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Fine-tuning of Genome-Wide 
Polygenic Risk Scores and 
Prediction of Gestational Diabetes 
in South Asian Women
Amel Lamri   1,2, Shihong Mao2, Dipika Desai2, Milan Gupta1,3, Guillaume Paré2,4 & 
Sonia S. Anand1,2,5 ✉

Gestational diabetes Mellitus (GDM) affects 1 in 7 births and is associated with numerous adverse health 
outcomes for both mother and child. GDM is suspected to share a large common genetic background 
with type 2 diabetes (T2D). The aim of our study was to characterize different GDM polygenic risk scores 
(PRSs) and test their association with GDM using data from the South Asian Birth Cohort (START). 
PRSs were derived for 832 South Asian women from START using the pruning and thresholding (P + T), 
LDpred, and GraBLD methods. Weights were derived from a multi-ethnic and a white Caucasian study 
of the DIAGRAM consortium. GDM status was defined using South Asian-specific glucose values in 
response to an oral glucose tolerance test. Association with GDM was tested using logistic regression. 
Results were replicated in South Asian women from the UK Biobank (UKB) study. The top ranking P + T, 
LDpred and GraBLD PRSs were all based on DIAGRAM’s multi-ethnic study. The best PRS was highly 
associated with GDM in START (AUC = 0.62, OR = 1.60 [95% CI = 1.44–1.69]), and in South Asian 
women from UKB (AUC = 0.65, OR = 1.69 [95% CI = 1.28–2.24]). Our results highlight the importance of 
combining genome-wide genotypes and summary statistics from large multi-ethnic studies to optimize 
PRSs in South Asians.

Gestational diabetes mellitus (GDM) is defined as dysglycemia due to elevated blood glucose levels first identi-
fied during pregnancy, and is specifically defined based on glucose response to an oral glucose challenge test in 
pregnancy. GDM has been associated with numerous adverse health outcomes affecting mother and child, both 
during and after pregnancy1,2. Because of its increasing prevalence (~1 in 7 births), GDM has become a major 
health concern worldwide3. Nevertheless, the prevalence of GDM largely varies from one region of the globe to 
the other, and South Asian women have been shown to be at higher risk of GDM than white Caucasian women3–7.

Numerous genome-wide association studies (GWASs) and genome-wide association meta-analysis 
(GWAMAs) of glucose related traits and T2D have been conducted in non-gravid populations, and summary 
statistics from large consortia (e.g., MAGIC and DIAGRAM) are publicly available8–17. For instance, results from 
a DIAGRAM study lead by Mahajan et al., and which combines data for 26,488 T2D cases 83,964 controls from 
four different ethnic groups (Europeans, South Asians, East Asians and Mexicans) are available online. Summary 
statistics of DIAGRAM’s more recent GWAMAs (e.g. Scott et al.10: 26,676 T2D cases and 132,532 controls of 
European ancestry) were also released. By contrast, few studies of genetic determinants of GDM have been con-
ducted or published. For instance, only three studies sought to identify genes associated with dysglycemia, GDM, 
and diabetes during pregnancy by GWAS18–20. Top signals from these studies were located within/near CDKAL1, 
MTNR1B, GCKR, PCSK1, PPP1R3B and G6PC2, which were previously known for their association with glucose 
metabolism and T2D18,19. In addition, other T2D associated loci (e.g., TCF7L2, PPARG, CDKN2A/B, KCNQ1, 
GCK, etc.) were also significantly associated with GDM when tested separately21–45, or combined in genetic risk 
scores (GRSs)38,39,46–48.
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GRSs are used to capture genetic information at one or more loci. Most of published studies interested in 
complex traits/diseases and using GRSs typically combine data for a small number of single nucleotide polymor-
phisms (SNPs), and the predictive power of these GRSs is sub-optimal49. However, with the increased availability 
of genome-wide genotypes and publicly available data from large consortia, GRSs with a larger number of vari-
ants are being used, and the predictive value of these genome-wide polygenic risk scores (PRSs) has substantially 
improved50,51.

PRSs can be derived using different approaches, however, these require both summary statistics from an exter-
nal GWAS, and genetic data from a reference panel for between-variants linkage disequilibrium LD (LD) calcula-
tions. Pruning and thresholding (P + T) is a commonly used heuristic approach to derive PRSs in which variants 
are filtered based on an empirically determined P-value threshold. Linked variants are further clustered in differ-
ent groups and SNPs with the highest significance (lowest P values) in each group are prioritized and included in 
the PRS, while variants of less significance within the group are pruned out52. Other programs have been shown 
to improve the predictive value of the scores by allowing the inclusion of a larger number of independent as 
well as linked variants into the score using different approaches. For instance, LDpred, another commonly used 
method, estimates the mean weight of each variant, assuming a prior knowledge of the genetic architecture of the 
trait (fraction causal), and using a Bayesian approach53. More recently, we developed the gradient boosted and 
LD adjusted (GraBLD) method, a new PRS building approach which applies principles of machine-learning to 
estimate SNP weights (gradient boosted regression trees), and regional LD adjustment54.

The following analysis was conducted in women participating in the South Asian Birth Cohort (START). The 
GDM case/control status of participants was ascertained using the South Asian-specific cut-offs established by 
Farrar et al. (fasting plasma glucose levels ≥5.2 mmol/L and/or 2-hour post load levels ≥7.2 mmol/L for cases)4, 
and self-reported GDM status was used if these measures were unavailable. The main objectives of this study are: 
1) To compare the different methods and fine tune various parameters in order to characterize and derive the best 
PRS in START; 2) To investigate the association of the best PRS with GDM; and 3) To validate these results in 
South Asian women from UK Biobank55.

Results
Population characteristics.  Table 1 shows the characteristics of South Asian women from START and UK 
Biobank included in the main and replication analysis respectively. Because of major differences in recruitment 
strategies, inclusion criteria and study protocols, South Asian women from the UK Biobank were of older age, and 
higher weight and body mass index (BMI) compared to START participants. Furthermore, the proportion of 
participants with GDM was significantly lower in the UK Biobank sample, as this was based on self-report, as 
opposed to results of an oral glucose tolerance test in START.

Characteristics of the best PRSs.  In order to derive the optimal PRS, we compared results for: (1) two 
different sources of summary statistics (namely Mahajan et al., 20149 vs. Scott et al., 201710); (2) five different min-
imal sample size thresholds; (3) two templates for LD calculations; (4) three methods to derive the PRSs, and; (5) 
different P-value thresholds to filter out variants. Supplementary Fig. 1 illustrates the different tuning parameters 
used. All PRSs were ranked based on their area under the curve (AUC) from association tests with GDM, and the 
PRS with the highest AUC was designated as our top PRS.

Mahajan vs. scott based PRSs.  Summary statistics were derived from DIAGRAM’s trans-ethnic (Mahajan et al., 
20149) and white Caucasian (Scott et al., 201710) GWAMAs. In Mahajan et al., 2,915,011 SNPs were tested for 
association with T2D in a wide range of samples (minimum Nsamples = 25, maximum Nsamples = 110,452), while 
12,056,346 SNPs were tested in 4,731 to 159,208 samples in Scott et al. (Supplementary Table 1). Given the impor-
tant disparity in the number of participants tested for each SNP (Supplementary Table 1 and Supplementary 
Fig. 2), we derived PRSs for which all variants were kept, as well as PRSs for which the list of variants was 
restricted to those tested in a larger number of samples (≥85, 90, 95 and 98% of the maximum Nsample in the 
GWAMA). The number of SNPs used in these different PRSs are shown in Supplementary Table 1. Our results 
show that, overall, PRSs that only include SNPs tested in a large number of samples (between 85% and 95% of the 

South Asian Women

START UK Biobank

Number of Participants with GDM data 832 2,386

GDM, n (%) 301 (36.2%) 52 (2.2%)

Age, years 30.2 (4.0) 53.0 (8.1)‡

Height, cm 162.3 (6.2)¥ 156.8 (5.9)‡

Weight, kg 62.6 (12.0)¥ 67.7 (12.5)‡

BMI, kg/m2 23.8 (4.4) 27.5 (4.9)‡

Family history of diabetes, n (%) 334 (40.2) 1,556 (49.1)

Table 1.  Characteristics of women participants from the START and UK Biobank studies with available GDM 
status and genotype data. Data are mean (standard deviation) unless otherwise indicated.¥ Pre-pregnancy 
values.‡ Values from baseline data. Abbreviations: BMI, Body mass index; GDM, Gestational diabetes; START, 
South Asian birth cohort.
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maximum Nsamples of their respective consortia) perform better than PRSs where all variants are kept (including 
those tested in a small number of samples. Figure 1 and Supplementary Table 2).

The predictive value of the best Mahajan-based PRSs was higher than that of their Scott-based counterparts, 
independently of the method used (Fig. 1, Table 2, Supplementary Table 3).

Impact of LD source.  Since all three methods tested took into account between-variants LD, we used genotyping 
data from: 1) 1000 Genomes and 2) START studies as templates to estimate pairwise LDs and derive our PRSs 
(Fig. 1, Supplementary Fig. 3). Our results show that among the top rankig scores, the PRSs for which the LD was 
estimated using the 1000 Genomes mostly ranked higher than their START counterparts, independently of the 
method used, although this difference was substantially non-significant (Fig. 2, Supplemetary Table 3).

Effect of P-value thresholds.  For each consortium study, LD source, and minimum Nsample tested, 64 different 
P-values (ranging from 5 × 10−8 to 1) were used as thresholds to filter out consortium variants to be included in 

Figure 1.  AUCs of the different P + T and LDpred PRSs based on Mahajan et al. and Scott et al. in South Asian 
women from START. Results from association tests with GDM, LD from 1000 Genomes. Abbreviations: AUC, 
Area under the curve; PRS, Polygenic risk score; P + T, Pruning and thresholding; SNP, Single nucleotide 
polymorphism; START, South Asian birth cohort; ROC, Receiver operating characteristic.

Method Consortium

South Asian Women

START UK Biobank

Beta SE P-value AUC Beta SE P-value AUC

P + T
Mahajan et al., 2014 0.445 0.08 8.7 × 10−9 0.62 0.423 0.14 0.003 0.61

Scott et al., 2017 0.370 0.07 7.86 × 10−7 0.60 0.280 0.14 0.05 0.57

GraBLD
Mahajan et al., 2014 0.465 0.08 1.8 × 10−9 0.62 0.520 0.14 0.0003 0.64

Scott et al., 2017 0.317 0.07 1.61 × 10−5 0.59 0.388 0.14 0.006 0.61

LDpred
Mahajan et al., 2014 0.461 0.07 2.18 × 10−9 0.62 0.527 0.14 0.0002 0.65

Scott et al., 2017 0.347 0.07 4.05 × 10−6 0.59 0.382 0.14 0.006 0.61

Table 2.  GDM association results of the best P + T, LDpred and GraBLD PRSs in South Asian women from the 
START and UK Biobank. Results are from univariate association tests with GDM (LD from 1000 Genomes). 
Abbreviations: AUC, Area under the curve; GraBLD, Gradient boosted and LD adjusted; NA, Non applicable; 
P + T, pruning and thresholding; PRS, Polygenic risk score; SE, Standard error; START, South Asian Birth 
Cohort.
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the P + T and LDpred PRSs. Our results show that the inclusion of T2D associated variants with P-values higher 
than the usual 5 × 10−8 GWAS significance threshold in the PRS (i.e., less significant variants) always resulted in 
a considerable increase in AUC. Optimal AUCs were mostly reached for P-values > 0.01 for both Mahajan- and 
Scott-based PRSs (Fig. 1, Supplementary Table 2).

P + T vs. GraBLD vs. LDpred PRSs.  When comparing the best PRSs derivded from each method, no signifi-
cant difference was observed between GraBLD, LDpred and P + T (AUCs = 0.62, Table 2, Ppairwise differences = 0.95). 
When comparing P + T to LDpred only, AUCs were higher and more stable in LDpred PRSs at P-value thresholds 
> 0.1 (Fig. 3).

Top PRS.  Detailed characteristics and rankings of the best PRSs for each consortium data and each method 
used are shown in Supplementary Table 2. With an AUC of 0.62, the overall best (top) PRS identified in our study 
included 1,290,525 SNPs and was derived using the LDpred method; weights from Mahajan et al.; LD from 1000 
Genomes; and SNPs tested in at least 93,681 samples (≥85% of the Mahajan’s maximum Nsample).

Association with GDM.  The association results of the top PRSs with GDM (univariate models) are shown in 
Table 2 (continuous PRSs) and Table 3 (categorical PRSs). The odds of developing GDM was 2 to 2.5 fold higher 
in participants with the highest PRSs (top 25%) compared to the rest (75%) of the study population, depending 
on the type of PRS used. When analyzing participants with high and low PRSs values only, our results show that 
participants with the highest PRS values (top 25%) had between 3 and 3.4 fold increase in their risk of GDM 
compared to the participants with the lowest PRS values (bottom 25%). These results were similar in South Asian 
women from UK Biobank (Tables 2 and 3).

Discussion
In this study, we derived several thousands of GDM PRSs using genome-wide genotypes, large consortium 
data, and  different methods for use in a South Asian birth cohort. Our best PRS was built using the LDpred 
method, with weights extracted from the multi-ethnic analysis by Mahajan et al. and LD calculated using 1000 
Genomes genotypes. This PRS was significantly associated with GDM in South Asian women from the START 
study, an observation that was successfully replicated in South Asian women from UK Biobank. Participants with 
the highest PRS values had an increased risk of GDM when compared to the other groups.

We observed a considerable difference in the proportion of participants with GDM between South Asian 
women from the START study (36.2%) and South Asian women from UK Biobank (2.2%). This disparity is 
likely due to major differences in the study design, recruitment strategies, and definitions of GDM between the 
two studies involved. For instance, the definition of GDM status in START was based on glucose levels measure-
ments performed during pregnancy in response to an oral glucose challenge. On the other hand, GDM status 
was retrospectively self-reported by UK Biobank participants, which most likely resulted in some misclassifi-
cation, and a reduced number of GDM cases. In an effort to refine the phenotype in UK Biobank, our control 

Figure 2.  AUCs of the PRSs derived using LD from START and 1000 Genomes. Results are for Mahajan-based 
PRSs derived using SNPs tested in ≥85% of the study’s maximum Nsamples. Abbreviations: 1KG, 1000 Genomes; 
AUC, Area under the curve; PRS, Polygenic risk score; LD, Linkage disequilibrium; P + T, Pruning and 
thresholding; START, South Asian birth cohort; ROC, Receiver operating characteristic.
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group was restricted to women without GDM who also had at least one live birth. Nevertheless, the retrospective 
self-reported GDM phenotype in the UK Biobank is a limitation.

Summary statistics from two large T2D GWAMAs were used to build our PRSs. One of the major advan-
tages in using data from Mahajan et al. was that ~20% of its participants in their publically available data origi-
nated from the South Asian sub-continent. Although this GWAMA also included participants from other ethnic 
groups, the direction of association for the same reference alleles were largely similar between the South Asian 
and multi-ethnic samples (concordance of 70% and 92% for all variants, and nominally significant SNPs respec-
tively, data not shown)9, which substantiates the use of this dataset. Mahajan et al.'s study also had a large max-
imum number of cases and controls, but many of the SNPs included in the meta-analysis were tested in a much 
smaller sample (Supplementary Fig. 2, Supplementary Table 1). On the other hand, no South Asian participants 
were included in the GWAMA performed by Scott et al. but the average number of samples tested for each SNP 
was larger than in Mahajan et al. Our results show that Mahajan-based PRSs consistently outperformed their 
Scott-based counterparts in spite of a lower genome coverage and smaller average number of participants per 
SNP. This highlights the importance of using consortium data of the same ethnic group than the study at hand 
whenever possible. However, since Mahajan et al.’s summary statistics were derived from a blend of participants 
of different ethnicities, our top PRS could likely be improved if built based on summary statistics derived from an 
equally powered GWAMA performed in South Asians only.

Several reports suggest that T2D and GDM share a common genetic background. In the absence of pub-
licly available data of large GDM GWASs, summary statistics from a T2D consortium were used to derive our 
scores. Our results show that a T2D PRSs can be used in order to improve the prediction of GDM in South 
Asian women, hence confirming the hypothesis of a common genetic background between these two diseases. 
Assuming a good gene transferability between T2D and GDM, and a 20% of variance explained by our top P + T 
PRS’s SNPs, our study is well powered to detect a significant association between the PRS and GDM at a nominal 
level (Supplementary Table 4). Since T2D’s SNP-based heritability has recently been estimated at 0.54 (s.d. = 
0.07)56, and given the strong significance of our top models, such assumptions seem reasonable. However, the 

Figure 3.  AUCs of P + T and LDpred PRSs in START. Results are for Mahajan-based PRSs derived using SNPs 
tested in ≥85% of the study’s maximum Nsamples and LD from 1000 Genomes. Abbreviations: AUC, Area under 
the curve; PRS, Polygenic risk score; LD, Linkage disequilibrium; P + T, Pruning and thresholding; START, 
South Asian birth cohort; ROC, Receiver operating characteristic.

High PRS 
definition

Reference 
group

PRS 
type

South Asian Women

START UK Biobank

OR 95% CI P value OR 95% CI P value

Top 25% Remaining 75%

GraBLD 2.51 1.82–3.47 1.75 × 10−8 2.66 1.51–4.63 0.0006

P + T 2.08 1.51–2.87 7.44 × 10−6 1.80 0.99–3.17 0.05

LDpred 2.00 1.45–2.76 2.11 × 10−5 2.61 1–16–3.60 0.01

Top 25% Lowest 25%

GraBLD 3.40 2.25–5.17 7.30 × 10−9 5.30 2.17–15.88 0.0008

P + T 3.09 2.10–4.74 1.47 × 10−7 4.21 1.67–12.82 0.005

LDpred 3.06 2.02–4.69 1.77 × 10−7 3.59 1.53–9.84 0.006

Table 3.  Association results of best PRSs (categories) with GDM in South Asian women from the START and 
UK Biobank. Abbreviations: CI, Confidence interval; PRS, Polygenic risk score; GraBLD, Gradient boosted and 
LD adjusted; OR, Odds ratio; P + T, Pruning and thresholding; START, South Asian birth cohort.
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effect size of the genetic variants could be different between the two conditions (T2D vs. GDM), and some loci 
could be specific to each disease. Although these differences should not affect our models comparisons, we expect 
that the predictive value of GDM PRSs will be further improved if built using weights from large GDM GWASs 
or GWAMAs.

Given that our methods comparison results are data driven, some of our observations only apply to cases 
of very similar context (e.g., use of Mahajan et al.), while others might be extend to a wider range of situations: 
Firstly, a significant conclusion derived from this study is that, whatever the consortium or the method used, 
restricting the list of SNPs to GWAS significant variants (P value ≤ 5 × 10−8) drastically reduces the predictive 
value of the PRSs. Unfortunately, many studies still rely on this threshold to select their loci of interest and derive 
their risk scores. We recommend the use of higher P-value thresholds (>0.01 in our case) whenever possible in 
order to increase the predictive value of the PRSs. Secondly, when comparing the best PRSs, our results suggest 
that the GraBLD, P + T and LDpred methods perform equally well in terms of disease prediction as measured 
by the AUC. Nevertheless, the identification of the optimal P + T, and LDpred PRSs required the test of several 
thousand predictors (n = 2,560 and 1280 respectively), when a similar result was achieved by testing 40 GraBLD 
models only. On the other hand, the high stability of LDpred’s AUCs when keeping SNPs with a high P-value may 
lead one to slightly favor the use of this method. We still recommend the use of P + T as a method of choice in 
cases of small number of SNPs (or low genome coverage) and reduced computational resources.

Although the discriminative capacity of the top PRS described in this analysis (AUC 0.62–0.65) and its asso-
ciated risk (OR > 2) are considered as high in a context of complex traits, such values remain relatively low when 
compared to the predictive values of genetic variants associated with severe Mendelian disorders. In a clinical 
setting, such predictors remain insufficient to accurately predict future GDM, and should therefore be combined 
with other known GDM risk factors including age, diet or parity in order to increase the accuracy of the predic-
tion of future cases.

In conclusion, our results show that use of predictive value of polygenic risk scores for GDM in South Asian 
women can be greatly improved by combining genome-wide genotyping data, extracting summary statistics from 
large multi-ethnic genome-wide meta-analysis and by testing and fine-tuning different parameters.

Methods
Study design and participants.  The South Asian Birth Cohort (START): START is a prospective cohort 
designed to evaluate the environmental and genetic determinants of cardiometabolic traits of South Asian preg-
nant women and their offspring living in Ontario, Canada. The rationale and study design are described else-
where57. In brief, 1,012 South Asian (people who originate from the Indian subcontinent) pregnant women, 
between the ages of 18 and 40 years old, were recruited during their second trimester of pregnancy from the Peel 
Region (Ontario, Canada) through physician referrals between July 11, 2011 and Nov. 10, 2015. All START partic-
ipants signed an informed consent including genetic consent, the study was approved by local ethics committees 
(Hamilton Integrated Research Ethics Bard, William Osler Health System, and Trillium Health Partners), and all 
research was performed in accordance with the guidelines. A detailed description of the maternal measurements 
has been published previously58.

UK Biobank.  The UK Biobank is a large population-based study which includes over 500,000 participants living 
in the United Kingdom55. Men and Women aged 40–69 years were recruited between 2006 and 2010 and exten-
sive phenotypic and genotypic data about the participants was collected, including ethnicity and history of GDM. 
Details of this study are available online (https://www.ukbiobank.ac.uk)55. Data of South Asian women from UK 
Biobank were used in order to validate the results from the START study.

Derived variables.  START.  GDM status was determined using the South Asian specific cutoffs as defined 
in the Born in Bradford study (fasting glucose level of 5.2 mmol/L or higher, or a 2-hour post load level of 
7.2 mmol/L or higher)4. Self-reported GDM status was used if these measures were unavailable. Participants with 
a history of T2D prior to pregnancy were excluded. Using these criteria, 832 START participants with known 
GDM status (301 cases and 531 controls) and available genotypes were included in the analysis. The South Asian 
ethnicity/ancestry of participants was validated using genetic data.

UK Biobank.  Participants in the UK Biobank completed questionnaires at several time points (questionnaire 
of initial assessment visit, 2006–2010; questionnaire of first repeat assessment visit, 2012–2013; questionnaire of 
imaging visit, 2014 onwards). For the purpose of our study, GDM cases were defined as women who self-reported 
having had diabetes only during their pregnancies at any time point of the study. The control group was com-
prised of women who: 1) had at least one child (self-reported, live births only), and 2) had never been diagnosed 
with diabetes or GDM in all assessments. The South Asian ethnicity/ancestry of participants was validated using 
genetic data.

Consortium data.  Summary statistics of the GWAS meta-analysis performed by Mahajan et al.9 and Scott et al.10  
were downloaded from DIAGRAM’s main website (http://www.diagram-consortium.org).

DNA extraction, genotyping, imputation, filtering and SNP extraction.  Start.  DNA was 
extracted and genotyped from a total of 867 samples (START mothers) using the Illumina Human CoreExome-24 
and Infinium CoreExome-24 arrays (Illumina, San-Digeo, CA, USA). Data was cleaned using standard quality 
control (QC) procedures59 and 837 women samples passed the QC. Genotypes were subsequently phased using 
SHAPEIT v2.1260, and imputed with the IMPUTE v2.3.2 software61, using the 1000 Genomes (phase 3) data as a 
reference panel62. Variants with an info score ≥0.7 were kept for analysis. Addition data manipulation and SNP 
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selection criteria for the building of the PRSs are detailed in Supplementary Information and Supplementary 
Fig. 1.

UK Biobank.  A total of ~500,000 participants from the UK biobank were genotyped using the UK BiLEVE or 
UK Biobank Affymetrix Axiom arrays. Detailed QC, phasing and imputation procedures have previously been 
described63. As a result, 3,169 unrelated South Asian women passed QC. Among these, 2,386 participants had 
available GDM status respectively, and were used to replicate our PRS results from the START study. Genotypes 
for >98% of SNPs included in our top START GDM PRSs were available (info score ≥0.6) and were extracted for 
the replication.

1000 Genomes.  Genotypes of 1000 Genomes participants were downloaded from the project’s data portal 
(http://www.internationalgenome.org), and a subset of participants was created in order to match the proportion 
of the ethnicities represented in each consortium study.

PRS deriving methods.  Pruning and thresholding (P + T).  Weighted PRSs were built using GNU Parallel64 
and PLINK v1.9 (https://www.cog-genomics.org/plink2)65. 64 different clump P-value cutoffs ranging from 
5 × 10−8 to 1 were tested in order to identify the optimal index variant’s significance threshold. All other param-
eters were set to default.

LDpred.  LDpred PRSs were derived using the LDpred software v0.9.9 (https://github.com/bvilhjal/ldpred)53. 
The fractions of causal variants assumed a prior were similar to the P-value thresholds used for the P + T PRSs. 
Since the number of SNPs was different between the PRSs, The LD radius was adjusted accordingly in each model 
using the recommended formula (N SNP/3000). All other parameters were kept on their default setting.

GraBLD.  GraBLD PRSs were built using the GraBLD R package (https://github.com/GMELab/GraBLD)54. Data 
of all the women participating in the START study were used for the calibration. All parameters were set to 
default.

Association analysis.  The association of each PRS with GDM was assessed using a univariate logistic 
regression model, and areas under the receiver-operating characteristic (ROC) curves (AUCs, c-statistics) were 
compared in order to determine the PRS with the highest predictive value of GDM. Continuous PRSs were also 
divided into quartiles in order to compare the participants with highest PRS values to the other groups. Statistical 
significance of the difference between the predictive values of two PRSs was tested using the DeLong’s test for two 
correlated ROC curves. Analyses were performed using GNU Parallel64 and R v3.366.

Power analysis.  The power to detect associations for our top P + T PRS using Mahajan et al.'s study char-
acteristics as a training sample and assuming different values of proportion of variance explained by SNPs was 
estimated using the avengeme R package (https://github.com/DudbridgeLab/avengeme)67.
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