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Ribozymes are RNA molecules that catalyze biochemical reactions. Self-

cleaving ribozymes are a common naturally occurring class of ribozymes

that catalyze site-specific cleavage of their own phosphodiester backbone.

In addition to their natural functions, self-cleaving ribozymes have been used to

engineer control of gene expression because they can be designed to alter RNA

processing and stability. However, the rational design of ribozyme activity

remains challenging, and many ribozyme-based systems are engineered or

improved by randommutagenesis and selection (in vitro evolution). Improving a

ribozyme-based system often requires several mutations to achieve the desired

function, but extensive pairwise and higher-order epistasis prevent a simple

prediction of the effect of multiple mutations that is needed for rational design.

Recently, high-throughput sequencing-based approaches have produced data

sets on the effects of numerous mutations in different ribozymes (RNA fitness

landscapes). Here we used such high-throughput experimental data from

variants of the CPEB3 self-cleaving ribozyme to train a predictive model

through machine learning approaches. We trained models using either a

random forest or long short-term memory (LSTM) recurrent neural network

approach. We found that models trained on a comprehensive set of pairwise

mutant data could predict active sequences at higher mutational distances, but

the correlation between predicted and experimentally observed self-cleavage

activity decreased with increasing mutational distance. Adding sequences with

increasingly higher numbers of mutations to the training data improved the

correlation at increasing mutational distances. Systematically reducing the size

of the training data set suggests that a wide distribution of ribozyme activity may

be the key to accurate predictions. Because the model predictions are based

only on sequence and activity data, the results demonstrate that this machine

learning approach allows readily obtainable experimental data to be used for

RNA design efforts even for RNA molecules with unknown structures. The

accurate prediction of RNA functions will enable a more comprehensive
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understanding of RNA fitness landscapes for studying evolution and for guiding

RNA-based engineering efforts.

KEYWORDS

ribozyme, fitness landscape, RNA, epistasis, machine learning, long short-term
memory, random forest

Introduction

RNA enzymes, or ribozymes, are structured RNA molecules

that catalyze biochemical reactions. One well-studied class of

ribozymes are the small self-cleaving ribozymes that catalyze site

specific cleavage of phosphate bonds in their own RNA backbone

(Ferré-D’Amaré and Scott, 2010). These self-cleaving ribozymes

are found in all domains of life, and their biological roles are still

being investigated (Jimenez et al., 2015). In addition to their

natural functions, these ribozymes have been used as the basis for

engineering biological systems. For example, several small

ribozymes (hammerhead, twister, pistol, and HDV) have been

used as genetically encoded gene regulatory elements by

combining them with RNA aptamer and embedding them

into untranslated regions of genes (Groher and Suess, 2014;

Dykstra et al., 2022). This approach continues to gain

attention because of the central importance of controlling

gene expression and the simple design and build cycles of

these small RNA elements. Nevertheless, ribozymes often need

optimization for sequence dependent and cell specific effects.

This can be achieved by modifying the sequence of the

ribozymes, but this often requires multiple mutational changes

and the vast sequence space requires extensive trial and error.

Given this large sequence space, even the most high-throughput

approaches can only find the optimal solutions present in the

sequences that can be explored experimentally, which is a

fraction of the total possible sequences. The engineering of

ribozyme-based systems could benefit from accurate

prediction of the effects of multiple mutations in order to

narrow the search space towards optimal collections of

sequences.

One way to think of the ribozyme optimization problem is in

terms of fitness landscapes. Molecular fitness landscapes of

protein and RNA molecules are studied by measuring the

effects of numerous mutations on the function of a given

reference molecule (Athavale et al., 2014; Blanco et al., 2019).

Recently, the fitness landscapes of RNA molecules have been

studied experimentally by synthesizing large numbers of

sequences and using high-throughput sequencing to evaluate

the relative activity of the RNA in vitro, or the growth effect of the

RNA in a cellular system, both of which are termed “RNA fitness”

(Kobori and Yokobayashi, 2016; Li et al., 2016; Pressman et al.,

2019). The goal of in vitro evolution is often to find the highest

peak in the landscape, or one of many high peaks, by introducing

random mutations and selecting for improved activity. However,

the RNA fitness landscapes that have been experimentally

studied so far have revealed rugged topographies with peaks

of high relative activity and adjacent valleys of low activity.

Landscape ruggedness is an impediment to finding desired

sequences through in vitro evolution approaches (Ferretti

et al., 2018). Epistasis, defined as the non-additive effects of

mutations, is the cause of ruggedness in fitness landscapes, and

epistasis has been used to quantify the ruggedness of fitness

landscapes (Szendro et al., 2013). More frequent and more

extreme epistasis indicates that a landscape is more rugged.

Importantly, more epistasis also means that the effect of

combining multiple mutations is challenging to predict even if

the effects of each individual mutation are known. In addition,

experimental fitness landscapes can only study a limited number

of sequences, except for very small RNA molecules (Pressman

et al., 2019). It is often not possible to know if the process of

in vitro evolution discovered a sequence that is globally optimal,

or just a local optimum. For these reasons, it has become a goal to

accurately predict the activity of sequences in order to streamline

RNA evolution experiments and to study fitness landscapes in a

more comprehensive manner (Groher et al., 2019; Schmidt and

Smolke, 2021).

Here, we use high-throughput experimental data of

mutational variants of a self-cleaving ribozyme to train a

model for predicting the effect of higher-order

combinations of three or more mutations. The ribozyme

used in this study is the CPEB3 ribozyme (Figure 1A). This

ribozyme is highly conserved in the genomes of mammals,

where it is found in an intron of the CPEB3 gene (Salehi-

Ashtiani et al., 2006). For training purposes, we generated a

new data set that includes all possible individual and pairs of

mutations to the reference CPEB3 ribozyme sequence

(Figure 1B). These mutations were made by randomization

of the CPEB3 ribozyme sequence with a 3% per nucleotide

mutation rate during chemical synthesis of the DNA template.

We reasoned that given the extensive amount of pairwise

epistasis in RNA (Bendixsen et al., 2017), this data set might

be sufficient for predicting higher-order mutants. In addition,

we used a second, previously published data set that included

27,647 sequences comprised of random permutations of

mutations found in mammals that include up to

13 mutational differences from the same reference

ribozyme (Bendixsen et al., 2021). This second data set not

only contains higher-order mutational combinations, but also

a broad range of self-cleaving activity (Figure 1D). In both

data sets, the relative activity of each sequence was determined

by the deep sequencing of co-transcriptional self-cleavage
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FIGURE 1
The CPEB3 ribozyme and data prediction challenge. (A) Secondary structure diagram of the CPEB3 ribozyme. Thewhite arrow indicates the site
of self-cleavage. Nucleotide color indicates the average relative activity of the three possible point mutations at each position. Boxes indicate
nucleotide positions mutated in the phylogenetically derived higher-order mutants (B) Heatmap representation of comprehensive single and
double-mutant data. Each pixel in the heatmap shows the ribozyme activity for a specific double mutant indicated by the nucleotide positions
on the top and right of the heatmap. Insets show base paired regions and specific mutations. Ribozyme activity is determined as the fraction of total

(Continued )
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data, as previously described. Briefly, the mutated DNA

template was transcribed in vitro with T7 RNA polymerase.

The transcripts were prepared for Illumina sequencing by

reverse transcription and PCR. Relative activity was

determined as the fraction cleaved, defined by the fraction

of sequencing reads that mapped to a specific sequence variant

in the shorter, cleaved form relative to the total number of

reads for that sequence variant.

We set the goal of being able to predict the activity of the

higher-order mutants in the phylogenetically derived fitness

landscape (Figure 1D). In addition, we wanted to guide future

experiments aimed at producing additional data for training

models of ribozyme-based systems. The number of possible

sequences increases exponentially with the number of variable

nucleotide positions. In addition, the probability of finding active

ribozymes at higher mutational distances becomes increasingly

unlikely. Experiments aimed at training predictive models will

need to choose realistic numbers of sequences that can have the

highest impact on model performance. We therefore evaluated

the effect of adding to the training data sequences with increasing

mutational distances from the wild-type sequence as well as the

effect of reducing the number of sequences in the training data.

The results of these experiments were expected to be useful in

guiding the choice of which sequence variants, and howmany, to

analyze experimentally in order to produce effective training

data sets.

Results

We first evaluated our new training data set that contained all

single and double-mutants of the CPEB3 ribozyme. We found

that the data did in fact contain full coverage of the possible

207 single mutants and the 21,114 double mutants. While the

number of reads that mapped to each of these sequences varied,

we found that, on average, 170 reads mapped to each double

mutant, and ~18,000 reads mapped to each single mutant

(Supplementary Figure S1). This read depth was sufficient for

the determination of the fraction cleaved for all single and double

mutants (Figure 1B). Mapping the fraction cleaved to base paired

structural elements showed expected patterns of activity caused

by compensatory base pairs. Mutations that break a base pair

typically showed low activity, but a secondmutation that restored

the base pair showed high activity. To further evaluate this data,

we calculated the non-additive pairwise epistasis in this data set

(Figure 1C). Together, this analysis indicated that this data set

contained a wide range of ribozyme activity and the effects of all

pairwise intramolecular epistatic interactions.

In order to determine the training potential of the

comprehensive double-mutant data, we first trained models

using only the fraction cleaved data for sequences with two or

fewer mutations including the wild-type reference sequence. We

then tested the models’ performance in predicting the fraction

cleaved for sequences with increasing numbers of mutations. We

trained two models with two approaches (see Materials and

Methods). The first approach used a Random Forest regressor.

In the second approach, we added a Long Short-Term Memory

(LSTM) recurrent neural network to extract hidden features from

the data. We then fed the hidden features with associated fraction

cleaved to a Random Forest regressor. We will refer to this

approach as “LSTM.” We found that models trained on two or

fewer mutations with Random Forest outperformed LSTM at

predicting the activity of sequences with five or fewer mutations

(Figures 2A–C), but LSTM performed better when predicting the

activity of sequences with six or more mutations relative to the

wild-type (Figures 2D–I). However, both approaches showed a

decrease in the correlation between predicted and observed when

challenged to predict the activity of sequences with higher

numbers of mutations, and both resulted in relatively low

correlation (Pearson r < 0.7) for sequences with seven or

more mutations when trained only on this double mutant

data (Figure 2 and Supplementary Table S2). We concluded

that models trained on simple random mutagenesis containing

all double mutants can be useful for predicting lower mutational

distances, but we anticipated that additional data might improve

the ability to predict the effect of higher numbers of mutations.

To determine the effect of adding higher-order mutants to

the training data, we divided the phylogenetic derived sequence

data by mutational distance and re-trained models with

increasing orders of mutations in the training set. As

expected, adding higher-order mutants improved the

predicted to observed correlation at higher mutational

distances (Figure 3 and Supplementary Figures S2–S14).

Interestingly, we found that the Random Forest approach

outperformed the LSTM approach when sequences with more

mutations were included in the training data. This is especially

FIGURE 1 |
reads that map to each sequence that are in the cleaved form (fraction cleaved) relative to the wildtype fraction cleaved. (C) Distribution of pairwise
epistasis from double mutant data. Epistasis was calculated as ε = log10 (WAB*Wwt/WA*WB), where Wwt is the fraction cleaved of the wild-type
ribozyme, WA and WB are fraction cleaved of sequences with individual mutations and WAB is the fraction cleaved of the sequence with both
individual mutations. (D) Higher mutational distance variants of the CPEB3 ribozyme represented as a fitness landscape. Ribozyme activity (fraction
cleaved) is shown for 27,647 sequence variants derived from permutations of naturally occurring mutations. Each node represents a different
sequence and the size and color of the node is scaled to the ribozyme activity. Edges connect nodes that differ by a single mutation. Sequences are
binned into quintiles of ribozyme activity and the number of genotypes reports the number of sequences in each quintile.
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apparent for predicting the activity of sequences with

8–10 mutations. The Random Forrest approach resulted in

models with high correlation between predicted and observed

for all mutational distances when trained with data from

sequences with four or more mutations (Figures 3A–C). For

both approaches, the largest improvements in the correlations

occurred when sequences with three mutations (relative to wild-

type) were added to the data. Subsequently appending additional

sequences with greater numbers of mutations had diminishing

improvements on the correlation. This was also generally true for

two other machine learning approaches that we benchmarked

(linear regression and multilayer perceptron regressor, scikit-

learn), but that we did not pursue further because they showed

lower correlations than the Random Forrest (Supplementary

FIGURE 2
Prediction accuracy of models trained on comprehensive individual and pairs of mutations. (A–I) Scatter plots of predicted (fraction cleaved
from themodels) and observed (fraction cleaved from experiments). Themodels were trained on the experimentally determined fraction cleaved for
the wild-type and all possible sequences with one mutation (207 sequences) or twomutations (21,114 sequences). Insets report Pearson correlation
coefficients r for the model trained by the Random Forest approach (orange) and the LSTM-RF approach (blue). The sequences used to
compare prediction vs. observed were separated by the number of mutations relative to the wild-type, as indicated by the title of each graph.
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Figure S15).We note that all the testing data was set aside prior to

training and identical testing data was used for all models. The

results demonstrate that adding higher order mutants to the

training data improves the Pearson correlation of sequences at

higher distances in this data set. It is important to note that the

phylogenetically derived data has different numbers of sequences

for each class of mutations (Table 1), and sequences with higher

numbers of mutations in our data show mostly low activity

(Supplementary Figure S16). This helps interpret the effect of

sequentially adding higher-order mutant sequences to the

training data. It is also important to note that the

phylogenetic derived sequences only contain mutations at

thirteen different positions. The higher order sequences in this

data are therefore combinations of the lower order sequences. For

example, a sequence with six mutations can be constructed by

combining two sequences with three mutations, both of which

would be in the “3 mutations” training data. Our model is

therefore predicting the effects of combining sets of

mutations, and adding precise sets of lower order mutations

that re-occur in higher order mutations clearly improves the

correlations between prediction and experimental observation in

our data.

In order to inform future experiments for collecting

training data, we next set out to determine the effect of

decreasing the amount of data in the training sets. Starting

from the 80% of data used as prior training data, we randomly

sampled sequences from this data to create new training data

sets with 60, 40, 20, 10 and 1% of the total data. These

FIGURE 3
Improvement in prediction accuracy when including sequences with increased mutational distances in the training data. Changes in Pearson r,
R2, and mean squared error (MSE) of prediction-observed correlation (y-axis) with increasing numbers of max mutations within the training data
(x-axis). Training sets included all sequences up to and including the y-axis value. (A–C) Results obtained for the random forest model. (D–F) Results
from the LSTM model. For each plot, colors indicate the numbers of mutations in sequences in the test data (see key). Insets show changes to
the same prediction accuracy measurement with the 3–7 mutation training data, to allow more visual resolution.
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subsampled data sets were used to train models using the

random forest regressor. The same testing data was set aside

for all models and used to compare the Pearson correlation

coefficient of each model trained with decreasing amounts of

data. As an illustrative example, we focused on a model trained

with sequences with five or fewer mutations relative to wild-

type used to predict the activity of sequences with seven

mutations (Figure 4 and Supplementary Table S1). We

chose this example because it achieved very high

correlation (Pearson r = 0.99) when trained with 80%

(25,733 unique sequences) of the data and therefore

provided an opportunity to observe how rapidly the

correlation decreased with less data. We found that the

models trained on five or fewer mutations predicted with

high correlation when as little as 40% (12,866) of the data was

used for training (Pearson r = 0.97). With only 20% (6,433)

and 10% (3,217) of the data, the model still showed good

prediction accuracy with a Pearson correlation r � 0.9.

Surprisingly, we still observed reasonably high correlation

when including only 1% (322) of the training data, and this

was reproducible over five different models trained with

different random samples of the data (Pearson r = 0.81,

stdev = 0.046, n = 5). Similar results were observed with

other training and testing scenarios. To illustrate general

trends, we have plotted the Pearson correlation for the

same model trained on five or fewer mutations when

predicting the activity of sequences with 6, 7, 8 or

9 mutations, and for a model trained on 9 or fewer

mutations used to predict sequences with 5, 6, 7, or

8 mutations (Figure 4). This analysis suggests that the total

amount of training data is not critical for predicting the

activity of sequences in our data set. When combined with

the diminishing returns of adding more higher order

mutations (Figure 3), this analysis emphasizes the

importance of collecting appropriate experimental data sets

for training that include ribozymes with more mutations that

still maintain relatively high activity. However, given the low

probability of finding higher-order sequences with higher

activity, an iterative approach with several cycles of

predicting and testing might be necessary to acquire such data.

While the primary goal was to predict the relative activity of

RNA sequences, we wondered if the models might also be useful

for predicting structurally important nucleotides. To address this

question, we analyzed the “feature importance” in several of our

Random Forest models. Feature importance is a method to assign

importance to specific input data. Because our data only uses

sequence as input, the features in our data are specific nucleotides

(A, G, C or U) at specific positions. We found that for the

Random Forest models, the most important feature all clustered

around the active site of the ribozyme (Supplementary Figures

S17, S18). Further, the CPEB3 ribozyme uses metal ion catalysis

and several of the most important features were nucleotides that

have been observed coordinated to the active site magnesium ion

in the CPEB3 ribozyme, or the analogous nucleotides in the

structurally similar HDV ribozyme (Kapral et al., 2014; Skilandat

et al., 2016). For example, for all the models trained with some

higher order mutants, the most important feature was G1, which

positions the cleaved phosphate bond in contact with the

catalytic magnesium ion. The second most important feature

was G25, which forms a wobble base pair with U20 (Lévesque

et al., 2012), another important feature (top 4–6), and this

nucleotide pair coordinates the active site magnesium ion

through outer sphere contacts. The catalytic nucleotide

C57 binds the same catalytic magnesium as the G25:

U20 wobble pair, and had a high feature importance similar

to U20. Most of the other important features are involved in base

pairs that stack or interact with the metal ion coordinating bases.

Interestingly, we found that nine of the ten most important

features were identical for models trained with only single and

double mutants or with increasing amounts of higher-order

mutants. However, the G1 and G25 features became

increasingly more important as sequences with higher

mutational distance were added to the training data. This

indicates that the higher-order mutants in the training data

helped emphasize structurally critical nucleotides. We

conclude that the machine learning models presented

identified nucleotides involved in forming the active sites of

the CPEB3 ribozyme. Because we did not use structural data to

train our models, the results suggest that similar data could

identify active sites in RNA molecules with unknown structures.

Discussion

We have shown that a model trained on ribozyme activity

data can accurately predict the self-cleavage activity of sequences

with numerous mutations. This approach can be used to guide

TABLE 1 Counts of sequences in training and testing data sets.

No. of mutations Training Testing

1 207 —

2 21,114 —

3 414 104

4 1,240 310

5 2,650 662

6 4,162 1,040

7 4,867 1,217

8 4,241 1,060

9 2,720 680

10 1,249 312

11 389 97

12 74 18

13 6 2
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experiments based on a relatively small set of initial data.

Importantly, the approach did not use structural information

such as X-ray crystallography or cryo-EM, and used only

sequence and activity data, which can be obtained with

common molecular biology approaches (in vitro transcription,

RT-PCR, and sequencing). In addition, the training data starts

FIGURE 4
Effects of reducing the number of sequences in the training data. (A–F) Scatter plots of Predicted (fraction cleaved from the models) and
Observed (fraction cleaved from experiments) for models trained with decreasing amounts of sequences with five or fewer mutations using the
random forest approach and predicting the fraction cleaved of sequences with seven mutations. The percent of the total sequence used in the
training data is indicated in the title of each plot, and the number of unique sequences in the training data is reported in parentheses. Pearson
correlation coefficients r are indicated as insets. (G) The correlation between predicted and observed for a model trained with decreasing amounts
data from sequences with five or fewer mutations (“Train 5”) and predicting the activity of sequences with increasing numbers of mutations (Predict
6–9). (H) Predicting the activity of sequences with 9 mutations (“Predict 9 Mutations”) with models trained on different reduced data sets.
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with small amounts of synthetic DNA. The comprehensive

double mutant data and the phylogenetic derived data each

started from a single DNA oligo synthesis that used doped

phosphoramidites at the variable positions. Each data set was

collected on a single lane of an Illumina sequencer. The approach

presented in this paper is therefore accessible, rapid and

inexpensive as compared to approaches that use structural

data to train their models.

Sequence conservation of naturally occurring RNA

molecules has been another useful data type for training

models to predict RNA structure from sequence (De

Leonardis et al., 2015; Weinreb et al., 2016). This approach is

based on the observation that nucleotide positions that form a

base pair often show co-evolutionary patterns of sequence

conservation. In some cases, this co-evolutionary data has

been combined with thermodynamic predictions or structural

data from chemical probing, such as SHAPE experiments

(Calonaci et al., 2020). Numerous ribozymes, aptamers and

aptazymes have been discovered through in vitro evolution

experiments and conservation data is not available unless

sequencing experiments were applied during the selection

process. Our approach could be used to expand functional

information of non-natural RNA molecules which could then

be used to guide structure prediction of these molecules in a way

similar to how naturally occurring sequence conservation has

been used. In addition, sequence conservation does not

necessarily predict relative activity. For example, while the

CPEB3 ribozyme is highly conserved in nature, not all of the

sequence are equally proficient at catalyzing self-cleavage

(Chadalavada et al., 2010; Bendixsen et al., 2021). Our

approach using machine learning from experimentally derived

data may prove useful for guiding experiments with non-natural

RNA molecules discovered through in vitro selection or SELEX-

like approaches. However, adopting this machine learning

approach will require that each experimenter acquire specific

data for their system necessary to train and test sequences with

the functions they are investigating.

With future work, it may be possible to produce more general

models of ribozyme activity. For example, a model trained on

data sets from several different self-cleaving ribozymes with

different nucleotide lengths might learn to predict the activity

of sequences of arbitrary length and sequence composition. In

fact, recent advances in RNA structure prediction have used the

crystal structures of several different self-cleaving ribozymes as

training data to develop predictive modes that achieve near-

atomic level resolution of arbitrary sequences (Townshend et al.,

2021). Alternatively, models trained on ribozymes with different

activities beyond self-cleavage might be able to classify sequences

as ribozymes of various functions. There has been some success

with generating general models for predicting protein functions.

The latent features identified by deep generative models of

protein sequences are being used to better understand the

complex, higher-order amino acid interactions necessary to

achieve a functional protein structure (Riesselman et al., 2018;

Detlefsen et al., 2022). We hypothesize that latent features could

aid in the identification of generalized parameters that govern the

epistatic interactions of higher-order mutants of RNA sequences

as well. We hope that the accuracy and accessibility of the

approach presented here will inspire others to carry out

similar experiments and initiate the data sharing that will be

needed to develop more general models, similar to what is being

accomplished for protein functional predictions (Biswas et al.,

2021).

One challenge to our predictive models appears to be the low

frequency of active sequences at higher mutational distances. In

our phylogenetically derived data the vast majority of sequences

have very low activity (Figure 1D), and the probability of finding

sequence with high fraction cleaved decreases with the number of

mutations relative to wild-type. As a consequence, models

trained on lower-order mutant variants tend to overestimate

the activity of sequences at higher mutational distances. It has

been previously observed that experimental RNA fitness

landscapes are dominated by negative epistasis, which means

that mutations in combination tend to have lower fitness than

would be expected from the additive effects of individual

mutations (Bendixsen et al., 2017). The overestimation of

fraction cleaved at higher mutational distances suggests that

our models have a difficult time learning to predict negative

epistasis. It has been previously observed that mutations with

“neutral” or “beneficial” effects on protein function often have

destabilizing effects on protein structure (Soskine and Tawfik,

2010). We postulate that the same effect is causing negative

epistasis in the RNA data. This suggests that additional

information, such as measurements or estimates of

thermodynamic stability of helices, might be necessary for

increasing accuracy at even higher distances beyond those

offered by this data set (Groher et al., 2019; Yamagami et al.,

2019). For example, we have recently demonstrated that our

sequencing based approach to measuring ribozyme activity can

be extended to include magnesium titrations in order to evaluate

RNA folding/stability (Peri et al., 2022). In the future, combining

structural and functional information might be the best approach

to accurately design RNA molecules with desired functional

properties.

Materials and Methods

Ribozyme activity data

Ribozyme activity was determined as previously described

(Bendixsen et al., 2021). Briefly, DNA templates were synthesized

with the promoter for T7 RNA polymerase to enable in vitro

transcription. Templates were synthesized with mixtures of

phosphoramidites at variable positions. For the comprehensive

double-mutant data set, templates were synthesized with 97%
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wild-type nucleotides and 1% each of the other three nucleotides.

For the phylogenetic derived data set, the template was

synthesized with an equal mixture of the naturally occurring

nucleotides that were found at 13 positions that varied across

99 mammalian genomes. During in vitro transcription, RNA

molecules self-cleaved at different rates. The reaction was

stopped at 30 min, and the RNA was concentrated and

reverse transcribed with a 5′-RACE protocol that appends a

new primer site to the cDNA of both cleaved and uncleaved RNA

(SMARTScribe, Takara). The cDNA was PCR amplified with

primers that add the adaptors for Illumina sequencing. This

procedure was done in triplicate with unique dual-indexes for

each replicate. DNA was combined equimolar and sent for

sequencing (GC3F, University of Oregon.) Sequencing was

performed on a single lane of a HiSeq 4,000 using paired-end

150 reads.

Ribozyme activity from sequence data

FastQ sequencing data were analyzed using custom Julia and

Python scripts. Briefly, the scripts identified the reverse

transcription primer binding site at the 3′-end to determine

nucleotide positions and then determined if the sequence was

cleaved or uncleaved by the absence or presence of the 5′-
upstream sequence. For the single and double mutants, all

possible sequences were generated and stored in a list, and

reads that matched the list elements were counted and cleaved

or uncleaved was determined by the presence or absence of the

5′-upstream sequence. For the phylogenetically derived data,

nucleotide identities were determined at the expected

13 variable positions by counting the string character position

from the fixed regions. Sequencing reads were discarded if they

contained unexpected mutations in the primer binding site, the

uncleaved portion, or the ribozyme sequence. For each unique

genotype in the library the number of cleaved and uncleaved

sequences were counted and ribozyme activity (fraction cleaved)

was calculated as fraction cleaved = countscleaved/(countscleaved +

countsuncleaved).

Machine learning

Random Forest regression uses an ensemble of decision trees

to improve prediction accuracy. Each tree in the ensemble is

created by partitioning the sequences within a sample into groups

possessing little variation. Each sample is drawn with

replacement and the resulting trees are aggregated into forests

that best predict the cleavage rates of the sequences. The Random

Forest regression was performed using the python package scikit-

learn. Each sequence was transformed into a 69 by 4 one-hot

encoding representation of the sequence. Each of the four

possible nucleotides within the sequence was represented by a

vector of length 4 possessing a uniquely located “1” within the

vector to signify the nucleotide’s identity. Each sequence in

the training set was fit using scikit-learn’s Random Forest

Regressor ensemble module. Feature importance was

computed via a forest of randomized trees using the

features_importances function in the module under default

settings. Briefly, the relative importance of a feature was

determined by the depth of the feature when it was used as

a decision node in a tree. Features used at the top of the tree

contribute to the final prediction decision of a larger fraction

of the input samples. The expected fraction of the samples

they contributed to was used as an estimate of the relative

importance of the features.

LSTM is a recurrent neural network commonly used for

the predictive modeling of written text data, which has

sequential dependencies. Here we used an LSTM to

compute a set of hidden features given a set of nucleotide

sequences. These hidden features are learned by the LSTM in a

supervised way for the purpose of relating the nucleotide

sequence to the corresponding ribozyme activity (fraction

cleaved). The LSTM network has an architecture where

each cell C outputs the next state ht (1 ≤ t ≤ n) by taking

in input from the previous state ht-1 and the embedding xt of

the current nucleotide in the sequence. The output hn of the

last cell of the LSTM is then used as input to a Random Forest

regressor to predict the sequence functional activity rate. The

LSTM model was built using PyTorch’s open-source machine

learning framework. Sequences were trained using an LSTM

layer with 32 hidden dimensions and a dropout rate of 0.2.

Each sequence was embedded in a 69 by 4 tensor (where 4 is

the size of the nucleotide embedding) and then batched in

groups of 64 sequences for input to the model. The gradient

descent was performed using PyTorch’s built-in Adam

optimizer and MSELoss criterion. Twenty-five training

epochs were performed on each training set.

Training and test data

The data set containing the fraction cleaved data from the

27,647 phylogenetically derived sequences was binned based on

the number of mutations relative to the wild-type ribozyme. For

each bin, a portion of the data (20%) was chosen at random and

set aside as test data. This resulted in test data sets that were also

separated by the number of mutations relative to the wild-type

sequence. Training data sets were created from the 80% of data in

each mutational bin that was not set aside for testing. Training

data sets were created by combining bins at a given number of

mutations to all the bins with lower numbers of mutations.

Training data included 100% of the single and double mutant

data. For reduced training sets were created by randomly

sampling different numbers of sequences from the original full

training data sets.
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