of fecal
microbiomes from such donors recapitulates features of weight
loss/cachexia in recipient mice relative to control donors (Smith
M. I. et al., 2013; Kau et al., 2015; Blanton et al., 2016; Wagner
et al., 2016). Although there remains some debate about whether
or not IBD patients have distinct microbiome compositions,
gut microbiomes from IBD patients elicit more severe intestinal
inflammation in gnotobiotic IBD models than those from healthy
controls (Gevers et al., 2014; Britton et al., 2019; Lloyd-Price
et al., 2019). In addition to establishing a causal role for the
microbiome in such diseases, model systems have also been
leveraged to elucidate how specific microbiome members impact
the progression or prevention of diseases. These efforts have
yielded detailed insights that would have been likely impossible
without a tractable model system. For example, particular strains
of E. coli containing the pathogenicity island pks have been
identified as being enriched in patients with colorectal cancer,
and gnotobiotic mouse models have been utilized to demonstrate
causality for these specific strains in the disease (Arthur et al.,
2012; Buc et al., 2013). Enterotoxigenic strains of B. fragilis have
also been linked to colorectal cancer development (Toprak et al.,
2006; Wu et al., 2009), as well as aspects of undernutrition
(Wagner et al., 2016). Species of Clostridium and the Bacteroides
have also been implicated in limiting the severity of food allergy
(Atarashi et al., 2011; Stefka et al., 2014; Abdel-Gadir et al.,
2019). Animal model systems have thus proven essential in
determining causal roles for the microbiome in shaping disease
susceptibility and facilitating the precise delineation of host-
microbiome interactions that mediate these effects on host
physiology. As such, they remain an irreplaceable component of
the microbiome researcher’s toolkit.

While the advances to date have been captivating, there is still
a dearth of information regarding the specific gut microbes that
mediate the effects of the microbiome on the host. Moreover,
despite the enormous progress that they have facilitated, current
models have deficiencies that limit their translational relevance.
As targeted and rational microbiome manipulation becomes
an increasingly attractive approach for therapy, tractable and
physiologically relevant model systems to interrogate host-
microbiome interactions are needed. Here we will discuss current
challenges and describe a path to addressing this need in
microbiome research through the creation of new and improved
model systems to interrogate host-microbiome interactions.
We will focus our attention primarily on the effects of gut
bacteria on host physiology. However, it is increasingly clear that
intestinal fungi, viruses, archaea, and other eukaryotic species can
profoundly impact host phenotypes, such as promoting intestinal
immune system maturation and regulating disease susceptibility,
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often able to imprint phenotypic responses equivalent to gut
bacteria (Kernbauer et al., 2014; Chudnovskiy et al., 2016;
Escalante et al., 2016; Lin et al., 2020; Yeung et al., 2020; Dallari
et al., 2021). Moreover, these agents do not act in isolation, and
their direct or indirect interactions may regulate host health
as has been demonstrated in murine models of inflammatory
bowel disease (IBD) and parasitic infection (Cadwell et al., 2010;
Hayes et al., 2010). It would therefore be remiss to ignore the
contributions of these oft-overlooked microbiome members in
our conceptualization of the gut ecosystem and its effects on the
host, as highlighted by others (Norman et al., 2014; Reynolds
et al., 2015; Runge and Rosshart, 2021).

Mouse Models for the Study of
Host-Microbiome Interactions
Model systems have been widely employed by researchers going
all the way back to the days of Gregor Mendel’s use of pea
plants to study inherited traits (Ellis et al., 2011). In order to
define paradigms of host-microbiome mutualism, researchers
have utilized a variety of organisms (Reyniers and Sacksteder,
1958; Smith et al., 2007; Ericsson, 2019), ranging from Drosophila
(Lee and Brey, 2013), Hydra (Augustin et al., 2012), zebrafish
(Kanther and Rawls, 2010; Stagaman et al., 2020) and squid
(Nyholm and McFall-Ngai, 2004; McFall-Ngai, 2014) to mice
and rats (Reyniers and Sacksteder, 1958; Smith et al., 2007),
and pigs (Vlasova et al., 2018; Gehrig et al., 2019). This has
enabled fundamental insights into the relationship between the
host and the resident microbiome and the identification of
features that typify these interactions, akin to Koch’s postulates
that describe the paradigm that defines microbial pathogenesis
(Neville et al., 2018). Systems like Drosophila, Hydra, squid, and
zebrafish offer numerous advantages including the relative ease
of husbandry, the ability to study large numbers of offspring, less
complex and more readily cultivated microbiomes for study than
higher organisms, the availability of whole-organism imaging,
etc. Pioneering studies in these systems have uncovered principles
that govern host-microbiome interactions, including (but not
limited to): (i) a role for gut symbionts in the coordination of
tissue developmental programs and the microbial components
responsible for these effects (particularly microbial cell wall
products such as peptidoglycan and LPS, as well as microbial
metabolites like acetate) (Koropatnick et al., 2004; Buchon et al.,
2009; Shin et al., 2011; Troll et al., 2018), (ii) host adaptations
to the microbiome that limit the inflammatory potential of
microbiota-derived factors (Bates et al., 2007; Lhocine et al.,
2008; Rader et al., 2012), (iii) host regulation of microbiome
composition (Rawls et al., 2006; Ryu et al., 2008; Fraune
et al., 2009), (iv) gut symbiont factors driving host adaptation
(Rawls et al., 2007; Koehler et al., 2018), and (v) microbiome
contributions to growth and nutrient acquisition (Storelli et al.,
2011; Semova et al., 2012; Schwarzer et al., 2016). Gnotobiotic
pigs have now become more widely utilized, which has allowed
the study of these processes in an animal system with physiology
more similar to that of humans than provided by commonly used
murine models. While pig models present many challenges due
to their size, they offer several advantages over more commonly

used model systems, including more human-like physiology,
susceptibility to many human-relevant infectious agents, greater
microbiome complexity, and therefore they offer important
insights of more translational relevance (Vlasova et al., 2018;
Ericsson, 2019; Gehrig et al., 2019). Although less commonly
employed due to the more challenging and expensive nature
of their husbandry, gnotobiotic pig models are proving to be a
highly valuable component of microbiome research.

Despite the utility of these other model systems, the mouse
has reigned supreme in biomedical research, especially for
microbiome studies. The emergence of the mouse as a model
organism can be traced to the early 1900s with the house mouse,
Mus musculus being used to study Mendelian genetics (Castle
and Little, 1910), followed shortly thereafter by the development
of the first inbred Mus musculus strain in 1929 by C.C. Little at
what is now known as Jackson labs (Phifer-Rixey and Nachman,
2015). Although models in other small animals have been widely
used, including rats (Modlinska and Pisula, 2020), hamsters
(Miao et al., 2019), and gerbils (Bleich et al., 2010), none are
quite as adapted for the breadth of study possible with mice.
Mice offer several advantages that include their relatively quick
gestation period, their size, which allows for easier housing and
manipulation, the plethora of tools for phenotypic assessment
of the mouse, the availability of sophisticated tools for genetic
modification to interrogate the role played by distinct genes and
cell types, and most importantly the availability of approaches to
raise mice in germ-free settings. Furthermore, the availability of
inbred strains of mice and standardized, albeit imperfect, housing
and husbandry that helps to minimize unwanted variation, allows
for easier comparison of data from different researchers.

However, mirroring the interpersonal variation in human
microbiomes, model organisms display significant variation
in the composition of their microbiomes, which in turn
contributes to phenotypic variation reported in mouse models,
especially in studies associated with immune activation. Several
notable examples highlight how microbiome variation can
impact phenotypes in murine models: (i) microbiome mediated
spontaneous colitis and metabolic dysfunction has been reported
in TLR5-/- mice by some, but not by others (Vijay-Kumar et al.,
2007, 2010; Letran et al., 2011); (ii) the aggravation of colitis
and development of communicable disease in NLRP6-/- mice is
critically dependent on the microbiome context in which it is
studied (Elinav et al., 2011; Lemire et al., 2017; Mamantopoulos
et al., 2017); (iii) IL-10-/- mice develop a spontaneous colitis in
some animal facilities, yet they remain largely free of disease in
others depending on the presence or absence of select microbes
(Kuhn et al., 1993; Nagalingam et al., 2013; Seregin et al.,
2017); (iv) DSS-induced colitis models display significantly varied
kinetics and severity depending on microbiome composition
(Forster et al., 2021); (v) diabetes in the Non-Obese Diabetic
(NOD) type 1 diabetes model is regulated by various parameters,
including the presence of specific gut microbes or infectious
agents (Wilberz et al., 1991; Takei et al., 1992; Pozzilli et al.,
1993; Kriegel et al., 2011; Markle et al., 2013; Yurkovetskiy
et al., 2013). Although not an exhaustive list, these examples
demonstrate that variation in the gut microbiome can lead to
disparate phenotypic outcomes in mice. Experimental variation,
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whether it be technical or biological in origin, has long been
seen as a thorn in the side of researchers, contributing in part
to issues of reproducibility in science (von Kortzfleisch et al.,
2020). To limit the impact of overt pathogens, and the large-scale
microbiome variation across different animal facilities, efforts
were made to create a more standardized murine system that
would limit issues of reproducibility. Thus, the concept of Specific
Pathogen Free (SPF) mice was born. SPF mice are free of certain
(but not all) pathogenic organisms or microorganisms capable
of interfering with experimental outcomes (Lane-Petter, 1962).
These mice provide the advantage of controlling the health
status of the animal and allowing for better standardization
between experiments, labs, and institutions. While the SPF
mouse was adopted with the intention of allowing for more
reproducible results, it has been shown that microbiome and
phenotypic variability also exists between SPF mouse colonies
from commercial vendors, as SPF only determines what is
excluded, but not what should be present (Smith et al., 2007;
Ivanov et al., 2009; Denning et al., 2011; Rosshart et al., 2017).

Model Gut Microbiomes
To counteract the effects of microbiome variation researchers
have turned to the use of defined reference communities.
Beginning in the 1960s, Dubos et al. (1965), Schaedler et al.
(1965), and Dewhirst et al. (1999) developed small model
communities that were used to standardize the microbiome of
animal models, mostly to be used in conventionally raised mice
(Box 1). In an effort to move toward systems with greater
control over community composition an ever-increasing number
of researchers have begun to adopt germ-free/gnotobiotic models
first established more than 60 years ago (Trexler and Reynolds,
1957; Gordon and Pesti, 1971). Such models allow the study of
communities of interest without unwanted invasion by microbes

BOX 1 | Common terminology used to describe the colonization
status/microbiome communities commonly found in murine model systems.
Germ-free (GF)-Mice that are raised devoid of all known microbes.
Gnotobiotic-Term used to denote GF mice that are now colonized with a
defined community of microbes where all members are known such as the
Altered Schaedler Flora and the use of synthetic bacterial communities.
Specific Pathogen Free (SPF)-Conventional mice that are devoid of
particular known pathogens such as bacterial, viral, fungal, and parasitic
inhabitants that could affect the health of the mouse colony and the validity of
experimental outcomes.
Conventional mice-Laboratory mice that are raised in the presence of a gut
microbiome, and are not necessarily considered free of pathogens (they may
have inhabitants such as murine norovirus and Helicobacter hepaticus) but
are generally considered healthy.
Wild mice-These are mice that have been captured in a non-lab environment
(in the wild) and then transferred to a lab for study. Such mice can be mated
with other wild-caught mice for study over several generations. Inbred lines of
mice harboring wild-mouse microbiomes, often referred to as “WildR mice”
(Rosshart et al., 2017), can be generated through microbial transfer from wild
mice to inbred strains of lab mice to limit the effects of genetic variation.
Synthetic communities-Communities constructed from cultured isolates
from naturally occurring complex microbiomes. These communities may
represent isolates from a single donor, or isolates obtained from many different
donors. Moreover, they may be constructed from subsets of all
cultured isolates.

present in the environment. Pioneering studies using small
communities, ranging from mono-associations (colonization
with a single microbe) that establish the roles of individual
genes and metabolic pathways in bacteria (Rey et al., 2010;
Koppel et al., 2018; Glowacki et al., 2020) to more complex
communities with up to 20 members (Mahowald et al., 2009;
Faith et al., 2011, 2014; Geuking et al., 2011; Cahenzli et al.,
2013; McNulty et al., 2013; Sefik et al., 2015; Brugiroux
et al., 2016; Geva-Zatorsky et al., 2017; Becattini et al., 2021),
reduced the complexity of the system (Figure 1). These
simplified models have provided high-resolution insights into the
ecological, transcriptional, and metabolic responses of microbes
to environmental variations (e.g., diet, inflammation) (McNulty
et al., 2013; Ridaura et al., 2013; Becattini et al., 2021), uncovered
microbe-microbe interactions that shape community function
(Mahowald et al., 2009; Caballero et al., 2017), and highlighted
a role for microbiome members in host growth (Blanton et al.,
2016; Charbonneau et al., 2016; Schwarzer et al., 2016), weight
gain and metabolic health (Fei and Zhao, 2013; Ridaura et al.,
2013), pathogen resistance (Fukuda et al., 2011; Hsiao et al., 2014;
Alavi et al., 2020), as well as specific enzymatic functions that
directly impact host health (Skye et al., 2018; Song et al., 2020).
Thus, model communities studied in germ-free/gnotobiotic mice
have provided key insights into the several facets of microbiome
function and host-microbiome interactions.

The power of the germ-free mouse as a model system
may be best exemplified by the advances they have facilitated
in understanding immune-microbiome mutualism (reviewed
extensively in Honda and Littman, 2016; Ost and Round, 2018;
McCoy et al., 2019; Ahern and Maloy, 2020; Ansaldo et al.,
2021). These studies have revealed the profound impact of the
gut microbiome on immune function and provided detailed
insights into the mechanisms that underlie these interactions.
The absence of a microbiome leads to the development of a
drastically altered intestinal immune system with striking defects
in adaptive immune function including reductions in lymphocyte
numbers and activation within the intestine and mesenteric
lymph nodes, and an enhanced susceptibility to infection by
certain pathogens (Abrams and Bishop, 1966; Thompson and
Trexler, 1971; Imaoka et al., 1996; Macpherson and Harris,
2004). Notably, the microbiome has also been implicated in the
shaping of the innate immune compartment, including aspects
of trained immunity (reviewed in McCoy et al., 2019; Negi
et al., 2019). Intensive efforts have subsequently identified specific
microbial taxa/microbial consortia, and their derived molecules
that influence the intestinal immune system of gnotobiotic mice,
especially the intestinal T cell compartment. Colonizing germ-
free mice with microbial consortia like the Altered Schaedler
flora (ASF) and select Clostridium species, or mono-colonization
with specific members of the Bacteroides genus (Bacteroides
thetaiotaomicron, Bacteroides caccae, and Bacteroides fragilis)
or Bifidobacteria (B. bifidum), coordinates the development
of colonic regulatory T cells, an anti-inflammatory population
of CD4+ T cells that maintain intestinal homeostasis (Round
and Mazmanian, 2010; Atarashi et al., 2011, 2013; Geuking
et al., 2011; Faith et al., 2014; Sefik et al., 2015; Verma et al.,
2018; Wegorzewska et al., 2019). Furthermore, cellular products
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FIGURE 1 | Current and emerging systems to study host-gut microbiome interactions. Prevalent model systems in use to study physiological effects of gut
microbiome-host interactions and representative community complexity within each model are shown (teal shaded area). The general usefulness of these systems
based on physiologically relevant outcomes, increases left to right. At the same time, the ability to manipulate or define the community structure of these models
decreases along the gradient, driving the need for a medium where physiologic relevance and tractability reach an optimum. Current technologies striving toward this
desired model include the use of germ free mice where synthetic communities of known microorganisms are used for colonization, as well as the use of emerging
lab-on-chip approaches (pink shaded area) (FMT, fecal microbiome transplant; Mono, monocolonization; Abx, antibiotics).

derived from these microbes, like polysaccharide A (PSA) (Round
and Mazmanian, 2010) or β-glucan/galactan polysaccharides
(Verma et al., 2018), short-chain fatty acids (SCFA; gut microbial
fermentation products) (Arpaia et al., 2013; Furusawa et al., 2013;
Smith P. M. et al., 2013) or microbially-transformed bile acids
(Song et al., 2020) also regulate the size and function of colonic
regulatory T cell pools. Likewise, Th17 cell differentiation can
be coordinated by distinct microbes, most notably segmented
filamentous bacteria (SFB) (Gaboriau-Routhiau et al., 2009;
Ivanov et al., 2009) in addition to Bifidobacterium adolescentis
(Tan et al., 2016) or particular strains of E. coli (Britton et al.,
2020), which in turn can improve protective immunity against
pathogens (Ivanov et al., 2009). Intraepithelial T cell populations
are also impacted by gut microbes, with SFB able to shape the
activation status of this immune compartment (Umesaki et al.,
1999), while Lactobacillus reuteri promotes the development of
CD4+ CD8αα + intraepithelial lymphocytes (IELs) by agonizing
the aryl hydrocarbon pathway (Cervantes-Barragan et al., 2017).

Despite the enormous power of these systems, they have
several limitations. First, the physiologic relevance of model
communities can be hard to decipher. Second, due to their
low diversity, they may fail to identify redundancy in effector
functions that exist in larger communities, inappropriately
attributing essential roles to particular microbes. Third, most
groups study a limited number of strains of each species, which

ignores the enormous strain-level variation present in the gut
microbiome. To overcome these limitations, models where mice
are colonized with human gut microbiomes from healthy or
diseased individuals (“humanized” mice) that could transmit
features of their donor’s health status (Raibaud et al., 1980;
Turnbaugh et al., 2009b; Ridaura et al., 2013; Smith M. I. et al.,
2013; Kau et al., 2015; Berer et al., 2017; Cekanaviciute et al.,
2017; Britton et al., 2019; Feehley et al., 2019) have been widely
adopted. The microbiomes of such humanized mice are typically
more diverse than model communities and comprising distinct
strains depending on the individual donor. Moreover, they
represent a system with clear translational relevance, albeit with
less defined community membership. For example, microbiome
transplantation from individuals suffering from IBD (Britton
et al., 2019), food allergy (Feehley et al., 2019), undernutrition
(Smith M. I. et al., 2013; Kau et al., 2015; Wagner et al.,
2016), obesity (Ridaura et al., 2013), and multiple sclerosis
(Berer et al., 2017; Cekanaviciute et al., 2017), among other
conditions, could enhance the susceptibility to such diseases in
recipient gnotobiotic mice. However, despite all their advantages,
significant caveats to the use of human-derived microbiomes
exist that suggest a need for new and improved approaches. First,
these communities are typically neither defined nor cultured
(with exceptions; Wagner et al., 2016; Britton et al., 2019, 2020),
limiting the establishment of causality for specific microbes
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and/or microbial products. Second, while it is clear that microbes
derived from humans can modulate particular facets of the
murine immune system, host-specificity in such interactions
(Atarashi et al., 2015) means that human-derived microbiota
may not shape immune responses equivalent to murine-derived
microbes (Gaboriau-Routhiau et al., 2009; Chung et al., 2012;
Lundberg et al., 2020). Third, human-derived microbiomes
are not as well adapted to the murine intestine as mouse-
derived communities. Elegant studies using gnotobiotic mice
colonized with either human or murine-derived microbiomes
demonstrated that the murine microbiome exhibited superior
fitness in the mouse intestine, and could displace many members
of a human microbiome from a stably colonized mouse upon
co-housing (Seedorf et al., 2014). Finally, the overall community
composition and structure in the recipient mouse may vary
significantly from the donor, both in terms of membership
and microbial abundance, potentially over or understating the
contributions of particular microbes (Turnbaugh et al., 2009b;
Chung et al., 2012; Krych et al., 2013; Xiao et al., 2015; Lundberg
et al., 2020). While there is obvious value to these approaches,
and a wealth of information has been obtained from their use, it
is important to consider that key elements of host-microbiome
interactions may be missed by studying microbes outside of their
natural environment (i.e., human microbes in the mouse).

While no single system is perfectly suited to address all
goals, an optimized model to study host-microbiome interactions
should encompass as many of the following features as possible:
(i) Completely defined microbiome with high-quality reference
genomes for each organism. Such systems allow high-resolution
strain quantification and gene expression profiling with strain-
level gene expression assessment; (ii) culturable and genetically
manipulable strains. If all strains have been captured in culture
in a clonally arrayed format, it allows for the construction of
consortia of defined membership to determine how specific
members impact the phenotype being studied (Goodman et al.,
2011; Ahern et al., 2014; Faith et al., 2014), commonly referred
to as synthetic communities. Moreover, the availability of tools
for genetic modification allows for unambiguous assessment of
the role for genes of interest, which has contributed to the
significant insights afforded by members of the Bacteroides, for
which sophisticated tools are available (Anderson and Salyers,
1989; Koropatkin et al., 2008; Goodman et al., 2009; Mimee
et al., 2015; Wu et al., 2015; Lim et al., 2017); (iii) a genetically
tractable host that allows for the interrogation of host pathways
that mediate the effects of specific microbes/microbial products;
(iv) a germ-free host that allows for high-level control over
the composition of the community. The utility of germ-free
mice for advancing microbiome studies is hard to overstate,
and coupled with the ability to generate host mutants to
dissect pathways of host-microbiome interactions is invaluable;
and (v) microbiome whose members and imprinted host
responses mirror the human population being modeled. Such a
system would allow a high-resolution examination of complex
communities that imprint human-like phenotypic variation,
overcoming the shortcomings of the systems currently in vogue.
An idealized system will capture all the advantages of the
systems described above and is represented in Figure 1. While

a model that captures all these parameters remains aspirational,
advances in microbial culturing and isolation, allied to genomic
approaches that continue to decrease in cost while increasing
in output mean that large libraries of cultured isolates can
now be generated and characterized in wild-type and genetically
modified gnotobiotic mice.

One of the primary challenges has been the identification
of murine microbiomes that promote human-like phenotypes.
Recent ground-breaking studies from a small number of labs
have revealed that the microbial inhabitants of mice in the
wild (or in pet stores) promote the acquisition of a human-
like immune system in lab mice (Figure 1), recapitulating the
activated and antigen-experienced phenotype found in humans
(Beura et al., 2016; Rosshart et al., 2017, 2019; Lin et al.,
2020; Yeung et al., 2020) by contrast with the typical immune
system of lab mice that has a phenotype more akin to that
of neonates (Beura et al., 2016). Wild mouse microbiomes
lead to a profound reshaping of the host immune system,
promoting a more human-like phenotype, most potently with
respect to boosting T cells with effector/memory phenotypes.
These alterations in immune phenotype are characterized by
an expansion in systemic and tissue-resident memory CD8+ T
cell populations, increases in effector CD4+ T cells (Th1,
Th2, Th17, and Tregs), and innate immune populations such
as innate-lymphoid cells and neutrophils (Beura et al., 2016;
Lin et al., 2020; Yeung et al., 2020). Moreover, the levels of
serum immunoglobulins and select cytokines are also increased
(Beura et al., 2016). Consistent with this, these animals were
found to be more resistant to viral infections (Influenza A),
bacterial infections (Listeria monocytogenes), and colon cancer
(DSS plus azoxymethane model) (Beura et al., 2016; Rosshart
et al., 2017). Conversely, they are more susceptible to surgery-
associated sepsis, likely due to increased inflammatory tone
and/or increased reactivity to microbial products (Huggins
et al., 2019). Thus, wild microbiome-driven enhancement of
host immunity is associated with improved immune-mediated
resistance to a variety of infectious diseases and cancer, and
enhanced susceptibility to other inflammatory diseases, linking
microbiome-mediated immunomodulation to organismal health.

Notably, the transcriptional responses that distinguish
neonates and adults are reminiscent of those that differentiate
SPF mice and those harboring a wild/pet store microbiome.
These features are communicable to lab mice following co-
housing, suggesting they are microbially-driven (Beura et al.,
2016; Rosshart et al., 2017), although whether this is attributable
to pathobionts, or the distinct strain composition of these
communities is unknown. Moreover, the genomic diversity
of wild mice, and its impact on host immune responses and
disease susceptibility, may additionally contribute to distinct
phenotypic features of wild mice, representing an area ripe for
further exploration. Some of these features are likely attributable
to infectious agents like pathogenic viruses (Reese et al., 2016),
but notably, may also be due to specific endogenous bacterial
or fungal members of the gut microbiome (Lin et al., 2020;
Yeung et al., 2020). Indeed, wild mice that retained SPF status
(i.e., free of all pathogens excluded under SPF guidelines) also
induced distinct phenotypic variation relative to lab-raised SPF
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counterparts, and this could be transmitted to lab mice through
gut microbiome transplantation (Rosshart et al., 2017). These
data suggest that differences in the specific strain composition
of the gut microbiome of wild mice, rather than pathogen
exposure, are responsible. More recently, a study revealed that
wild mice more faithfully recapitulate the outcome of clinical
trials targeting the immune system (Rosshart et al., 2019), by
contrast with their conventional lab animals, reinforcing the
notion that such models are of greater translational relevance.
Thus, wild mice microbiomes provide an opportunity to improve
the utility of mouse model systems.

However, while we and others (Hamilton et al., 2020; Graham,
2021; Kuypers et al., 2021) posit that wild microbiome-elicited
phenotypes create a murine system with a more human-like
phenotype, different approaches to wilding the microbiome
including the specific donor material used, or the creation
of environments that more accurately mimic the natural
environment of the mouse (Arnesen et al., 2020; Lin et al., 2020;
Yeung et al., 2020) vs. co-housing under controlled laboratory
conditions (Beura et al., 2016; Rosshart et al., 2017), may lead
to disparate phenotypic outcomes in recipients. The use of wild
microbiomes thus may not fully humanize the murine response
or be fully representative of human phenomena. For example, in
the case of allergy development and the hygiene hypothesis, one
study (Ottman et al., 2019) suggests that lack of microbe diversity
drives such allergic states, while (Ma et al., 2021) contradicts
these claims. Undoubtedly, the approach of using wild mice
and/or their derived microbiomes does not fully address the
nuances of in vivo mouse models vs. humans as discussed in
depth elsewhere (Hamilton et al., 2020; Graham, 2021; Kuypers
et al., 2021). To address these limitations, more studies are
needed with comparative phenotyping of adult human and
wild microbiome-exposed murine immune systems to determine
whether these responses truly reflect the development of a more
human-like response, as opposed to a response that is simply
distinct from lab mice. With the advent of approaches that
allow for detailed assessment of the non-lymphoid immune
compartment in humans (Szabo et al., 2019), such studies are
now possible. Moreover, as we discuss below, detailed knowledge
of the microorganisms that coordinate the phenotypic features
shared between mice harboring wild microbiomes and humans
will advance efforts to generate improved murine model systems.

Synthetic Wild Communities, an
Optimized System to Study
Immune-Microbiome Interactions
While wild microbiomes offer the potential to shed new
light on host-microbiome interactions, currently there is
limited information regarding the effector microbes within
these communities. There is therefore a need to determine
which microbes are responsible for mediating the human-like
phenotypic variation that they induce. These efforts need not
focus solely on non-pathogenic members of the microbiome
but should include controlled pathogen as well as non-pathogen
exposures. While defining these effector microbes is a daunting
challenge, we and others have described effective strategies to

do so in a systematic and efficient manner (Goodman et al.,
2011; Ahern et al., 2014; Faith et al., 2014; Palm et al., 2014;
Kau et al., 2015; Surana and Kasper, 2017). The generation of
culture libraries in arrayed format (i.e., where individual wells
of multi-well plates contain distinct microbiome members) from
human donor microbiomes that retain the effector functions
of the donor community has allowed mechanistic insight into
host-microbiome interactions of biological relevance (Ridaura
et al., 2013; Faith et al., 2014; Wagner et al., 2016). Such
strategies allow the precise delineation of the effects of individual
community members, whether they operate in concert with other
members or in isolation (Ahern et al., 2014; Faith et al., 2014).
Similarly, the isolation in pure culture of the constituents of
the wild mouse microbiome represents a key first step toward
the generation of more complete synthetic communities that
recapitulate wild microbiome imprinted functions and allow
for greater manipulability. Likewise, in defining these wild
microbiomes, it is important to appreciate that for the past
several decades, non-bacterial residents of the gut (fungi, archaea,
viruses, parasites, and other non-fungal eukaryotic members)
have received scant attention, mostly attributable to technical
challenges. Such impediments include the variability of internal
transcribed spacer regions (ITS) within fungal ribosomal genes
and a general lack of reference genomes to compare species
prevalence in metagenomic samples (Paterson et al., 2017).
Sequencing challenges have also dampened the ability to get a
fully representative picture of the gut virome. Most techniques
for nucleic acid isolation and sequencing are biased toward
DNA viruses, largely missing RNA viruses, while isolation and
propagation of gut viruses is also a challenge that needs to be
overcome (Wang, 2020; Khan Mirzaei et al., 2021). This lack
of cultivation methods extends to archaeal members as well,
with archaea often requiring specific culture conditions (Borrel
et al., 2020) which can hamper in vivo studies. The genesis of
libraries of isolates of all microbiome-member types in arrayed
format from wild-microbiomes that are known to impact host
phenotypes, such that consortia of individual library members
can be compiled to study their effects on the host will form
an essential component moving forward in defining complex
host-microbiome interactions (Goodman et al., 2011; Ahern
et al., 2014; Faith et al., 2014; Palm et al., 2014). Moreover,
this will facilitate the dissemination to other researchers for
implementation in their studies. The use of a common library
of microorganisms freely available to all researchers that can
be leveraged to understand host-microbiome interactions at
multiple scales will advance efforts to uncover mechanistic
insights into the operations of large diverse communities that
reflect the breadth of microbial taxa and viruses that characterize
humans and their associated phenotypic effects.

Despite our call for more standardized gut microbiomes, it
would be foolish to demand complete homogenization across
institutions, or even within an institution. Microbiome variation
can itself represent a form of “natural experiment” that can
present a challenge to researchers, but that has also proved
a rich source of information regarding how the microbiome
can mediate interpersonal variation among a population. For
example, the varied presence of Th17 cells in the small intestinal
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lamina propria in C57BL/6 mice from different commercial
vendors led to the identification of a single microbe, SFB,
which was differentially represented in the microbiomes of
these animals and was both required and sufficient for the
development of intestinal Th17 cells (Ivanov et al., 2008, 2009;
Gaboriau-Routhiau et al., 2009). Similarly, the varying presence
of Lactobacillus reuteri in different animal facilities within the
same institution led to its identification as a potent modulator
of CD4+ CD8αα+ IEL development (Cervantes-Barragan et al.,
2017). More recently, the fungus Debaryomyces hansenii was
highlighted as a mediator of impaired intestinal healing, which
again was differentially represented among different colonies
of lab mice at the same institution and directly regulated the
intestinal healing potential of mice (Jain et al., 2021). Others have
also linked different microbiome composition to the phenotype
of various animal models of infectious and autoimmune disease
(Wu et al., 2010; Lee et al., 2014; Hilbert et al., 2017; Moskowitz
et al., 2019; Velazquez et al., 2019). What these studies highlight
is that phenotypic variance can be leveraged, even embraced
(Ivanov et al., 2008, 2009; Cervantes-Barragan et al., 2017; Jain
et al., 2021), to uncover novel host-microbiome interactions
that shape host responses. Consequently, although variation
poses challenges for microbiome research, total standardization
is itself not without issue. Instead, the utility of such variance
is linked to an ability to measure and define the causes of the
variation, and the reporting of the microbiome composition
that is associated with a phenotype will be of enormous
value in linking specific microbes to phenotypes of interest.
Such an approach will reveal contextualized roles for host
phenotypes that may manifest only in the presence of particular
community types. Thus, there remains a prominent place
for non-standardized models in illuminating fundamentally
important host-microbiome interactions.

Alternatives to in vivo Mouse Models
In spite of all the advantages of the in vivo mouse models we
describe, it is ultimately a system with limitations that demands
alternative approaches that augment our understanding.
Fundamental differences between mice and humans mean that
key aspects of host-microbiome interactions may not be modeled
in a murine system. Indeed, the specificity in molecular aspects
of host-microbe interactions (Lecuit et al., 1999; Atarashi et al.,
2015) demands systems to study human-derived microbes
in the context of human cells. The advent of sophisticated
in vitro/ex vivo approaches that use human-derived cells that
can themselves be genetically manipulated represent attractive
alternatives that can be used in parallel to murine models. In
addition to overcoming shortfalls in murine systems, these
approaches help with the continued efforts to replace, reduce,
and refine animals in research.

Organoids
Human intestinal organoids (HIOs) or enteroids (HIEs) remove
the need for a live model organism, and instead rely on
primary cells derived from human biopsies or stem cells. This
technique was originally pioneered from the use of ex vivo tissue
explants of human intestines (Browning and Trier, 1969). Growth

factors are used to drive differentiation of Lgr5+ intestinal
stem cells into intestinal cell types that mimic the 3D spatial
and functional environment of the intestine, allowing for
simultaneous differentiation into discrete cell types (Ootani et al.,
2009; Sato et al., 2009). HIOs have some advantages over other
in vitro systems as they maintain the crypt-villus architecture
and allow for multiple columnar cell types to be generated (Hill
and Spence, 2017). HIOs permit the study of phenomena that
have proved challenging in other in vivo systems, including
tight junctions of non-enterocyte cells of the small intestine
(Pearce et al., 2018); IBD models of infection and inflammatory
processes (Angus et al., 2019; Sarvestani et al., 2021); and models
of infection such as human norovirus (Ettayebi et al., 2016)
and rotavirus (Finkbeiner et al., 2012), for which no in vivo
model organism exists, and in vitro culture efforts had not been
successful at the time. Additionally, microinjection of bacterial
and parasitic pathogens including C. difficile (Leslie et al., 2015),
S. enterica Typhimurium (Forbester et al., 2015; Wilson et al.,
2015), E. coli (In et al., 2016; Karve et al., 2017; Rajan et al.,
2018), and Cryptosporidium (Heo et al., 2018) have all been
performed. This platform has allowed for controlled studies
into the interactions these pathogens have with the intestine,
however, there are several key challenges that remain. Although
bacteria can be injected into these structures, the process has
drawbacks such that the specialized technique of microinjection
is required to avoid compromising the organoid structure and
the lumen within the organoid contains a growth-limiting
concentration of nutrients that generally can only support the
growth of bacteria for less than 24 h. This nutrient limitation
also significantly hinders the diversity of microorganisms that
can be cultured together in poly-microbial communities. Other
constraints involve the physical structure of organoids, and the
lack of immune cells, calling into question how well the system
recapitulates in vivo biology with the absence of such features
(Blutt et al., 2018). Despite the advantages that organoids provide,
the noted limitations suggest that the organoid model is not yet
advanced to the point of being able to replicate all aspects found
in vivo. Instead, these systems are likely more useful as tools to
study parameters such as the permeability of the mucosa, drug
kinetics, and bacterial interactions in disease states using tissue
derived from patients with IBD or related conditions.

Gut-on-Chip Technologies
A relatively new approach to studying microbe-microbe
and intestinal cell-microbe interactions are “lab-on-chip”
technologies. Although systems such as Transwell plates
(two-dimensional technology) and Ussing chambers (three-
dimensional) have been used for decades (Ussing and Zerahn,
1951; Hidalgo et al., 1989) and have been used to study bacterial-
host epithelium interactions and diseases of the intestine
(Kurkchubasche et al., 1998; Thomson et al., 2019), both have
known limitations. With respect to the microbiome, these
technologies are not well-suited for maintenance of both aerobic
and anaerobic compartments except in limited circumstances
(Ulluwishewa et al., 2015; Jafari et al., 2016). This makes studying
gut microbiome-host interactions with obligate anaerobes a
challenge. Additional limitations involve the duration in which
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bacteria can be co-cultured before either they or the epithelial
cells die, with most ranging from hours to a few days due to the
non-peristaltic nature of these devices (Sadaghian Sadabad et al.,
2015). Although other devices, such as the mucosal simulator
of the human intestinal microbial ecosystem (M-SHIME), or
its derivative, the Host-Microbiota Interaction (HMI)-module,
have shown promise in incorporating peristalsis-like flow; they
suffer from similar problems of short co-culture incubation
times and rely on artificial mucus layers (Van den Abbeele et al.,
2012; Marzorati et al., 2014). The SHIME reactors are also large,
expensive to produce, and not easily scalable.

Using technology pioneered by lithography of computer
chip manufacturing (Bhatia and Ingber, 2014), microfluidic
devices may be a happy medium that yields more information
on bacterial-gut epithelial-immune system interactions. These
devices allow for a 3-D spatial reconstruction of the in vivo
environment. Specifically for bacteria, these platforms have been
used to study bacterial quorum sensing (Osmekhina et al., 2018),
the response to antibiotics, and other chemicals in a complex
community (Hsu et al., 2019), and taxis and motility (Gurung
et al., 2020). Adoption of these devices has led to the generation
of new platforms that are being used to study the human gut
ecosystem and the human gut microbiota (von Martels et al.,
2017; Tan and Toh, 2020). These devices overcome a substantial
amount of the need for using in vivo models and tissue explants
to maintain an environment necessary to study long-duration,
complex, multi-species, and multiple cell type interactions.
Although there are at least 12 different microfluidic devices in
use, the vast majority rely on the colorectal carcinoma cell line,
Caco-2 cells, to establish an epithelium, and have only managed
to culture one species of bacteria at a time; several of these
devices have previously been reviewed for benefits and drawbacks
(Bein et al., 2018; Tan and Toh, 2020). Recent advancements
include the nBioChip which supports the co-culture of both
bacteria (Staphylococcus aureus and Pseudomonas aeruginosa)
together with the fungus, Candida albicans (Srinivasan et al.,
2017). Perhaps the largest advancement is the Intestine Chip,
with the ability to maintain over 200 operational taxonomic units
(OTUs) of bacteria directly from human feces with both obligate
anaerobes and aerobic bacteria established along a hypoxia
gradient (Jalili-Firoozinezhad et al., 2019). The Intestine Chip
can also support stable colonization periods of up to or beyond
1 week due to its peristalsis-like flow of media. However, like
the platform of the two previous iterations of this specific device
(Kim et al., 2012, 2016), Caco-2 cells are used to develop the
epithelial compartment rather than primary cells, which limits
some downstream applications due to these cells not being
representative of the primary cells of the intestinal tract.

Recent advancements have merged organoid and gut-on-
chip technologies. First described as an early version of the
Intestine Chip, the use of matured organoids containing villus
structures and multiple cell types were enzymatically broken
down and used to seed extracellular matrix (ECM)-coated
membranes of a microfluidic chip (Kasendra et al., 2018).
The other half of the chip was then seeded with human
intestinal microvascular endothelial cells to examine cell-cell
interactions, thus creating a multi-system organ on a chip.
Through RNA-sequencing, confocal microscopy, and tissue

staining it was shown that the Intestine Chip recapitulates
key features of the signaling pathways, cellular differentiation,
mucus production, and epithelial-endothelial interactions seen
in the human duodenum. A similar platform termed the gut
microbiome physiome (GuMI) has been developed, specifically
for the culture of extremely oxygen-sensitive microbes such as
Faecalibacterium prausnitzii (Zhang et al., 2021). Similar to the
Intestine Chip, the gut microbiome (GuMI) ECM is impregnated
with cells derived from organoids and the device has inlets for
sampling and injection of bacteria. While many other chip-based
devices are fabricated using polydimethylsiloxane (PMDS), the
GuMI uses polysulfone, which can be autoclaved for sterility
and is less permeable to oxygen, allowing for more strict control
of oxygen gradients (Shin et al., 2019). Lastly, this chip allows
for the independent culture of six different bacteria within
the luminal portion. Using organoid-derived cells, this three-
layer-chip contains an ECM seeded with both intestinal cells
and monocyte-derived macrophages and recapitulates features
observed in IBD patients (Beaurivage et al., 2020). While the
presence of immune cells is an important advancement, the
generation of systems that can maintain interaction with a
complex immune system is essential to boost the translational
relevance of these systems. Nevertheless, the combination of
gut-on-chip and organoids is a promising step forward toward
the goal of having a tunable system to interrogate complex
interactions that are difficult to perform in vivo (Figure 1).

DISCUSSION/PROSPECTUS

A wealth of knowledge about gut microbiome-host interactions
has been gained through the use of the model systems discussed
in this review. Conventionally raised mice (both SPF and
non-SPF), and gnotobiotic mice, have been and continue to be
essential tools to study interactions between the gut microbiome
in host health and disease. While there is a continued use for these
models, their limitations hinder efforts to gain the mechanistic
insights required to target the microbiome for therapeutic
purposes. Development of synthetic, wild mouse gut microbiome
communities comprising cultured and genome-sequenced
microbiome members derived from wild mice provides an
opportunity to gain mechanistic understanding of specific
microbe-host phenotypes that recapitulate the interactions of
humans with their microbiomes and the associated microbiome
imprinted phenotypes. Used in conjunction with ever-improving
in vitro/ex vivo model systems that facilitate high-resolution
studies of complex host-microbiome interactions, these
technologies will advance our understanding of the range of
microbiome members that shape host physiology and help define
the nature of the interactions that underlie these phenomena.

CONCLUSION

In conclusion, model systems to study gut microbiome-host
interactions continue to evolve. The incorporation of synthetic,
wild microbiomes into the suite of model systems provides an
opportunity to increase mechanistic insight and translatability.
The use of these advanced mouse models and ever-improving
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alternative model systems to study gut microbiome-host
interactions will increase our understanding of the functionality
of specific microbes in human physiology and disease, advancing
efforts to target the microbiome for therapeutic purposes.
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