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Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-
inhibitory molecules involved in competitive, and amensalistic interactions between
Enterobacteriaceae in the intestine. These interactions take place in a highly complex
chemical landscape, the intestinal eco-active chemosphere, composed of chemical
substances that positively or negatively influence bacterial growth, including those
originated from nutrient uptake, and those produced by the action of the human
or animal host and the intestinal microbiome. The contribution of bacteria results
from their effect on the host generated molecules, on food and digested food,
and organic substances from microbial origin, including from bacterial degradation.
Here, we comprehensively review the main chemical substances present in the
human intestinal chemosphere, particularly of those having inhibitory effects on
microorganisms. With this background, and focusing on Enterobacteriaceae, the most
relevant human pathogens from the intestinal microbiota, the microcin’s history and
classification, mechanisms of action, and mechanisms involved in microcin’s immunity
(in microcin producers) and resistance (non-producers) are reviewed. Products from the
chemosphere likely modulate the ecological effects of microcin activity. Several cross-
resistance mechanisms are shared by microcins, colicins, bacteriophages, and some
conventional antibiotics, which are expected to produce cross-effects. Double-microcin-
producing strains (such as microcins MccM and MccH47) have been successfully used
for decades in the control of pathogenic gut organisms. Microcins are associated
with successful gut colonization, facilitating translocation and invasion, leading to
bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more
invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible
APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins
in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much
less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are
microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter
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(mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae
indicate key ecological functions, a notion supported by their dominance in the intestinal
microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally
modified peptide microcins.

Keywords: microcins, chemosphere, colicins, bacteriocins, molecular ecology, Enterobacteriaceae, competition

INTRODUCTION

The intestinal tract of mammals is a highly complex environment.
It is an open environment partly influenced by factors
external to the host, including food, swallowed environmental
microorganisms (including those from the intestines of
the same or other mammals), and abiotic environmental
features. Consequently, the external microbial environment
is “represented” in the intestine and can be considered an
“invironment,” a shared space where the interior and the exterior
of the organism merge (Baquero, 2012). The biotic part of the
intestinal environment is essentially endowed by the functions
of the host in the upper intestine, but the environment of the
distal ileum and colonic space is dominated by highly diverse
gut microbiota composed of trillions of microbes (Lozupone
et al., 2012) with associations between themselves and the host
in complex interactive networks. These networks have been
refined during a long coevolutionary trajectory (Ley et al.,
2008a,b), starting probably in vertebrates (525 million years
ago), and refined later in mammals (200 million years ago);
thus, our current intestinal microbiota can almost be considered
another human organ (Baquero and Nombela, 2012). The
intestinal chemosphere, the ensemble of chemical molecules in
the lumen and on the surfaces of the gut, is particularly relevant
to understanding the regulatory ecology of the microbiome. In
this review, an important group of peptide-derived effectors
of bacterial origin, the microcins, are examined in detail.
However, it is critical to understand that the ecological effects
of these molecules are necessarily modulated by a complex
constellation of other chemicals, the chemosphere, influencing
the composition, physiology, and the resilience of the microbiota.

Until recently, a conservative, reductive view of understanding
the biological phenomena has favored the concept that a single
(or few) molecular or biological entity is sufficient to explain the
variation in frequency of particular bacterial populations in the
individual host. Given this single-entity approach has been shown
to be untrue, it should be presented with a more integrative
perspective (Baquero, 2015).

In this review, we summarize basic knowledge to help the
reader understand the role of a group of ribosomally synthesized,
low-molecular-weight peptidic molecules with antimicrobial
effects, the microcins, which influence bacterial interactions.
Our aim is to suggest that the ecological activity of microcins
should be understood within a much larger frame of ecological
influences exerted by many other chemical compounds in the
intestine, the intestinal eco-active chemosphere. We use the
term “eco-active” to clarify that we restricted our interest to
chemicals that play a role as factors of the local microbial ecology;
i.e., bacterial growth-promoting molecules, growth-inhibiting

(or killer) substances, and chemicals influencing bacterial
genetic variation, genetic regulation, bacterial interactions, and
colonization efficiency.

THE INTESTINAL CHEMOSPHERE:
MOLECULAR ECOLOGY

The term “molecular ecology” had been proposed by one of
the discoverers of microcins, the biochemist Carlos Asensio, as
early as 1975 (Asensio, 1976). He posited it was “necessary to
change the focus of the biochemist’s outlook on nature; a change
of mood and style,” focusing more on a new attitude in search
of ecological perspectives at a molecular level. This visionary
approach was based on his early experiences, shared with one of
the authors of this review (FB), concerning the first description
of microcins, and low-molecular-weight antimicrobial agents
produced by gut enterobacteria.

The Intestinal Chemosphere and the
Molecular Ecology of the Gut
The concept of a chemosphere at the core of the earliest studies
on intestinal microorganisms, such as the work of Powers and
Levine (1937), is also implicit in much later studies (Russell et al.,
2013; Lee and Hase, 2014; Donia and Fischbach, 2015; Milshteyn
et al., 2018). The microbiota works in a molecular chemosphere
to which the microbiota itself contributes. In this review, we
focus only on the fraction of the chemosphere comprised of
natural chemical compounds present in the intestinal lumen
(particularly in the large intestine), and not those that are
part of or are tightly bound to the bacterial or host surfaces.
The chemosphere is frequently subject to natural fluctuations,
which are both the cause and the consequence of changes in
the microbial community. Until very recently, the chemical
environment of the gut has remained poorly defined, and
therefore the “Molecular Ecology” of the environment where the
microbiota was functioning had been poorly accessible. In recent
years, the development of metabolomic approaches (mostly using
proton nuclear magnetic resonance and mass spectrometry) has
contributed to this field, attempting to define a human “fecal
metabolome,” comprised of small molecules from digested food,
mainly metabolites (and residues from metabolites) of human
origin, and more importantly from the effects of microbiota
acting on human, food, or microbial organic substances, or
resulting from bacterial degradation (Matsumoto et al., 2012; Xu
et al., 2015; Milshteyn et al., 2018). Multiomics approaches in
combination with metabolic modeling will soon contribute to a
more complete view of chemical flows in the intestinal microbiota
(Sieow et al., 2019).
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The number of detectable metabolites in the gut is
vast. All these chemical substances might, by themselves or
in combination, serve as molecular mediators of microbe-
microbe, and microbe-host interactions (Lustri et al., 2017).
An advancing field of research, following earlier studies on
microbiota and intestinal nutrients (Hooper et al., 2002) is
focusing on the “metabobiome,” that is, the network structure
linking the composition of the intestinal microbiota and the
intestinal metabolome (Xu et al., 2015). The gut microbiota
has a considerable effect on the profile of mammalian blood
metabolites (Wikoff et al., 2009). Given there is a core
microbiota established in many (or most) human individuals
(Turnbaugh et al., 2009), there should also be an accessory
microbiota only present in distinct groups of individuals (Saric
et al., 2007). Correspondingly, there should be a core and an
accessory microbiota-derived metabolome (Xu et al., 2015). Part
of the “species barriers” in transmission of bacteria among
heterogeneous hosts (such as humans and food animals) could
be due to discordances in the metabolic chemosphere of the
intestine required for bacterial colonization in each type of host
(Baquero, 2018; Nagpal et al., 2018). Bioinformatic approaches
that are focused on the detection of secondary metabolites
from the microbiota could be critical to casting light on this
issue (Weber and Kim, 2016; Ozdemir et al., 2018). The
variety of microbial metabolites in the gut is currently being
explored by bioinformatic methods, such as ClusterFinder, to
detect the biosynthetic gene clusters encoded in the genomes
of the human microbiome (Donia and Fischbach, 2015). Gene
clusters involved in the production of known oligosaccharide and
ribosomally synthesized, post-translationally modified peptides
(including microcins) were frequently identified, and this
number could be further increased, given many biosynthetic
clusters remain uncharacterized.

In any case, the abundance and complexity of the known
microbiota-generated metabolites are overwhelming. Only the
sub-metabolome of amine- and phenol-containing metabolites
in fecal samples might comprise over 5000 different molecules
(Xu et al., 2015). Compounds derived from dietary polyphenols,
including chlorogenic acids, tannins, and flavonoids play an
important role in the ecology of the intestinal microbiota (Popa
et al., 2015). Carbohydrates, lipids, and proteins acquired from
food or excreted by the host into the gut and eventually degraded
or modified by the microbiota are also part of the chemosphere.

Mucins are particularly important as substrates for bacterial
activity (Tailford et al., 2015; Corfield, 2018). In the neonatal
period, human milk contains hundreds of glycans, including
mucins, glycosaminoglycans, glycoproteins, and particularly
human milk oligosaccharides, influencing the composition of the
microbiota, mainly by modulating bacterial binding to intestinal
surfaces, as in the case of Escherichia coli (Newburg and Morelli,
2014). Lipids in the milk, mostly free fatty acids, also have a
role in microbiota construction. In infants, and also in adults,
a number of bacterial gut populations have the ability to forage
on glycans provided by the mucus layer covering the surface
of the gastrointestinal tract, and are eventually released in the
lumen by cell detachment. As a consequence, α- and β- linked
N-acetyl-galactosamine, galactose, and N-acetyl-glucosamine can

be incorporated into the chemosphere. Mucin glycans probably
play a key role in selecting microbial communities along
and across the gastrointestinal tract (Kashyap et al., 2013a,b;
Tailford et al., 2015).

Dietary fiber- or host-derived (such as epithelial mucus)
glycans produce many metabolites and can degrade into short-
chain fatty acids such as acetate, butyrate, and propionate.
This degradation requires a consortium of microorganisms
linked by a trophic chain (Turroni et al., 2008). Other short-
chain fatty acids, such as isobutyric, valeric, 2-/3-methylbutyric,
caproic, and isocaproic are derived from amino acid metabolism.
Phosphatidylethanolamine, derived from membrane lipids from
animal hosts and bacteria, is degraded to glycerol and
ethanolamine. Ethanolamine is a significant nutrient for gut
microorganisms (Garsin, 2010; Kaval et al., 2018), as are probably
phosphoinositides, sphingolipids, cholesterol, and eicosanoids
(Bäckhed and Crawford, 2010). Bacterial action on dietary
phospholipids (phosphoglycerides) such as choline, carnitine,
or lecithin (phosphatidyl choline) gives rise to trimethylamine-
N-oxide, acting as an osmolyte, assuring bacterial cell wall
replication under stress and counteracting the effect of urea
(Mukherjee et al., 2005; Lee and Hase, 2014).

Amino acids are actively produced by intestinal bacteria as
electron acceptors in a highly anaerobic environment, frequently
used together with reductive amino acid metabolites, such
as phenylpropionic acid, and phenylacetic acid (Donia and
Fischbach, 2015). Indole, a tryptophan metabolite, serves as a
signaling molecule in bacterial interactions. It is from aliphatic
amino acids, such as arginine, proline, and ornithine, that
δ-aminovaleric acid is produced; threonine or methionine are the
source of α-aminobutyric acid.

Proteins are present in vast amounts in the intestinal
chemosphere. A gene catalog database of the human gut
microbiome indicates the presence of nearly 10 million
proteins; however, most of them are clearly intracellular
proteins that are only available after bacterial lysis (Zhang
et al., 2016). Proteins from the microbiota and the host
are the target of metaproteomics (Xiong et al., 2015). From
the approximately 6000 proteins that have been detected in
the gut by metaproteomics, some two-thirds of them are of
microbial origin (Verberkmoes et al., 2009; Erickson et al.,
2012). More recent studies have identified more than 100,000
unique peptides associated with the microbiota (Cheng et al.,
2017). The diversity of proteins is enhanced by post-translational
modifications (by hydroxylation, methylation, citrullination,
acetylation, phosphorylation, methyl-thiolation, S-nitrosylation,
and nitration); in E. coli more than 5000 post-translational
modification events been identified (Olsen and Mann, 2013).
As in the metabolome, there is apparently a “core proteome”
consisting of core functional categories (Verberkmoes et al.,
2009). The intestinal proteome differs in the various intestinal
regions, where variation in the local microbiota influences
protein abundance and diversity (Lichtman et al., 2016).

In fact, there should be, at least in the colonic space, a
wealth of molecules released by lysed bacteria (cell debris),
including not only intracytoplasmic small molecules, nucleic
acids, and proteins (many likely of ribosomal origin), but more
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importantly bacterial membranes releasing lipopolysaccharides
(glycolipids), lipoproteins, phospholipids, and peptidoglycan
fragments, resulting from lysis of bacterial cell envelopes. It has
been estimated that approximately one-third of bacteria in the
gut are dead organisms (Ben-Amor et al., 2005). However, the
contribution of “bacterial waste” to the intestinal chemosphere
remains scarcely investigated.

The microbiota influences the intestinal chemosphere by
altering the production and/or consumption of simple chemical
molecules such as water, oxygen, hydrogen, nitrogen, carbon
monoxide, carbon dioxide, hydrogen peroxide, nitrogen oxide,
sulfates, ammonium, methane, and ethylene, and metals serving
as nutrients or cofactors. In particular, microbiota and oxygen
balance in the gut are deeply linked (Vacca, 2017). Given most
of the microbiota is composed of strict anaerobic organisms,
when oxygen availability increases, as occurs during antibiotic
therapy, these populations are reduced, favoring facultative-
aerobic organisms, such as Enterobacteriaceae (Rivera-Chávez
et al., 2017). Finally, among the metals, iron is widely considered
as a nutrient for microbiota. In fact, it is one of the
main chemicals involved in biological competition, including
competition among bacterial populations and also with the host
(Kortman et al., 2014). Changes in gut iron availability alters the
microbiota, frequently favoring rapid-growing bacteria, such as
some intestinal pathogens (Jaeggi et al., 2015).

The Intestinal Chemosphere as a Field of
Microbial Interactions
Reciprocal interactions are probably the most frequent processes
in microbial gut ecology and are deeply influenced by
the intestinal chemosphere. The microbiota determines an
important part of the chemosphere, and the chemosphere
constitutes the common chemical environment of the microbiota
(Figure 1). A long and common evolutionary history of microbial
organisms within their chemospheres has refined and stabilized
intermicrobial interactions so they produce reciprocal effects on
the interacting partners. In fact, the microbiota not only provides
chemicals to the chemosphere, but some of these compounds,
such as tryptamine, can activate the epithelial protein-coupled
receptor to increase colonic secretion, probably for the benefit
of some populations (Bhattarai et al., 2018). The microbe-driven
modification of the intestinal chemosphere in the intestine could
be a major factor influencing pathogen restriction, a topic thus far
insufficiently investigated (Rangan and Hang, 2017).

Competition dominates species and clonal interactions in
the bacterial world (Foster and Bell, 2012; Stubbendieck and
Straight, 2016), and most probably the diversity and stability of
the intestinal microbiota depends on competitive interactions
(Coyte et al., 2015). Given the local coexistence of populations
competing in the intestinal chemosphere for the same energy
sources, nutrients, and attachment surfaces, the multiplication of
the fittest reduces the reproductive possibilities of the competitor
(exploitative competition) (Hibbing et al., 2010). However, this
antagonistic interaction rarely produces the extinction of the
competitor. Environmental fluctuation/variation might favor this
competitor in other (sometimes immediate) circumstances. Also,

FIGURE 1 | The intestinal chemosphere. The chemosphere (light blue layer) is
the ensemble of chemical molecules of dietary and environmental origin,
released (dark blue vertical arrows) by the physiological or pathological
functions of the host or by the complex bacterial communities colonizing the
intestine. The chemosphere surrounds the gut microbiota (inner beige circle),
composed of a variety of bacterial populations (dark red, brown, and yellow
circles). These populations contribute to the chemosphere with chemicals
(dark blue angled arrows) that result, probably in combination with other local
chemicals, in the growth or inhibition of the same or other populations (red
arrows). The chemosphere might have local differentiations with sets of
chemicals (hatched circles), but an important part of it is flowing (curved blue
arrows). Some components of the microbiota can regulate the secretion of
chemicals by the host (gray arrow).

because punctual competition could be for the mutual benefit
of “being together” (coexistence mutualism) in the presence of
certain substrates or conditions, so that the maintenance of
both earlier contenders is assured faced with a third competitor
negatively influencing both. This concept has been presented
as a case similar to the game “rock-paper-scissors” (Czárán
et al., 2002). In addition, and as was mentioned earlier,
collective-cooperative trophic actions involving various bacterial
populations are required to degrade particular compounds
of the chemosphere, such as glycans from dietary fiber or
epithelial mucus.

Later in this review we analyze in some detail the fact that
the intestinal microbial ecology includes a wealth of interactions
in which the growth of some bacterial populations is inhibited
by others, either more efficient in the competition for limited
vital resources, or excreting toxic substances which are released
in the chemosphere, which is termed interference competition
(Hibbing et al., 2010). At first sight, these types of effects
can be considered an indirect, coincidental, or unintentional
allelopathy. However, it is difficult to decide whether the
spectrum of allelochemicals (such as metabolites) released by
particular groups or ensembles of groups in the microbiota has
evolved to maintain a healthy species diversity based on negative
interactions (Abrudan et al., 2012).

Directed allelopathy or amensalism, in which one bacterial
population inhibits the growth of or kills another one in a
non-reciprocal manner, likely resulting in a benefit for the
offender, is much more specific in shaping microbial ecology
than interference competition based in fight for nutrients.
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Amensalism might facilitate long-term genome evolution, given
the DNA released from killed cells can be incorporated
into the aggressor’s genome (García-Bayona and Comstock,
2018). The involved allelochemicals are considered “antibacterial
compounds,” frequently “secondary metabolites” produced in the
late stages of growth or during a stationary phase. It is of note
that antimicrobials produced by bacteria cannot necessarily be
considered (in our anthropocentric view) as weapons against
“others,” but more as signaling agents (Linares et al., 2006;
Chikindas et al., 2018), probably acting along gradients. In fact,
the maintenance of species diversity requires a non-extinction
outcome, even in amensalistic interactions. In this respect, it
should be debated whether allelopathic substances have evolved
as an attack or defense strategy. Experimental results have
suggested that antibiotic production does not improve the
ability of producers to invade a population of sensitive cells
(Wiener, 1996). On the contrary, established colicin-producing
populations in structured habitats, which allow the achievement
of a critical (high) population density, can overcome potential
susceptible competitors (Chao and Levin, 1981; Durrett and
Levin, 1997). This view is supported by the frequent production
of allelopathic substances in populations with slow growth or
during a stationary phase, such as when they reach high density in
structured habitats. Whether allelopathy is triggered by different
types of stress is an interesting possibility to consider; certainly,
competition occurs more frequently under limiting conditions.
However, the production of allelotoxic compounds might require
investing energy in costly biosynthetic processes, whereas an
alternative immunity/resistance-based “defensive strategy” could
be evolutionarily preferred (García-Gutiérrez et al., 2019). This
view suggests that the protection of population borders is critical,
probably preventing niche invasions that can provoke local
extinctions. Finally, the antibacterial activity of some allelopathic
agents is highly dependent on the surrounding chemosphere;
for instance, on the available carbon sources, trypsin, or carbon
dioxide (García-Bayona and Comstock, 2018).

Microbial Growth Inhibitors in the
Chemosphere
The ecological effects of intestinal chemical substances influence
many dimensions. One aspect is their inhibitory effects on
bacterial growth. In fact, intestinal microbiota can be considered
a potential source of novel antimicrobials (Mousa et al., 2017).
In the context of this review, we focus on metabolites and
compounds arising from the action of intestinal bacteria that
might inhibit bacterial replication or reduce microbial viability.
As noted above, when defining the intestinal chemosphere, we
are considering the chemical growth inhibitors that are available
in the lumen, not those that are dependent on bacterial surfaces,
such as those mediating contact inhibition (Willett et al., 2015;
Chen et al., 2018).

Dietary Polyphenols and Carbohydrate Metabolites
as Bacterial Growth Inhibitors
A number of phytochemicals, particularly polyphenols, are
frequently bacterial growth inhibitors. In particular, flavonoids
have direct antibacterial activity, eventually potentiating the effect

of other antimicrobials (Cushnie and Lamb, 2011). It has been
proposed that dietary flavonoids such as quercetin might even
protect against some pathogens (Popa et al., 2015). Chlorogenic
acids are extremely frequent in nature (approximately 400 have
been reported), and among them, acyl-quinic acids are the
most studied (Clifford et al., 2017). Chlorogenic acids have
antimicrobial effects, and given these promote the increase in
permeability of the outer and plasma bacterial membranes, they
might also increase the effects of potentially active substances
inhibiting microorganisms excluded by these barriers (Lou et al.,
2011). Dietary fiber and polyphenols are metabolized to short-
chain fatty acids and phenolic acids by the colonic microbiota
(Russell and Duthie, 2011).

Short chain fatty acids resulting from the effect of microbiota
on carbohydrates and polyphenols, mostly derived from the diet,
are fermented by the gut microbiota and are in turn important
effectors of microbial growth restriction. This inhibition occurs
both by lowering pH, and by a pH-independent antibacterial
effect. Firmicutes species mainly produce butyrate, whereas
Bacteroidetes primarily produce acetate and propionate (den
Besten et al., 2013; Ridaura et al., 2013). In newborns, the
early (human milk-promoted) overgrowth of acetate-producing
Bifidobacterium prevents a dangerous massive colonization with
opportunistic, mostly Gram-negative, pathogens (Underwood
et al., 2015). This modulation of the microbiota by acetate has
inspired probiotic strategies using Bifidobacterium to correct
metabolic disorders (Fukuda et al., 2011; Aoki et al., 2017).

Organic salts such as lactate and citrate have a growth-
inhibitory activity on some species of microbiota (Zhitnitsky
et al., 2017). Part of this activity is simply due to the pH effect.
In fact, pH has a significant role in determining the species
composition of human colonic microbiota; mildly acidic pH
restricts Gram-negative bacteria, including Enterobacteriaceae
and Bacteroidetes, particularly in the presence of short-chain
fatty acids (such as acetate), favoring the growth of low-
pH-tolerant microorganisms (Duncan et al., 2009). However,
citrate has antibacterial activity independent of the pH effect
on organisms of the colonic microbiota, such as Fusobacterium
(Nagaoka et al., 2010).

Bile Acid and Lipid Bacterial Growth Inhibitors
The gut microbiota deconjugates and subsequently metabolizes
the primary bile acids, cholic and chenodeoxycholic acid
(cholesterol derivatives), into secondary bile acids, including
terpenoids (Donia and Fischbach, 2015); bile salt hydrolases are
key enzymes in the process (Jones et al., 2008). Both conjugated
and unconjugated bile salts have direct antimicrobial activity
(Sannasiddappa et al., 2017) and indirect actions on microbiota
by modulating innate immunity. Inhibition occurs particularly
in the proximal intestine; thus, if bile excretion is prevented,
it results in bacterial overgrowth in the gut (Hofmann and
Eckmann, 2006). The direct effects of bile salts in several Gram-
negative bacteria probably result from action on membranes,
which is in part compensated by the induction of efflux pumps
(Thanassi et al., 1997; Rosenberg et al., 2003). Inhibition of
Gram-negatives results in an increase in the proportion of Gram-
positive bacteria (Friedman et al., 2018).
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Lipids such as fatty alcohols, free fatty acids, and
monoglycerides of fatty acids have antibacterial effects both
on Gram-positive and Gram-negative bacteria, most probably
due to damage to the bacterial envelopes (Thormar and
Hilmarsson, 2007; Bergsson et al., 2011). Part of the antibacterial
activity of milk is due to lipids, mostly medium-chain saturated,
and long-chain unsaturated fatty acids and their monoglycerides
released by lipases in the gastrointestinal tract (Isaacs, 2001).

Protein- and Amino Acid-Derived Bacterial Growth
Inhibitors
Polyaminated molecules, biogenic amines, and polyamines
are small polycation molecules derived from aromatic or
cationic amino acids by decarboxylation, a process that can
be mediated by intestinal microorganisms. Bacteroides (most
importantly B. thetaiotaomicron) and Fusobacterium are
important producers; however, polyamines are also produced
by a “consortia” of other bacteria exchanging metabolites
and forming collective chemical pathways (Matsumoto
and Benno, 2007; Sakanaka et al., 2016; Nakamura et al.,
2018). Polyamines include spermidine, homospermidine,
norspermidine, putrescine, cadaverine, and 1,3-diaminopropane.
The rate of production and degradation of biogenic amines
and polyamines has consequences in microbial ecology
(Pugin et al., 2017; Tofalo et al., 2019). Polyamines such
as putrescine, spermine, and spermidine are known to
be antibacterials, effective against Gram-positive bacteria
(Bachracht and Weinstein, 1970). However, these compounds
can also alter bacterial membrane permeability in Gram-
negatives and in fact can serve as potential scaffolds for
new antibacterial agents (Blanchet et al., 2016). In addition,
polyamines can act as regulators of bacteriocin production,
thus indirectly influencing competitive bacterial interactions
(Yi-Hsuan and Chen-Chung, 2006).

Secretory N-acyl homoserine lactones mediating bacterial
quorum-sensing in bacterial populations might also have
antibacterial activity (Pomini and Marsaioli, 2008; John
et al., 2016; Saroj et al., 2017). Indole-based intercellular
communication molecules might also have antibacterial
effects, eventually enhancing the effect of antibiotics (Biswas
et al., 2015). Recently, it has been shown that quorum-
sensing molecules involved in interspecies cell-to-cell
communication, such as the signal autoinducer-2 from E.
coli, influences the species composition of gut microbiota
(Bivar, 2018).

Intestinal unconjugated bilirubin, resulting from the
catabolism of hemes (from senescent erythrocytes), has a weak
antimicrobial activity against E. coli and Klebsiella pneumoniae
(Terzi et al., 2016). Biliverdin might influence inflammatory
mediators (Overhaus et al., 2006). Finally, non-ribosomal
peptides of bacterial origin are rarely found to be associated with
mammals’ microbiota (Donia and Fischbach, 2015).

Host Defense Antimicrobial Peptides and Proteins
Host defense antimicrobial molecules produced by epithelial
cells of the intestine can be secreted into the intestinal lumen
of mammals, such as antimicrobial peptides (α-defensins,

β-defensins, and cathelicidins), protective carbohydrate-
bonding proteins (C-type lectins), and RNAses (Gallo and
Hooper, 2012; Meade and O’Farrelly, 2019). Secretion
of these molecules is frequently controlled by bacterial-
originated signals and might influence the composition of
the microbial community (Salzman et al., 2010). However,
they remain mostly attached to the inner and outer mucus
layers of epithelium, embedded in the mucin glycoprotein
layer (Meyer-Hoffert et al., 2008; Dupont et al., 2014).
Given detached fragments of this mucin layer can serve
as a source of bacterial nutrients, a possible effect of these
antimicrobial peptides in the gut lumen, and not only
on the epithelial surfaces, cannot be excluded. Finally,
immunoglobulins, particularly secretory IgA, are produced
by plasma cells and transported into the lumen through
the intestinal epithelial cells but remain surface-attached
to block epithelial receptors (Mantis et al., 2011). These
large antimicrobial proteins also have effects on the
microbiota composition, particularly on Proteobacteria
(Mirpuri et al., 2014).

Bacteriocins
In 1925, André Gratia, a Belgian microbiologist, was the
first to detect antagonisms between Enterobacteriaceae
strains (Gratia, 1925), and this early work was followed
by that of Pierre Fredericq (Fredericq and Levine, 1947),
who identified colicins, the first bacteriocins. Bacteriocins,
ribosomally synthesized proteins, are specific effectors of
bacterial inhibition or death, and they are particularly active
on phylogenetic relatives of the producer (Cotter et al., 2005,
2013). Bacteriocins are considered important modulators of
intestinal microbiota (Lenski and Riley, 2002; Kirkup and
Riley, 2004; Corr et al., 2007; Angelakis et al., 2013; Million
et al., 2013). The classification of bacteriocins, a heterogeneous
group of substances of various bacterial origins, is a highly
debatable and even confusing issue (Chikindas et al., 2018),
even though the various classification proposals do not
differ in the essential (Klaenhammer, 1993; Van Belkum and
Stiles, 2000; Kemperman et al., 2003; Heng and Tagg, 2006;
Arnison et al., 2013; Balciunas et al., 2013; Alvarez-Sieiro
et al., 2016; Dicks et al., 2018). Two clearly recognizable
broad groups, are the long thermolabile peptides, including
colicins, and a heterogeneous ensemble of small thermostable
peptides, including the microcins. Lantibiotics (lanthionine and
methyllanthionine containing peptides) are also thermostable.
Note that thermostability is often correlated with resistance
to proteolysis (Daniel et al., 1982), an important trait for
stability in the intestinal environment. A systematic search of
previously described bacteriocin molecules (n = 1360, 1000
of them from Gram-positives) has been performed on 317
genomes of the gut microbiota (Drissi et al., 2015). Firmicutes
and Bacteroidetes, the most predominant phyla in the human
microbiota, produce the largest number of bacteriocins.
However, based on the chemical structure, the authors suggest
that bacteriocins produced by Proteobacteria, which are rich in
cationic charges and α-helices, might have higher antibacterial
activity (Drissi et al., 2015).
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THE MICROCINS

Historical Background of the Discovery
of Microcins
Microcins were originally defined as eco-active, low-molecular-
weight excreted molecules (less than 10 kDa), such as amino
acids and short ribosomally synthesized peptides produced
by Gram-negative organisms, and presenting resistance to
proteases, extreme pH, and high temperatures. Microcins were
discovered in 1974 in the process of identify effectors of
enterobacterial sequential displacements in the microbiota of
newborns (Baquero and Asensio, 1976). Even though the number
of species cumulatively increases with time in newborns, the
absolute number of bacterial cells is extremely high from the
early days. The microcin’s historical screening was performed
in conditions resembling the high-density colonization of the
colonic space, using minimal media to mimic possible nutritional
deficiency, and was designed to detect only low-molecular-weight
molecules, microcins (meaning small bacteriocins), which are
able to pass and exert activity through cellophane membranes,
excluding molecules over 10,000 Da. This screening excluded
conventional bacteriocins, large proteins that could be degraded
by intestinal proteases. Low-molecular-weight growth-inhibitory
substances were consistently detected in Enterobacteriaceae from
the human newborn intestine (15% of the tested strains). The first
comprehensive review on microcins was in 1984 (Baquero and
Moreno, 1984). At this time, these growth-inhibitory substances
were identified as small peptides and occasionally as amino acids
or amino acid-derived compounds. Other secondary metabolites
or chemical substances of bacterial origin with low molecular
weight and high antimicrobial activity are apparently very rare
or are produced in small amounts. The possibility that microcins
could be considered as potential drugs was considered from this
early period, and in fact the microcins remain as promising,
but not yet developed, antibacterial agents (Gillor et al., 2004;
Zucca et al., 2011; Collin and Maxwell, 2019). Although the
designation “microcins” currently refers mainly to ribosomally
synthesized peptides, for the purposes of this review we would
like to recapitulate the original “functional” meaning as small
eco-active molecules mediating bacterial interactions in the gut.
However, we should acknowledge that amino acids and amino
acid derivatives with antimicrobial activity do not correspond in
a strict sense to microcins as they are understood today, and they
should in fact be considered as “historical microcins.”

Historical Amino Acid or Amino
Acid-Derived Microcins; Secreted Amino
Acids as Inhibitors
In early studies focusing on low-molecular-weight inhibitors
excreted by Enterobacteriaceae, several excreted amino acids and
amino acid-derived compounds were included among microcins.
This was the case for L-valine, which inhibits growth of E.
coli strain K-12 due to repression of the aceto-hydroxybutyrate-
forming system, leading to an inhibitory shortage of isoleucine.
Also, methionine derivatives, such as microcin 15 m, inhibit
the first enzyme of the methionine biosynthetic pathway,

homoserine-O-trans-succinylase (Baquero et al., 1984). Early
research on microcins (Baquero and Asensio, 1976) had
indicated that among Enterobacteriaceae from the neonatal
human intestine, 3% hyperexcreted L-valine, and 7% putative
methionine derivatives (such as microcin 93 m), the inhibitory
activity being reversed by adding methionine (10 mg/ml)
(Aguilar et al., 1982). In other studies, E. coli excretion of
D-alanine has been detected; in general, the bacterial excretion of
D-amino acids might have bacterial growth-inhibitory activity.
Either glycine or D-amino acids inhibit the growth of E. coli
(Hishinuma et al., 1969), altering lipoprotein binding in the
outer membrane (Tsuruoka et al., 1984), and triggering biofilm
disassembly (Kolodkin-Gal et al., 2010). D-amino acids also
induce in eukaryotic (intestinal?) cells the toxic formation of
superoxides, and trigger apoptosis (Bardaweel et al., 2013).
In particular, D-arginine is probably involved in microbial
interactions and contributes to microecological diversity (Álvarez
et al., 2018). Despite the possible importance of these findings,
research on the physiology and ecological consequences of
bacterial secretion of amino acids and amino acid derivatives
in complex ecosystems remains very limited (Krämer, 1994),
and only in recent years has it been systematically investigated
(Aliashkevich et al., 2018).

Microcins as Small Peptides
In more recent times, the term “microcins” has been applied
essentially to small peptides secreted by microorganisms (mostly
Enterobacteriaceae) that are able to inhibit other bacteria.
Microcins are non-SOS-inducible, ribosomally synthesized
peptides, in some cases only active after post-translational
modification. In 1949, the Belgian microbiologist Pierre
Fredericq named the antagonistic substance previously described
by Gratia in 1925 as “colicin V.” The possibility that this
low-molecular-weight molecule could be considered a microcin
was acknowledged by Fredericq in a personal face-to-face
ad hoc meeting in Liège with one of the authors of this
review (FB). Low molecular weight was in fact instrumental
to differentiating them from colicins in the microcin kick-off
consensus conference at the Alhambra, Granada, Spain, in 1983,
which was attended by top international experts in the field
including Volkmar Braun, Roberto Kolter, Jordan Konisky,
Claude Lazdunsky, Bauke Oudega, Anthony Pugsley, and
Maxime Schwartz. Thirty years later, in 2013, a consensus on
universal nomenclature of ribosomally synthesised and post-
translationally modified peptides (RiPPs) was presented (Arnison
et al., 2013). Most of these active RiPPs are initially synthesized
as a long precursor peptide, typically∼20–110 residues in length,
encoded by a structural gene. The “core peptide” is the region
that is transformed in the bioactive molecule. Microcins were
recognized as a separate family among these natural products
(Arnison et al., 2013).

The Functions of Microcins
Microcins had been discovered as molecules influencing
interbacterial interactions in complex microbial ecosystems,
regulating microbial communities; this basic ecological function
is at the core of this review. In addition to this basic
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function (Chung and Raffatellu, 2019), other interactions are
also influenced by microcin-producing organisms, involving not
only the microbial community but also the human or animal
hosting the microbiota.

Microcins might have functions involving interactions with
eukaryotic host cells. An important aspect is if microcins can
cross the intestinal-blood barrier to produce systemic effects on
the host (Dicks et al., 2018). Some microcins, such as MccJ25,
have interactions with integrins, eukaryotic transmembrane
receptors involved in cells’ extracellular matrix adhesion and
potentially regulating the cell cycle (Hegemann et al., 2014).
In fact, the lasso peptide MccJ25 can act as a pro-apoptotic
eukaryotic antimicrobial peptide, thus being potentially active in
anticancer therapy (Soudy et al., 2017), as are other bacteriocins
and microcins (Cornut et al., 2008). Strains producing microcins
MccH and MccM, as the Nissle strain, tends to target neoplastic
cells (Stritzker et al., 2007), and MccE492 has antitumorigenic
properties (Lagos et al., 2009). It has been proposed that the
decrease in potentially antineoplastic bacteriocins and microcins
in healthy individuals might contribute to the initiation of
non-advanced colorectal neoplasia; however, when neoplasia is
advanced, a higher frequency of microcinogenic strains occurs
(Kohoutova et al., 2014). Microcins are part of complex gene
clusters, such as the colibactin gene cluster located in the
genetic island KPHPI208 of K. pneumoniae, likely inducing some
degree of host DNA damage (e.g., regulatory functions and
genotoxicity) (Lai et al., 2014). Similarly, E. coli Nissle, 1917
harbors a gene cluster, the “pks island” allow production of
colibactin, causing potential genotoxicity (Olier et al., 2012). In
addition, some microcins, such as those producing accumulation
of oxazole compounds derived from MccB17 and other
thiazole/oxazole-modified microcin-producing bacterial strains,
might significantly influence host immune responses, leading
to intestinal inflammatory effects (eventually providing food for
the microbe). In general, they have an immunoregulatory effect
mediated by the glycoprotein CD1d-restricted pathways, thus
influencing antigen-presentation functions (Iyer et al., 2018).

Finally, microcins and microcin-related molecules might also
have regulatory functions inside the bacterial cell. MccC triggers
the stringent response and persistence in both sensitive and
producing cells (Piskunova et al., 2017). Microcins might have
functions related to bacterial maintenance of mobile genetic
elements, such as plasmids; thus, acting as a post-segregational
killing mechanism; that is, bacteria losing a plasmid are penalized
with cell death (Fedorec et al., 2019).

The Microcin Classification
Approximately 15 peptidic microcin molecules have been
identified, but the chemical structure is only known for 8
of them. Peptidic microcins are currently grouped into 2
classes (Rebuffat, 2012). Class I peptidic microcins, such as
microcins MccB17, MccC, MccD93, and MccJ25 are small
(less than 5 kDa) plasmid-encoded peptides requiring extensive
backbone post-translational modifications. The term “post-
translational thiazole/oxazole-modified microcins” (TOMMs)
has also been suggested for MccB17 related bacteriocins (Melby
et al., 2014). Class II peptidic microcins (Duquesne et al., 2007b;

Vassiliadis et al., 2011; Santos et al., 2017) are larger (5–10 kDa),
and can be subdivided into class IIa, including the plasmid-
mediated microcins MccL, MccV, and MccS, not requiring post-
translational modifications and having, respectively 2, 1, or no
disulfide bond(s); and class IIb, such as the chromosomally
encoded microcins MccE492, MccM, and MccH47, and carrying
(MccM, MccH47, and MccI47) or not a C-terminal post-
translational modification, involving a catechol-siderophore
moiety (Patzer et al., 2003; Vassiliadis et al., 2010).

Microcins’ Mechanisms of Action
Microcins are antibiotic peptides, blocking vital functions
in the target cell. They act by forming pores in the bacterial
membrane (MccV, MccE492, and MccL), inhibiting aspartyl-
tRNA synthetase, essential in protein synthesis (MccC),
inhibiting the DNA gyrase GyrB, resulting in double DNA breaks
(MccB17). Some others block the secondary RNA polymerase
channel, impairing transcription and acting on cytochromes
to inhibit cellular respiration (MccJ25), impairing the cellular
proton channel (MccH47 and probably MccM and MccI), or
the ATP synthase (MccH47). Some modes of action have been
studied in detail and others remain to be confirmed. Colicins,
much larger polypeptides, mainly act by pore formation, nuclease
activity (DNase, 16S rRNase, and tRNase activities), and blocking
peptidoglycan synthesis (colicin M).

Antimicrobial production should be balanced with
appropriate mechanisms of self-protection by the producing
organisms (immunity). Among others, these mechanisms
involve acetyltransferases (MccC), production of immunity
proteins (Class IIb microcins), efflux pumps (MccB17, MccJ25,
and ppGpp-regulated), or inhibition of DNA gyrase supercoiling
activity (MccB17), which are detailed later.

Once the peptides or their derivatives with antibacterial
activity are released from the producer cell, action on other
bacterial cells requires uptake mechanisms. Uptake depends
frequently on outer membrane receptors, mainly OmpF and
OmpC, but also on receptors involved in iron uptake (FhuA,
FepA, Cir, and Fiu). Several microcins use the “Trojan horse”
strategy of mimicking essential nutrients (such as essential
amino acids or iron-siderophores) to be incorporated into the
cell. Frequently, failure in nutrient uptake mechanisms results
in microcin resistance in non-producer organisms. Next, in a
simplified manner, we will review the main modes of action of
these antibiotic peptides.

Class I microcins
The Microcin B17 (MccB17) structural gene, mcbA, encodes
a 69-amino acid inactive precursor that undergoes at least
2 steps of post-translational modification, leading to the
formation of oxazole and thiazole rings, and resulting in
the toxic MccB17 molecule. These steps are performed by
the McbBCD enzyme complex in subsequent reactions of
cyclization, dehydration, and dehydrogenation involving the
dipeptides Gly-Ser (oxazole) and Gly-Cys (thiazole), present in
the MccB17 unmodified precursor (Li et al., 1996). Modification
of the tripeptides Gly-Ser-Cys and Gly-Cys-Ser leads to the
formation of oxazole-thiazole and thiazole-oxazole, respectively.
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The discovery of the process of MccB17 peptide maturation
has been instrumental for overall progress of the field of
biological synthesis of oxazoles-thiazoles and, more importantly,
of post-translational modification (Yorgey et al., 1994). The
recent elucidation of the microcin B synthase octameric protein
complex has been instrumental to understand the process of
conversion of a ribosomally synthesized peptide in a DNA
gyrase inhibitor, culminating 30 years of research (Ghilarov
et al., 2019). Interestingly, compounds very similar to microcin
B can target molecular machines other than gyrase. A full
set of MccB17 homologous proteins was identified in the
genome of K. pneumoniae; one of them, klebsazolicin from
K. pneumoniae subsp. ozenae is targeting the 70S ribosome,
obstructing the peptide exit tunnel, and overmapping with group
B streptogramins (Metelev et al., 2017b).

Mature MccB17 is exported outside the cell by a specific
ABC transporter (McbE–McbF). TldD/TldE is a protease that
removes the leader peptide from the MccB17 precursor, allowing
MccB17 export by the McbE–McbF transport system (Allali
et al., 2002; Tsibulskaya et al., 2017). The leader peptide does
not intervene in microcin activity. The lethal cellular target
of MccB17 is the GyrB subunit of DNA gyrase (Vizan et al.,
1991). Inhibition of GyrB results in an impairment of DNA
replication in sensitive cells, producing an SOS response (Herrero
et al., 1986). Alterations in DNA packaging by MccB17 might
increase the bacterial mutation rate, as in the case of novobiocin,
also targeting GyrB (Chang et al., 2003). Most of the studies
of MccB17 have been performed with E. coli strains; however,
there are reports of MccB17-like activities in environmental
Pseudomonas, such as P. syringae and P. antarctica (Metelev et al.,
2013; Lee et al., 2017), encoded with an almost identical genetic
structures to that of MccB17.

Microcin J25 (MccJ25) is a 21-amino acid antimicrobial
peptide with a lasso structure. The study of lasso peptides has
generated increasing interest due to their high stability and
possible bioengineering applications in the design of enzyme
inhibitors or to antagonize receptors (Rosengren and Craik,
2009). Lasso peptides are a class of ribosomally synthesized
peptides, with a unique three-dimensional structure produced by
a lasso peptide synthetase, and the formation of a macrolactam
ring (Rebuffat et al., 2004; Ducasse et al., 2012; Yan et al.,
2012; Sumida et al., 2019). Microcin J25 is active against
Salmonella species and E. coli (Lopez et al., 2007). To enter
into target cells, MccJ25 uses the outer membrane protein
FhuA, the receptor for ferrichrome (a hydroxamate siderophore)
involved in iron uptake (Salomón and Farías, 1993). Klebsidin,
an MccJ25-like lasso peptide from Klebsiella, likely has a species-
specific short host range, given it is only internalized in E. coli
when expressing the FhuA homolog from Klebsiella pneumoniae
(Metelev et al., 2017a). Once MccJ25 reaches the periplasmic
space, it interacts with the inner membrane protein SbmA
to enter the cytoplasm (Salomón and Farías, 1995). MccJ25
inhibits at least 2 intracellular targets, the secondary channel of
RNA polymerase (Adelman et al., 2004; Braffman et al., 2019),
resulting in transcription impairment, and the cytochromes
bd-I and bo3, leading to inhibition of cellular respiration
(Galván et al., 2018).

Microcin C (MccC). In this review we use the designation
MccC, but in the literature the acronym McC has been
used, to avoid confusion with the mccC gene, encoding an
microcin C transport protein. Microcin C is the smallest
microcin known to date. In fact, it is the smallest peptide
of ribosomal origin, encoded by the smallest E. coli gene, of
only 21 bp (González-Pastor et al., 1994). It is built by only
seven amino acids forming an N-formylated heptapeptide with
covalently attached C-terminal adenosine monophosphate
and a propylamine group attached to the phosphate (Guijarro
et al., 1995). This phosphorus atom determines the chirality
of the microcin, and might condition its antibacterial
activity (Severinov et al., 2007). The length of the peptide
is evolutionarily conserved, given larger peptides strongly
reduce MccC production and activity (Zukher et al., 2019).
In Yersinia, the peptide-cytidine antibiotic is activated
inside the cell by the TldD/E protease, suggesting that
proteolytic processing might optimize activity and reduce
toxicity (Tsibulskaya et al., 2017). MccC enters the target
cells by the porin OmpF in the outer membrane and is
then guided through the inner membrane by YejABEF, an
ABC transporter (Novikova et al., 2007). In fact, microcin
uses the Trojan horse strategy to penetrate the cell, through
N-acylphosphoramidate, deceiving target cells. Once inside, it
becomes toxic after being processed (Metlitskaya et al., 2006).
First, the microcin will undergo excision of the formyl group
at the N-terminus; then, in a second step, the peptide domain
will be removed, with the active molecule mimicking the
aspartyl adenylate, acting as a strong inhibitor of aspartyl-tRNA
synthetase and inhibiting protein synthesis at the translation step
(Metlitskaya et al., 2009).

Class IIa microcins
Microcin V (MccV), previously named colicin V, is an 88-
amino acid peptide encoded by the cvaC gene. It contains a
disulphide bond in the C-terminal sequence that is formed
during post-translational modification. MccV is secreted by
E. coli through a specific exporter composed of the proteins
CvaA, CvaB, and TolC; MccV is only bactericidal after it is
exported (Zhang et al., 1995) and is active against related bacteria
belonging to the genera Escherichia, Klebsiella, Salmonella,
and Shigella (Håvarstein et al., 1994). MccV is recognized
only by Cir, an outer membrane receptor for catecholate
siderophores, and its uptake is dependent on the TonB complex,
providing the necessary proton motive force (Chehade and
Braun, 1988). Moreover, MccV activity also depends on the
cytoplasmic membrane protein SdaC, also involved in serine
uptake (Gérard et al., 2005). The activity of MccV is related
to membrane channel formation and disruption of membrane
potential (Yang and Konisky, 1984).

Microcin L (MccL) is a peptide produced by the strain E.
coli LR05 that exhibits strong antibacterial activity against
related Enterobacteriaceae, including the Salmonella enterica
serovars Typhimurium and Enteritidis (Sablé et al., 2003).
MccL uptake requires the outer membrane receptor Cir,
similar to MccV. Moreover, like MccV activity, MccL
activity depends on the inner membrane protein TonB that
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transduces the proton motive force to transport iron siderophore
complexes across the outer membrane. The MccL target is
probably the bacterial membrane. In a preliminary study,
it had been observed that high levels of MccL disrupt
the inner membrane potential of E. coli cells; however,
no permeabilization of the membrane had been detected
(Morin et al., 2011).

Microcin N (MccN) is active against E. coli and S.
Typhimurium but not against Listeria monocytogenes or
Campylobacter jejuni (Wooley et al., 1999). To date, its uptake
and mechanism of action are unknown. MccN displays sequence
similarities with the class IIb MccE492 (Lagos et al., 1999),
but lacks the C-terminal region necessary for recognition
by catecholate siderophore receptors. Thus, focusing on the
sequence identities, it has been suggested that MccN could have a
target similar to MccE492, and both probably need ManY/ManZ
inner membrane proteins (Bieler et al., 2006).

Microcin S (MccS), like microcins MccM and MccH47, was
discovered by investigating the reason for the successful effect
of a probiotic extensively used in functional gastrointestinal
disorders. In this case, it was produced by E. coli G3/10, a
component of the probiotic drug Symbioflor 2. MccS is encoded
in the megaplasmid pSYM1 and has a genetic organization
similar to other class IIa microcins, and it is the largest
of all known microcins (11.67 kDa). MccS is lethal to the
virulent enterohemorrhagic and enteropathogenic E. coli, but
the mechanism of action has not been elucidated with certainty
(Zschüttig et al., 2012, 2015).

Microcin PDI (MccPDI). The term “PDI” is an acronym
for “proximity-dependent inhibition,” given a close physical
proximity between producer and susceptible strains is required.
An MccPDI precursor protein (McpM) interacts with a
conserved motif of the outer membrane porin OmpF on
susceptible cells, ultimately resulting in lethal membrane damage
(Eberhart et al., 2012; Lu et al., 2019). Other proximity-
dependent (or contact-dependent) inhibition phenomena acting
on stationary-phase bacteria have been described, sometimes
secondary to the overproduction of bacterial glycogen; however,
the mechanism of inhibition remains elusive (Lemonnier et al.,
2007; Navarro Llorens et al., 2010).

Class IIb microcins
Microcin E492 (MccE492) was isolated for the first time
from K. pneumoniae (de Lorenzo, 1984), and is active
against closely related bacteria. The chromosomal genes
needed for active microcin production were cloned in E. coli
for heterologous expression and characterization (Wilkens
et al., 1997). The presence of a serine-rich region located at
the C-terminus was surprising. The precursor of microcin
undergoes a post-translational modification before being
secreted. In the glycosylation process, the C-terminal serine
is bound through an O-glycosidic link to a linear trimer of
N-2,3-(dihydroxybenzoyl)-L-serine (DHBS) (Thomas et al.,
2004). DHBS is a catechol siderophore, similar to other
siderophores such as enterobactin and salmochelin. These
molecules bind to iron and import it into cells via high-
affinity receptors so that the producer strains become more

competitive when placed in an iron-poor environment. In
addition, the siderophore-microcin complex binds ferric
iron selectively through the catecholate receptor, and could
work as a siderophore (Thomas et al., 2004). MccE492
recognizes FepA, Fiu, and/or Cir as receptors in the outer
membrane. The main receptor is FepA (Strahsburger et al.,
2005). It should be remembered that MccV is only recognized
by the Cir catechol-siderophore receptor. Once more, the
complex formed by the inner membrane proteins, TonB-ExbB-
ExbD, uses the proton motive power from the cytoplasmic
membrane to convey energy to the outer membrane, allowing
microcin intake (Thomas et al., 2004). Although the serine-
rich region at the C-terminus is important for recognition by
catecholate-siderophore receptors, it is not required for the
microcin activity (Bieler et al., 2006). Once in the periplasmic
space, MccE492 interacts with the inner membrane proteins
ManY/ManZ of the mannose permease and induces channel
or pore formation, and TonB-dependent inner membrane
depolarization, followed by cell death (Bieler et al., 2006).
However, it is unknown whether microcin has other targets in
the cytoplasm (Destoumieux-Garzón et al., 2006).

Microcin H47 (MccH47), microcin M (MccM), and
probably microcin I (MccI47) belong, just as MccE472, to
the catechol siderophore microcin group (Vassiliadis et al.,
2010). Antimicrobial activities are restricted to some species of
Enterobacteriaceae. These peptides have a serine-rich domain
at the C-terminus that is necessary for recognition by the outer
membrane receptors but not required for activity (Bieler et al.,
2006). Catecholate receptors (FhuA, Cir, and Fiu) in E. coli and
(IroN, Cir, and FepA) in Salmonella, are essential for recognizing
the siderophore microcin (Patzer et al., 2003) and lead microcins
to the periplasmic space. Mutations in catecholate receptors
have been associated with microcin resistance (Vassiliadis
et al., 2010). The antibiotic activity of MccE492 requires
the integrity of mannose permease (ManX/ManY/ManZ),
but this is not the case for MccH47 or MccM (Vassiliadis
et al., 2011; Peduzzi and Vandervennet, unpublished data).
Interestingly, post-translational modifications increase the
antibacterial activity for all class IIb microcins by mimicking the
natural siderophores.

The proton channel is the minimal structure necessary for
ATP synthase and is sufficient for MccH47 antibiotic action
(Rodríguez and Lavina, 2003). The target of MccH47 is the F0F1
ATP synthase, and particularly its F0 membrane element, which
serves as a proton channel. To date, the mechanisms of action of
MccM and MccI are not known, although it is suspected that they
act in the same way as MccH47, impairing the cellular proton
channel. MccV acts similarly, and in fact, it has been suggested
that MccH47 is probably related to MccV (Azpiroz et al., 2001;
Azpiroz and Laviña, 2007).

Microcin N (MccN) is also known as microcin 24 (O’Brien
and Mahanty, 1994). The uptake of MccN is dependent on the
presence of SemA and/or TonB. Both are genes that code for
membrane proteins within E. coli and are involved in microcin
resistance and sensitivity. The mechanism of action has not
been elucidated, but MccN appears to have DNAse activity
(O’Brien, 1996).
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Mechanisms of Immunity and Mechanisms of
Resistance to Microcins
Immunity to microcins should be clearly distinguished from
microcin resistance. Immunity explains the absence of “self-
killing” in producing strains (this has been previously described);
however, resistance means acquired insusceptibility to external
microcins. Resistance might complement immunity in producer
strains; for instance, an excreted microcin might not be
internalized again because of a “resistance” mutation in a porin.
Most mechanisms of resistance to microcins involve mutations.
The possibility of acquisition of microcin-inactivating enzymes
by horizontal gene transfer has not yet been investigated but
cannot be ruled out. Whether self-immunity mechanisms can be
converted into acquired-resistance mechanisms is a possibility, as
occurs with antibiotics (Benveniste and Davies, 1973). Certainly,
mutational resistance might evolve in microcin-susceptible
bacteria during amensalistic-competitive interactions. A number
of resistance mutations might have significant biological costs for
the bacterial cell (e.g., reducing permeability) or specific uptake
mechanisms (e.g., siderophores).

Specific immunity proteins and/or non-specific resistance
proteins are required for the viability of the microcin producer
bacteria (Kolter and Moreno, 1992). Most importantly, immunity
proteins expel microcins using ATP-binding cassette transporters
(Beis and Rebuffat, 2019). Immunity genes are typically
encoded in the same operon, close to the genes involved in
microcin production, such as structural genes, post-translational
modification genes, and secretion genes (Baquero and Moreno,
1984). The elucidation of the microcin immunity protein
structure will cast some light on the mechanisms of immunity,
just as with bacteriocin immunity systems in lactic acid bacteria
(Klaenhammer, 1993; Bastos et al., 2015).

The evolution of microcin production in combination
with specific self-protection immunity mechanisms remains
uncertain, but it is an attractive field of basic evolutionary
research. In the following section, immunity and resistance to
microcins are considered according to the 2 major microcin
groups (class I and II) (Gaillard-Gendron et al., 2000;
Pons et al., 2002).

Immunity and resistance to class I microcins
Immunity to several microcins in this group, including
MccB17, MccC, MccJ25, and MccD93, involves the presence
of efflux pumps. Concerning specific immunity to microcin
B17, the expression of 3 genes, present in the microcin gene
cluster, is required. These genes, mcbE, mcbF, and mcbG
encode the 3 proteins McbE, McbF, and McbG, respectively.
McbE and McbF constitute the microcin export system;
their activity is needed for resistance to MccB17. McbG
is a pentapeptide protein that protects cells that synthesize
MccB17 from its own action, blocking the inhibition of
DNA gyrase (Garrido et al., 1988). It is only when these
3 genes are expressed that cells are fully immune to their
own toxic peptide. If one of the 3 genes is repressed,
partial immunity phenotypes are shown. Whether the McbG
mechanism of immunity contributes to the protection of
fluoroquinolones in bacteria producing MccB17 is an interesting

possibility. The widespread target-protection Qnr proteins
involved in plasmid-mediated resistance to fluoroquinolones
belong to the pentapeptide repeat family and share sequence
homology with McbG (Tran and Jacoby, 2002; Rodríguez-
Martínez et al., 2011). The first studies indicated that a
plasmid carrying the entire MccB17 operon or a vector that
expresses only the mcbG gene produces a 2–8× decrease in
sensitivity to quinolones (Lomovskaya et al., 1996). However,
the expression of Qnr does not produce resistance to MccB17
(Jacoby et al., 2015).

In Escherichia coli, resistance to external MccB17 occurs
by mutations in OmpF, the outer membrane porin F, in the
inner membrane SbmA transporter protein, and in the target
of antimicrobial action, GyrB (tryptophan at position 751 is
replaced by arginine). This mutational change in topoisomerase
does not influence the susceptibility to coumarins or quinolones
(del Castillo et al., 2001; Mathavan and Beis, 2012).

Regarding Microcin C, self-immunity of producing strains
requires an efflux pump, and also number of enzymes able to
detoxify MccC. This is the case of the MccE acetyltransferase,
which is also protective against a number of toxic aminoacyl-
nucleotides (Agarwal et al., 2011). MccE is homologous to the
chromosomally encoded acetyltransferase, RimL, acting on L12
ribosome proteins, which also provide MccC and albomycin (a
hydroxamate-type siderophore antibiotic) resistance (Novikova
et al., 2010; Kazakov et al., 2014). In addition, a serine
carboxypeptidase MccF protects against MccC (Agarwal et al.,
2012). The carboxypeptidase MccF is similar to E. coli LdcA,
acting on cell murotetrapeptides (Tikhonov et al., 2010).

Resistance to external MccC in non-producers occurs by
mutations in YejABEF, an ABC transporter, preventing the
uptake of the compound (Novikova et al., 2007). Orthologs of
some of these MccC detoxifying enzymes might occur in non-
MccC-producing bacteria, which could be protected (resistance)
from the action of this microcin (Nocek et al., 2012). As probably
strains producing MccC have a strong effect on intestinal
competitors, the possibility of a flow of MccC detoxifying
enzymes by horizontal gene transfer cannot be excluded.

Immunity to microcin J25 involves the protein McjD,
ensuring highly specific export of MccJ25 and self-immunity
to the peptide (Clarke and Campopiano, 2007; Gu et al.,
2015; Husada et al., 2018; Romano et al., 2018) and possibly
YojI (Vincent and Morero, 2009). They are efflux pumps
that require TolC to extract the microcin from the producing
bacteria (Delgado et al., 1999). Resistance to MccJ25 in
E. coli-sensitive strains involves alterations in the outer
membrane receptor FhuA (a siderophore receptor, explaining
cross-resistance with albomycin, and a sideromycin) and
the inner membrane proteins TonB, ExbB, ExbD, and
SbmA. Given microcin J25 inhibits E. coli RNA polymerase,
mutations in RpoB and RpoC are associated with resistance
(Yuzenkova et al., 2002).

Immunity and resistance to class II microcins
Self-immunity for class II microcins involves membrane-
associated small peptides, ranging from 51 to 144 amino acids,
which protects the producing strain from its own antibacterial
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product in a highly specific way. Thus far, the 3-dimensional
structure of these peptides has not been elucidated.

The protein involved in immunity to microcin V, MccV
(formerly colicin V), has a molecular weight of approximately
6.5 kDa (Frick et al., 1981). The genetic determinant of MccV
immunity protein, cvi, is located in a 700-base-pair fragment
downstream from the region involved in its production (Gilson
et al., 1987). The expression of the cvi gene was assessed under
conditions of iron excess or depletion and immunoblots have
shown that production of the immunity protein Cvi is iron
dependent. The cvi promoter was located approximately 50 bp
upstream from the cvi structural gene and was associated with
a previously identified Fur binding site. The cvi promoter is
also consistently inducible by iron depletion, and like other
genes, encodes a transporter accessory protein, cvaA (Boyer
and Tai, 1998). Resistance to MccV in non-producing cells has
been analyzed in E. coli by transposon mutagenesis. Mutants in
the sdaC (also called dcrA) gene, which is involved in serine
uptake and is required for C1 phage adsorption, eliminate
the bactericidal activity of this microcin (Gérard et al., 2005).
Mutations in OmpF porin also result in MccV resistance
(Jeanteur et al., 1994).

Immunity to MccL in producing organisms involves the
mclL immunity gene, which was identified upstream of the
mclC structural gene, and encodes a 51-amino acid protein
with 2 potential transmembrane domains (Sablé et al., 2003;
Pons et al., 2004). Resistance to MccL results from deficient
uptake mediated by the outer membrane receptor Cir (colicin I
receptor). Moreover, MccL bactericidal activity has been shown
to depend on the TonB protein that transduces the proton motive
force of the cytoplasmic membrane to transport iron-siderophore
complexes across the outer membrane (Morin et al., 2011).

Immunity to microcins MccE492, MccH47, MccM, and
MccI47 in the producer strains is provided by the inner
membrane proteins, MceB, MchB, McmI, and MchS3, highly
conserved in class IIb microcins, containing a putative
transmembrane region (Duquesne et al., 2007a). The gene
mceB, which encodes a protein of 95 amino acids, has been found
in the strain K. pneumoniae RYC492. The gene mchB has been
found in the microcin producer strains E. coli H47, E. coli CA46,
E. coli CA58, and E. coli Nissle, 1917, and in all cases confers
self-immunity to MccH47. The gene mcmI, has been found in
the strains E. coli CA46, E. coli CA58, and E. coli Nissle, 1917,
and confers self-immunity to microcin M. The strain E. coli H47
contains a truncated mcmI gene version that is not functional.
The gene mchS3 has been found in the strains E. coli H47, E.
coli CA46, and E. coli CA58, although the structural gene of
MccI47, mchS2, is only present in the strains E. coli H47 and E.
coli CA46 (Laviña et al., 1990; Patzer et al., 2003; Poey et al., 2006;
Vassiliadis et al., 2010).

Microcin E492 immunity is negatively regulated by MceF
(Tello Reyes, 2006). The gene mceF shows many similarities
to the gene mcmM, which encodes a protein of 228 amino
acids and 7 transmembrane domains and is present in the
strains E. coli CA46, E. coli CA58, and E. coli Nissle, 1917.
No evidence has been found that mcmM is necessary for
immunity to MccM or MccH47 (Bravo-Vázquez, Doctoral

Thesis). A sequence encoding for a 156-amino acid protein with 3
transmembrane domains, McmT, presumptively associated with
MccH47 and MccM immunity, was cloned from E. coli Nissle,
1917, the producer strain. The plasmid containing the mcmT
gene provided resistance in the recipient strain to MccH47 and
MccM, and partial resistance to MccE492 and MccV (Bravo-
Vázquez, Doctoral Thesis). A homologous MccT protein was
found in E. coli O157:H7, the same region also containing the
gene mchA, encoding a glycosyl transferase, essential in the
biosynthetic pathway of MccE492, MccH47, MccM, and MccI47
(Bravo-Vázquez, Doctoral Thesis).

Mutations in three E. coli K12 genes, tonB, exbB, and semA,
reduce sensitivity to MccE492 in non-producing strains; tonB
and exbB genes had previously been shown to be involved in the
uptake of siderophore (Pugsley et al., 1986).

Immunity to MccS depends on the gene mcsI encoding a 216-
amino acid protein of the CAAX amino terminal protease protein
family (Zschüttig et al., 2012).

Immunity to MccPDI involves a protein (McpI) that forms a
multimeric cytoplasmic complex with itself; however, the detailed
mechanisms remain unknown (Lu et al., 2019). Non-producer
resistant E. coli strains display a mutation in a critical amino
acid residue involved in the interaction of MccPDI with the outer
membrane porin F (OmpF). Resistance mutations are present
not only in this protein (or in OmpR), but also in AtpA, AtpF
(ATP synthase), DsbA, and DsbB (probably involved in microcin-
OmpF binding) (Zhao et al., 2015; Lu et al., 2019).

The gene mtfI encodes for MccN (Mcc24) immunity (O’Brien
and Mahanty, 1994), and as in the previous 2 cases, it is also a
protein with several transmembrane domains. MccN is closely
related to MccE492, but lacking post-translational modifications
(Corsini et al., 2010). The self-immunity phenotype is achieved in
MccN producers by reducing the expression of the Mar operon
regulator, MarR (multiple-antibiotic-resistance), which results
in a phenotype resistance to other antimicrobial compounds
(Carlson et al., 2001).

Microcins in Enterobacteriaceae
Inside Enterobacteriaceae, the production of microcins appears
to be preferentially associated with some lineages. The first
studies on microcins, using phenotypic methods, had estimated
that 15% of E. coli strains isolated from newborns were
microcin producers (Asensio et al., 1976). In fact, among
the Enterobacteriaceae genomes of the publicly accessible
National Centre for Biotechnology Information database, 34.1%
of those corresponding to E. coli contain specific microcin
gene sequences as defined in the APD3 (see text footnote 1)
antimicrobial peptide database (Wang et al., 2016). Most
of the various microcins are represented in E. coli, and are
dominated by MccV (8.58%), MccM (7.43%), MccH47 (7.18%),
and MccI47 (4.26%), with all other microcins at a frequency
below 2%. Among the Shigella sonnei (closely related to E.
coli) genomes examined, only 1.59% contained microcin
genes; however, as in E. coli, a large variety of microcin
genes were found, dominated by MccV (0.55%) and MccPDI
(0.24%). Shigella flexneri is infrequently microcinogenic (0.54%
of the strains). S. enterica has a low number of microcin
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producers (1.59%), and predominantly MccV (1.3%). K.
pneumoniae harbors microcin genes in 4.65% of the strains,
mostly MccE492 (4.19%), which was first discovered in
this species. This microcin surprisingly was absent in E.
coli; however, it was also scarcely represented (0.19%) in
Enterobacter cloacae, a species with a low proportion of
microcin producers (0.38%). Although Citrobacter freundii
has 3.29% of microcinogenic strains, MccS was exclusively
found, as in other Citrobacter species. However, MccS is the
microcin more extensively distributed among Enterobacterial
species. MccV was not found in either Enterobacter or
Citrobacter. Another bioinformatic analysis has revealed
that microcin C-like adenylated peptides are widespread and
are encoded by both Gram-negative (including Yersinia)
and Gram-positive bacteria, and even by cyanobacteria
(Bantysh et al., 2014).

It is tempting to suggest that the high proportion of
microcinogenic strains in E. coli and the diversity of microcins in
this species, compared with other Enterobacteriaceae, correspond
to a highly competitive lifestyle inside multiple intestinal
subniches (microniches) in which even weak microcins can play
a substantial ecological role (Majeed et al., 2013). Bacteria with
fewer and more specific niches (including intracellularity), such
as Shigella or Salmonella, are much less microcinogenic. In
addition, Klebsiella, Citrobacter, and Enterobacter, which have a
much broader environmental lifestyle (Sánchez-Valenzuela et al.,
2017), have distinctive microcins that are rarely found in E.
coli, even though the number of available genomic sequences is
larger than that of other organisms. Strains of the environmental
species Serratia marcescens might contain analogs to MccN
(Gerc et al., 2014).

Inside E. coli species, other authors have applied bioinformatic
methods for microcin gene searching. The phylogenetic
classification of E. coli reflects macro-evolutionary events,
bacterial sub-speciation-like processes that take place over
long periods of time and space (Wirth et al., 2006; Turrientes
et al., 2014). Respectively for the A, B1, B2, and D main E.
coli phylogenetic lineages, MccV was found in 37, 29, 29, and
23% of the strains; MccM in 10, 12, 34, and 21%; MccB17 in
8, 10, 11, and 19%; MccC7 in 2, 2, 1, and 2%; and MccJ25 and
MccL were only found in the B2 (1 and 1%, respectively) and
D (2 and 1%, respectively) phylogroups. Thus, MccB17 was
most common in phylogroup D, and MccV in phylogroup A
(Micenková et al., 2016b).

The association between E. coli bacteremia and microcin
production appears particularly solid in cases associated with
urinary tract infections (Micenková et al., 2017). In the
case of phylogroup B2, in which many high-risk clones are
located, such as the globally widespread, highly invasive,
and antibiotic-resistant clone O25B-ST131, the proportion of
microcin producers duplicates the colicin-producing strains
(Micenková et al., 2016a,b).

As stated earlier, microcins are not exclusive from
Enterobacteriaceae. A genome-mining search in anaerobic
bacteria has demonstrated that these quantitatively dominant
populations of the gut microbiota also produce a significant
proportion (approximately 25% in a heterogeneous sample of

only 211 genomes) of RiPPs, frequently in conjunction with
polyketides or non-ribosomal peptides (Letzel et al., 2014).

Ensembles of Microcins and Colicins
Ensembles of inhibitory entities of microbial origin might exert
stronger or broader spectrum inhibitory effects on competing
organisms. On the other hand, these ensembles constitute a
natural “combination strategy,” thus reducing the possibility
of selection of single-entity mutants (a mutant resistant to
one of the antibacterial compounds will probably be killed by
the other one/s). Mutual killing assures biodiversity (Abrudan
et al., 2012; Coyte et al., 2015). Finally, asymmetric ensembles
could assure the permanence of natural species and clone
diversity according to the previously mentioned rock-paper-
scissors model (Czárán et al., 2002; Lenski and Riley, 2002;
Kirkup and Riley, 2004; Reichenbach et al., 2007), and that might
also occur at higher hierarchical levels, as for coexistence of small
bacterial communities (Figure 2).

The formation of ensembles is certainly facilitated by
horizontal gene transfer. Soon after the microcin discovery, the
relevance of plasmids in microcin gene transfer was highlighted
(Baquero et al., 1978). In fact, most microcins are plasmid-
mediated; those of chromosomal location tend to be associated
with genomic islands. For instance, the genes involved in the
production and immunity of MccM and MccH47 in E. coli Nissle,
1917 are located in genomic island I, originated from horizontal
genetic transfer (Grozdanov et al., 2004; Bravo-Vázquez, 2009).
Microcins can be either chromosomally or plasmid encoded,
whereas colicins have been found only on plasmids.

Interestingly, E. coli microcinogenic strains frequently express
more than 1 microcin (even 4 in the same strain) (Sablé
et al., 2003). Such coexistence might foster microcin evolution,
including recombinatorial processes facilitated by the modular
structure of some of these peptides. This has been suggested for
MccV and MccH47, which might recombine genetic sequences
corresponding to uptake and toxic modular domains (Azpiroz
and Laviña, 2007). The frequent association of the microcins
MccH47 and MccM in the same strain can also be favored by
common systems of secretion and immunity.

Colicin-colicin, colicin-microcin, and microcin-microcin
combinations were found to coincide in particular E. coli
strains much more often than would be expected by chance.
This combination occurs particularly in strains belonging to
the phylogroup B2 and with associations between MccH47
and MccM; colicin Ia and MccV; colicins B and M; colicins
E1 and M; and colicins E1 and Ia (Gordon and O’Brien,
2006). In colicinogenic enterohaemorrhagic strains, more than
one-half of the strains produce multiple colicins, mostly B,
E2/E7, and M (Schamberger and Díez-González, 2004). In
general, as much as 40% of the E. coli strains in the intestine
also show coexpression of colicins and microcins (Micenková
et al., 2016a). For instance, the microcins MccH47 and MccM
are produced by strains that are also producing colicin H
(E. coli CA56) or colicin G (E. coli K58) (Patzer et al., 2003).
Coexistence of genetic determinants of microcins and colicins
in the same cell provides the opportunity for a recombinatorial
exchange of fragments or eventually, the loss of one of these
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FIGURE 2 | Continued
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FIGURE 2 | Structure of bacterial interactions and the influence of chemosphere. The structure and evolution of the microbiome is based in antagonistic and
cooperative interactions in a complex chemical environment, the chemosphere. Top panel, antagonistic (red arrows) and cooperative (blue arrows) interactions
among three bacterial populations producing different inhibitors (a–c). (1) The rock-paper-scissors dynamics, assuring coexistence of all three populations, which is
enhanced by the cooperative blue bonds. This ensemble of populations cooperates in the inhibition of other competing bacteria (empty circles). (2) Under the
influence of chemosphere (green triangle) one of the populations (b) increases in size, producing the collapse of the former equilibrium (3). In (4), because of the
maintained coexistence with (a) and the high population size of (b), resistance to (a) might evolve in (b), or genes encoding (a) can be acquired by (b) via horizontal
gene transfer, and a new, simpler coexistence might occur (5). Middle panel, the rock-paper-scissors dynamics at a higher hierarchical scale; ensembles of
bacterial populations act as single entities able to compete and cooperate with other microbial ensembles. Lower panel, in the center, the dark blue circle
represents a bacterial population excreting a “blue” microcin. The concentration of this bacteriocin is high near the producer, but diffusion gives rise to progressively
lower concentrations (light blue). White circles, bacteria competing with the blue one, which (vertical line) are killed (red X) at high bacteriocin concentrations, or, at
lower ones, prevented to be established (red curved arrow) in this area. In the left oval green circle, diffusion of a local chemosphere component antagonizing the
production or effect of microcin, now unable to kill the competitors. In the yellow oval circle at the right, diffusion of a chemosphere component enhancing the effect
of the bacteriocin, now able to kill even at very low concentrations.

functions. The frequent colicins B and M are usually encoded
adjacently on the same plasmid in E. coli; in some strains,
this plasmid contains a remnant of the MccV operon next to
a truncated colicin B activity gene, indicating recombination
events between colicin BM and MccV plasmids (Christenson
and Gordon, 2009). Moreover, the expression of a colicin
(microcin?) from one producer can induce colicin production
in a second producer and vice versa (Majeed et al., 2011).
Secreted amino acid-based inhibitors, such as homoserine-
transacetylase inhibitors (historical microcins Mcc93 and
Mcc15) or peptidic microcins also coexist in the same strain
(Aguilar et al., 1983).

In a previous section we detailed the mechanisms of
resistance to microcins in non-microcin producers. Several
mechanisms of microcin resistance, such as E. coli OmpF
mutants, provide cross-resistance to other microcins, colicins,
and even bacteriophages and antibiotics. In fact, there is a
complex landscape in which resistance to each one of these
entities might select for resistance to others. Another example
is the mutants in FhuA, the E. coli outer membrane receptor
for ferrichrome-iron (Destoumieux-Garzón et al., 2005). This
protein also acts as the receptor for the phages T1, T5,
UC-1, and f80 for colicin M (one of the smallest colicins,
29.4 kDa), and for the antibiotics albomycin, some rifamycins,
and the microcin J25. Of course, mutations in common
import mechanisms will produce resistance to all inhibitors
using these systems; this resistance occurs with colicins and
microcins using the active import Ton system (TonB, ExbB,
and ExbD proteins), at the expense of energy provided by
the proton motive force of the cytoplasmic membrane (Braun
et al., 2002). Finally, although not addressed in this review,
membrane-permeabilizing antimicrobial peptides present in the
gut might sensitize bacterial cells to the effect of some microcins
(Pomares et al., 2010).

The Ecological Significance of Microcins
The discovery of microcins was driven by the search for
molecular mediators of bacterial displacements in the neonatal
gut, and this ecological view was expressed very early in
their study (de Lorenzo and Aguilar, 1984). The production
of antimicrobial small antibiotic peptides by bacteria appears
to be a widespread strategy in maintaining diversity in the
intestinal microbiota. For example, bioinformatic detection
of biosynthetic gene clusters in microbiota has revealed the

numerical dominance of those involved in synthesis of the
main microcin-related molecules, RiPPs (Arnison et al., 2013;
Donia et al., 2014).

Microcins are eco-active molecules that are active in
Enterobacteriaceae as mediators of inter- and intraspecies
competition. An unintended natural experiment lasting for a
century (1917–2019) has provided evidence for this assertion.
An oral preparation of the strain E. coli Nissle, 1917 (Jacobi
and Malfertheiner, 2011) has been used for over 100 years as
a useful probiotic preparation for therapy of bacterial intestinal
diseases, starting during the First World War (Nissle, 1916, 1918;
Henker et al., 2007; Sonnenborn and Schulze, 2009). E. coli
Nissle, 2017 has been also detected in swine herds, with similar
protective effects against pathogens (Kleta et al., 2006). In the
first years of the 21st century, it was discovered that E. coli Nissle
1917 produce 2 microcins, MccM and MccH47 (Patzer et al.,
2003). A mutant E. coli Nissle 1917 strain unable to secrete these
microcins was unable to outcompete other E. coli and S. enterica
in the inflamed intestine, whereas the wild strain produced this
ecological effect (Sassone-Corsi et al., 2016). Evidence for the
ecological effects of other microcins are available, such as for
MccV (Boubezari et al., 2018), the most abundant among the E.
coli microcins (see above).

These results confirmed much earlier preliminary work on
the effects of microcins on microbial gut interactions (Baquero
and Asensio, 1979; Jorge, 1984). It would be expected that
microcinogenic E. coli strains could reach higher population
densities in the gut, facilitating translocation (and consequently
bacteremia), and urinary tract infections. This association has
already been reported (Azpiroz et al., 2009; Budič et al., 2011).

As previously stated, concerning microcin ecological
functions in interbacterial interactions, microcins constitute
defensive rather than attack molecules (Rebuffat, 2012).
Most microcins are produced and excreted during a
stationary phase, and are regulated by, for example, rpoS
(RNA polymerase sigma factor), ompR (DNA-binding
transcriptional dual regulator), and spoT (bifunctional (p)ppGpp
synthase/hydrolase) (Moreno et al., 2002). These populations
are, compared with invaders, of a higher population size,
facilitating a sufficient local concentration of the inhibitor
(Wiener, 1996). High cell density or local inflammation
also increases competition for critical nutrients, such as
iron, in such a way that favors the uptake of siderophore-
microcins (Sassone-Corsi et al., 2016). In general, there is
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always a link between nutritional stress and competitive
behavior in biology.

MICROCINS IN THE INTESTINAL
CHEMOSPHERE

In this review, the role of microcins as effectors of intermicrobial
interactions has been highlighted. At the same time, we wanted
to relativize the view of “single molecules” as the main
characters of bacterial displacements, and in general, of microbial
ecology. As previously stated, the microecological effects
(microbe-microbe and microbe-environment) of individual
cell metabolism might be critical in shaping the interactive
dynamics and evolution of microbial ecosystems (Klitgord
and Segrè, 2011). According to the postulate of “Molecular
Ecology” (Asensio, 1976), any particular molecule inhibiting
bacterial growth is necessarily surrounded by many others,
which might have effects on the growth or inhibition of
bacterial populations and/or in the production or stability
of this molecule. The secretion of amino acids and amino
acid derivatives with inhibitory activity might modify the
uptake, export, and biosynthesis of bacterial peptides (Payne,
1977). Amino acid-based inhibitors (historically included as
microcins) share with some peptidic microcins the “Trojan
horse” strategy of mimicking essential nutrients (such as
essential amino acids or iron-siderophores to penetrate inside
the target cell).

The Eco-Active Chemosphere
We have used the term “eco-active” to designate the part
of the chemosphere constituted by chemicals able to play a
role as factors of intestinal microbial ecology; i.e., growth-
promoting molecules, growth-inhibiting (or killer) substances,
and chemicals influencing bacterial genetic variation, genetic
regulation, bacterial interactions, and colonization efficiency
(Table 1). We are far from understanding in detail how this
ensemble of chemical factors determines the microecological
structure of the intestinal microbiota. A major limitation
is the lack of knowledge about the spatial structure and
organization of microenvironments (Baquero, 2015). It can
be predicted that ensembles of bioactive molecules occur
in microcompartments of the gut, which are dominated
by particular microbial ensembles (Earle et al., 2015). How
this constellation of molecules interacts and influences
bacterial populations is an inconceivably complex issue.
The possibility of intermolecular interactions between these
molecules and with the microbiota depends on the “physics”
and spatial dynamics of the system (intestinal ecophysics).
For instance, the non-directional peristaltic movements
of the colonic content assure complex mixing of bacterial
populations (Ley et al., 2006) and of molecules from the
chemosphere. However, bacterial populations in the gut
probably interact at the microscopic scale inside clumps or
aggregates, and these ensembles have their own chemospheres
(Sonnenburg et al., 2005). In fact, specific chemospheres should
be part of the “common niches” constructed by microbial

TABLE 1 | Compounds in the intestinal chemosphere with antimicrobial effects,
and their basic mechanisms of action.

Polyphenols

• Quercetin

• Chlorogenic acids Bacterial membrane permeabilization

Short-chain fatty acids

• Acetate Lowering pH

• Propionate pH-independent effects

• Butyrate

Organic salts

• Lactate Lowering pH

• Citrate pH-independent effects

Bile acids, lipids

• Secondary bile acids and terpenoids Disruption of cell membranes

• Short and medium-chain saturated
fatty acids

Indirect effect: modulation of local
innate immunity

• Long-chain unsaturated fatty acids

• Fatty alcohols and fatty acid
monoglycerides

Polyaminated molecules

• Spermidine, homospermidine, and
norspermidine

Disruption of cell membranes

• Putrescine, cadaverine, and
1,3-diaminopropane

Regulation of bacteriocin production

Intercellular signaling molecules

• Homoserine lactones Bacterial membrane permeabilization

• Indole-based signaling molecules Quorum-sensing signaling

Haem catabolism

• Unconjugated bilirubin Unknown, antioxidant effects?

• Biliverdin

Host defense secreted antimicrobials

• α-defensins, β-defensins, and
cathelicidins

Antimicrobial peptides and disruption
of cell membranes

• C-type lectins RNAses Protective carbohydrate-bonding
proteins
Cytokine induction and endosomal
pathways suppressing bacteria

Immunoglobulins

• Secretory IgA Capture bacterial cells (immune
exclusion), facilitating immunological,
and physical removal of bacteria

Bacteriocins

• Colicins (class I–III) Membrane pore formation and
nuclease activity

• Historical amino acid-based
microcins

Interference with amino acid
metabolism

• Class I peptidic microcins
(post-translational
thiazole/oxazole-modified microcins)

Membrane pore formation, impairing
cellular proton channel, protein
synthesis inhibition, inhibition of DNA
gyrase,inhibition of cellular respiration,
plasmid post-segregational killing,
and bacterial persistence phenotype

• Class IIa peptidic microcins

• Class IIb peptidic microcins
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consortia. However, all local chemospheres are open and
fluctuating systems and are therefore influenced by the larger
chemosphere in which they are embedded. Fluctuations in
the chemosphere as a result of dietary changes and the host’s
physiological, pathological, or therapeutic circumstances
likely influence the complex microbiota. Combined cocausal
effects are eventually able to influence the production,
release, or the activity of growth-promoting and inhibitory
substances. Not being part of the natural chemosphere,
chemotherapeutic substances directly stressing the microbiota
(such as antimicrobial agents), affecting the functionality of the
intestine (such as drugs influencing peristalsis, cholagogues,
or antacids) or influencing host immunity (such as corticoids,
immunodepressive agents) could alter (stress) intestinal
microecology and favor the bacterial expression of eco-active
substances (Taymaz-Nikerel et al., 2013; Baquero, 2015;
Gillis et al., 2018).

Microcin Activity in Their Natural
Chemosphere
Most of the studies published on the antimicrobial activity
of microcins have been based on in vitro studies, in highly
simplified environments. The intestinal chemosphere, variable
in time and space, might determine particular configurations
of interacting bacterial populations, and therefore the local
effects of microcins are difficult to anticipate. In vitro models
of the intestinal environment have been explored to predict
the effect of microcins under gut conditions. For instance,
MccJ25 was relatively stable under gastric conditions, but not
in the duodenum conditions, being degraded by elastase I,
and less efficiently α-chymotrypsin (Naimi et al., 2018). It
has been shown that microcin inhibition does not occur in
a rich nutrient system containing mucins or nucleic acids,
as these molecules may bind peptides and suppress their
antimicrobial activity (Ran et al., 2017). In the above section
“The Intestinal Chemosphere and the Molecular Ecology of
the Gut,” the basic compounds serving as bacterial nutrients
in the chemosphere were considered. Changes in their absolute
or relative concentrations should modify the growth rate and
cell number of bacterial populations, and consequently their
susceptibility to growth inhibitors or their ability to act as
inhibitors of other populations (Figure 2). In Table 1 we
summarize the main compounds in the intestinal chemosphere
possessing antimicrobial activity. Certainly, the final effect of
a microcin on a bacterial population depends on compounds
facilitating bacterial growth, such as those acting as nutrients
(reviewed in section “The Intestinal Chemosphere: Molecular
Ecology”). Of particular importance are those nutrients that
are critical but present at very low concentrations, which
constitute important competition attractors, such as iron. In fact,
siderophores frequently act in the internalization of microcins.
Most importantly, microcins probably interact with many other
bacterial inhibitors in the gut, either in a competitive or
cooperative manner; however, this remains an almost unexplored
field of research. The list of chemicals with inhibitory activity
in Table 1 allows us to distinguish 2 main types of inhibitors.

Many of them correspond to chemicals altering or disrupting
bacterial membranes, likely increasing permeability to external
compounds. A few (mostly microcins and colicins) have more
specific modes of action, targeting cellular processes, such
as protein synthesis or DNA replication, but also altering
membrane integrity. We can easily conceive of a possible synergy
between compounds altering cellular structures (membranes)
and those inhibiting specific cellular processes, generally with
higher intrinsic activity. This distinction has previously been
considered by other authors, suggesting that bacteria from the
gut seem to produce many bacteriocins with low activity and
small number of highly effective bacteriocins (Drissi et al.,
2015). Overall, the activity of microcins might be modulated
by the chemosphere composition, which constitutes the main
message of this review. Interventions to specifically modify the
human and animal chemosphere will likely have important
consequences in the epidemiology of normal and pathogenic
microbiota, and in controlling antibiotic resistance (Baquero
et al., 2013; Kashyap et al., 2013b). New developments in
the study of the complex chemical microecology of the gut,
the field of Asensio’s “Molecular Ecology” (Asensio, 1976), are
certainly needed to obtain more realistic conclusions about the
role of microcins in the interactive processes influencing the
structure of microbiota.
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