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Abstract
Amyloidogenesis is the inherent ability of proteins to change their conformation from native state to cross β-sheet rich fibril-
lar structures called amyloids which result in a wide range of diseases like Parkinson's disease, Alzheimer’s disease, Finnish 
familial amyloidosis, ATTR amyloidosis, British and Danish dementia, etc. COVID-19, on the other hand is seen to have 
many similarities in symptoms with other amyloidogenic diseases and the overlap of these morbidities and symptoms led to 
the proposition whether SARS-CoV-2 proteins are undergoing amyloidogenesis and whether it is resulting in or aggravating 
amyloidogenesis of any human host protein. Thus the SARS-CoV-2 proteins in infected cells, i.e., Spike (S) protein, Nucle-
ocapsid (N) protein, and Envelope (E) protein were tested via different machinery and amyloidogenesis in them were proven. 
In this review, we will analyze the pathway of amyloid formation in S-protein, N-protein, E-protein along with the effect that 
SARS-CoV-2 is creating on various host proteins leading to the unexpected onset of many morbidities like COVID-induced 
Acute Respiratory Distress Syndrome (ARDS), Parkinsonism in young COVID patients, formation of fibrin microthrombi 
in heart, etc., and their future implications.
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Introduction

Protein folding and binding provide the basis for life on 
earth. The native 3D structure of a protein is necessary for 
its biological function (Perozzo et al. 2004). Among many 
protein folding models such as diffusion-collision, nuclea-
tion-condensation, jigsaw puzzle, hydrophobic collapse and 
stoichiometry models, the “folding funnel” model based on 
the free energy landscape theory has now been most widely 
accepted (Shu-Qun Liu et al. 2012). The natural tendency 
of polypeptide chains to get folded into its unique native 
structure inside a cell is guided by many machinery like 
the proteasomes, chaperones, protein disulfide isomerases, 
ubiquitins, prolyl peptide isomerase, etc., which reserve the 

properly folded proteins and degrade the misfolded ones. 
Though there are a lot of corrective machineries present, 
yet proteins have an inherent tendency to undergo transition 
to self-assembled aggregates from their native soluble state. 
Of the various types of protein aggregates, “amyloids” are 
a type of stable, fibrillar, ordered protein aggregates which 
are possess cross β sheet-rich structures and the process of 
amyloid formation is called amyloidogenesis (Dobson 1999; 
Clark et al. 1981). Till date, about 37 human proteins have 
been seen to form amyloids and most of them are related 
to several degenerative disorders like Parkinson’s disease, 
Alzheimer’s disease, type II diabetes, etc., (Marzban et al. 
2003; Ghetti et al. 1996; Ghiso and Frangione 2002; Petrou 
et al. 2015). Apart from pathogenicity, amyloids have been 
also found to be functional in many aspects, as structural 
components in bacteria and viruses, as biochemical regula-
tors functioning as hemostatic agent in human beings, as 
scaffolds, molecular chaperones as well as in sexual repro-
duction (Sarkar 2020).

Now, coming to the current scenario, the world has been 
almost put to a standstill in the post-pandemic era as we 
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are still recovering from the damage it has caused us, be 
it physically, mentally or economically. With the intensive 
research going on SARS-CoV-2, scientists noticed similari-
ties in symptoms and morbidities between COVID-19 and 
amyloid regulated diseases, which led to the hypothetical 
link of amyloidogenesis in coronavirus. Supported by the 
prior proof about interactions between amyloids present in 
viruses and their respective human host, various research 
work was conducted which brought forward the link between 
COVID-19 and amyloid regulated diseases like Parkinson’s, 
Alzheimer's, ATTR (amyloidogenesis of transthyretin), etc., 
(Tayeb-Fligelman et al. 2021; Michiels et al. 2021; Munch 
et al. 2007; Dimitrov et al. 1993). This review article pre-
sents a summary of almost all the current work done on 
amyloidogenesis in coronavirus, and how that may aggravate 
amyloidosis in future.

Amyloidogenesis in SARS‑CoV‑2 proteins

Similarities in morbidities between COVID-19 and amyloi-
dogenic cardiopathy and neuropathy like heart failure, blood 
clotting, CNS disorders, peripheral neuropathy, etc., and 
unusual onset of what is known as “Parkinsonism” which 
include conditions related to abnormalities in movement as 
seen in Parkinson's Disease, post-COVID recovery in young 
patients led to the hypothesis that maybe different proteins 
of SARS-CoV-2 are amyloidogenic, based on the prior proof 
of amyloidogenesis in viral proteins that infect human sys-
tems like the liver, kidney, immune cells and even the CNS 
(Merello et al. 2021; Cohen et al. 2020; Lee et al. 2021).

SARS-CoV, the coronavirus responsible for the outbreak 
of SARS in 2003 has been experimentally proven to contain 
amyloidogenic proteins and since the proteome of SARS-
CoV and SARS-CoV-2 have many similarities in biological 
structure and function, it was proposed that SARS-CoV-2 
also contains amyloidogenic proteins which can give rise 
to neurodegenerative complications (Rangan et al. 2020; 
Galkin 2021). In a study, open reading frames (ORFs) of 
SARS-CoV-2 proteome were studied using a computational 
tool named ZIPPER for screening amyloidogenic sequences 
which led to the result two sub-sequences from ORF6 and 
ORF10 were aggregation prone (Charnley et al. 2022). The 
main structural and functional proteins including the non-
structural proteins (NSPs) of SARS-CoV and SARS-CoV-2 
was computationally screened using four softwares namely 
MetAmyl, FISH Amyloid, AGGRESCAN, and FoldAmyloid 
to find out aggregation prone regions (APRs) in both the 
proteomes. In the proteome of SARS-CoV, the membrane 
protein or M-protein, C-terminal end and transmembrane 
domain (TMD) of envelope protein or E-protein, ORF8b 
have been proven to be amyloidogenic (Ghosh et al. 2015; 
Lee et al. 2005). In SARS-CoV-2, membrane protein (M), 

envelope protein (E), among the structural proteins along 
with the accessory proteins were found to be more amyloi-
dogenic than nucleocapsid protein (N) and spike protein (S). 
Out of the 16 non-structural proteins (NSPs) present in the 
genome of SARS-CoV-2, NSP4 and NSP6 were found to 
be highly amyloidogenic. Besides, mean predicted percent-
age amyloidogenic propensity study revealed that accessory 
proteins of SARS-CoV-2 were more aggregation prone than 
that of SARS-CoV (Bhardwaj et al. 2021).

Spike protein (S-protein) is the primary SARS-CoV-2 
contact protein between the host and the virus which helps 
in virus docking and host-entry (Nyström and Hammarström 
2021). Nucleocapsid protein (N-protein) on the other hand 
is more abundant, relatively more stable and conserved than 
the S-protein gene (Cubuk et al. 2021). Envelope protein 
(E protein), though being the smallest, interacts with other 
proteins and helps in maintaining the viral shape, release and 
also promotes cellular apoptosis (Alsaadi et al. 2020; Chen 
et al. 2009). All these proteins were tested through various 
experiments to evaluate their amyloidogenic propensity, and 
the results are demonstrated in Fig. 1. It was furthermore 
found out through computational study that the above men-
tioned proteins in SARS-CoV-2 have more aggregation ten-
dency than those of SARS-CoV-2 (Bhardwaj et al. 2021).

SARS‑CoV‑2 Spike Protein Amyloidogenesis:

Complete S-protein sequence (ID: P0DTC2) was sub-
jected to invitro fibril formation and seven amyloidogenic 
sequences were deciphered out of several 20 amino acid 
long sequences, using the WALTZ algorithm, which were 
named according to the start position of the S‐protein; 
S191, S-259, S-362, S-532, S-599, S-689, S-1165, as 
shown in Table 1. Out of these, S-362 was seen to not have 
the cross β-sheet conformation under cryo-EM. In vitro 
amyloidogenesis study of lyophilized peptide using ThT 
formation kinetics, Congo-Red birefringence (CR) and 
transmission electron microscopy (TEM) showed S-191, 
S-532 and S-1165 to fulfill all the necessary amyloid cri-
teria, out of which S-191 showed the most ordered fibrils 
(Zhang et al. 2018; Maurer-Stroh et al. 2010; Hamodra-
kas et al. 2007; Galzitskaya et al. 2006). Furthermore, 
sigmoidal kinetics curve also predicted dominance of 
S-191 fibrils. Thus, out of all the assumed amyloidogenic 
sequences, spike peptide S-191 showed most potent amy-
loidogenicity fulfilling almost all the authenticity crite-
ria, proving the existence of amyloidogenesis in S-protein 
of SARS-CoV-2. Owing to the high stability (Tm > 50) 
and complex fold structure, SARS-CoV-2 S-protein is not 
spontaneous to amyloid formation (Upadhyay et al. 2021). 
Since endoproteolysis of amyloid prone proteins or even 
full length proteins leads to the molecular initiation of 
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many amyloidogenic diseases like Alzheimer's, Finnish 
familial amyloidosis, British and Danish dementia, ATTR 
amyloidosis, etc., it was considered as a hypothetical 
mechanism to start with, which was further experimen-
tally investigated (Sipe 2008). SARS-CoV-2 S-protein is 
proteolysed during infection and also during inflammation 
by host furin-like enzymes and by release of enzymes like 
neutrophil esterase (abbreviated as NE, a serine protease 
that causes obstructive lung diseases such as COPD, cystic 
fibrosis and alpha‐1‐antitrypsin deficiency) by the neu-
trophils extracellularly, which are recruited by the host 
immune system to the bronchoalveolar cavity of patients 
affected with various respiratory viruses, including SARS‐
CoV‐2 (Peacock et al. 2021; Johansson and Kirsebom 
2021; Strnad et al. 2020). At first, in-silico proteolytic 
cleavage of full length S-protein sequence by NE was done 
using Expasy Peptide cutter and one of the peptides from 
the results, Spike 193–212 matched with S-191, only with 
a frame shift by 2 amino acids. This proved the hypotheti-
cal mechanism and thus was subjected to further in vitro 
testing by S-protein digestion with NE. Among all the pep-
tide segments formed segment 193‐202 (FKNIDGYFKI, 
included in Spike191) was highly abundant after 6 h of 

incubation, which made it amyloidogenically important 
(Nyström and Hammarström 2021).

Acceleration of amyloidogenesis due 
to SARS‑CoV‑2 N‑Protein:

Reports of unexpected Parkinsonism in young patients after 
recovering from SARS-CoV-2 infection raised the question 
whether any SARS-CoV-2 protein is leading to accelerated 
amyloidogenesis of α-synuclein (αS) protein that leads to the 
formation of Parkinson’s Disease (PD) (Espay and Hender-
son 2011; Bantle et al. 2019; Fishman et al. 1985; Merello 
et al. 2021; Cohen et al. 2020). N-protein being more stable 
and conserved, was chosen for investigation of the above-
mentioned hypothesis. As shown in Fig. 2, ThT assay of αS 
peptide in the presence of N-protein resulted in reduction 
in aggregation lag time to less than 24 h, which decreased 
with the increase in N-protein concentration. This clearly 
indicated that the presence of N-protein was considerably 
accelerating the amyloidogenesis in αS-protein. Since, at 
a near neutral pH of 7.4, N-protein is positively charged 
(+ 24e) whereas αS is negatively charged (-9e), thus, elec-
trostatic attraction is thought to be the primary intermolecu-
lar interactive force (Semerdzhiev et al. 2022; Taquet et al. 

Fig. 1  Graphical representation of the SARS-CoV-2 protein under-
going/accelerating amyloidogenesis; A S-protein digested by serine 
protease enzyme like neutrophil esterase results in formation of amy-
loid-prone segment 193–202 which later forms amyloids; B N-protein 

(left) interacts with amyloidogenic α-Synuclein protein (right) and 
results in acceleration of amyloidogenesis; C E-protein destabilizes 
by hydrophobic interaction with the environment into nine-residue 
segment TK9 which forms amyloids by self-assembly
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2021). Further in another study, microscale thermophoresis 
(MST) and fluorescence correlation spectroscopy (FCS) 
assay was performed on fluorescently labeled αS and with 
increasing concentration of the N-protein which predicted 
the presence of about 3 to 4 αS proteins in an αS/N-protein 
complex along with the indication of cooperative binding 
(Chatterjee et al. 2021).

While the S-protein of SARS-CoV-2 is responsible for 
host entry, the N-protein is predominantly found in the cyto-
plasm post-infection, of the order of about 500 nM (Chang 
et al. 2004; Bar-On et al. 2020; Timani et al. 2005). Thus, to 
investigate the effect of N-protein presence along with αS 
in the cellular environment, microinjection of appropriate 
amount of N-protein as present during infection was done 

in SH-SY5Y neuronal cell model, which express αS peptide 
and extensively used in PD research. Now, the endogenously 
disordered αS is bound to vesicles, which take part in mem-
brane remodeling and in membrane trafficking processes 
having an α-helical conformation that can be differenti-
ated from the unbound ones (Fakhree et al. 2016; Kaur and 
Lee 2020; Burré et al. 2014; Lautenschläger et al. 2017). 
Förster resonance energy transfer (FRET) probes were used 
in vitro to detect these conformational changes and locate 
such vesicle bound αS in cells. The FRET results showed 
that compared to the control where only FRET-labeled αS 
peptides were present, high FRET signals were less indicat-
ing that the presence of N-protein decelerates the endog-
enous αS proteostasis, ultimately reducing the number of 

Table 1  Amino acid sequences and properties of synthetic SARS-CoV-2 S-protein peptides predicted using WALTZ algorithm

Peptide Amino Acid Sequencea MW

(Da) 

bb

pI ThT 

Kinetics

Congo 

Red

Ultrastructure

Spike191 FVFKNIDGYFKIYSKHTPIN 2431 9.4 + + fibril

Spike259 WTAGAAAYYVGYLQPRTFLLK 2389 9.5 - + fibril

Spike362 KKKGGGYSVLYNSASFSTFK 2169 10.0 - + amorphous

Spike532 NLVKNKCVNFNFNGLTGTGV 2139 9.3 + + amorphous

Spike599 GTNTSNQVAVLYQDVNCTEV 2155 3.7 + + fibril

Spike689 KKKRSVASQSIIAYTMSLGA 2139 10.5 - - ribbons

Spike1165 LGDISGINASVVNIQKEIDR 2141 4.6 + + fibril

Table taken with permission from Ref. (Nyström and Hammarström 2021)
a Residues assigned in color indicate the amyloidogenic segments as predicted by WALTZ. Highlighted in gray are non‐native amino acids intro-
duced for solubility
b Theoretical mass (Dalton)
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vesicle-bound αS (Fakhree et al. 2018; Nemani et al. 2010). 
The control probe was prepared by attaching the FRET-
probe with the N-terminal domain of αS peptide and it did 
not show any change in FRET readings, indicating that αS 
is likely to bind to the C-terminal region of N-protein. These 
studies proved the involvement of SARS-CoV-2 N-protein 
in amyloidogenesis of αS peptide through direct molecular 
contact that leads to proteostasis of the peptide and hampers 
its normal cellular functioning, thereby inducing Parkinson-
ism in many unusual cases, post infection.

Amyloidogenesis in SARS‑CoV‑2 E‑protein:

SARS-CoV-2 E protein has been said to have role imparting 
virulence and has been proved to be responsible for transfer-
ring the other corona proteins to the Golgi complex for fur-
ther infective modifications. A β-sheet conformatory region, 
55-TVYVYSRVK-63 (TK9), which contains residues that 
have similarities with many short length amyloid proteins 
like amyloid-β, is considered to be critical for this func-
tion (Li et al. 2014; Halverson et al. 1990). This led to the 
hypothesis that maybe TK9 is amyloidogenic which may 
result in enhanced virulence of SARS-CoV-2 strain. Now, 
in short length amyloidogenic peptides self-assembly has 
been seen as a potential mechanism of protein misfolding 
and thus the self-assembling potential of the nine-residue 
peptide sequence TK9 was tested (Lu et al. 2003). Dynamic 
light scattering (DLS), circular dichroism (CD) and ThT 
assay studies showed that proper β-sheet type spectral sig-
nature was seen after about 15 days of incubation, hence-
forth indicative of the fact that amyloidogenic propensity 
increases with time in E-protein (Ghosh et al. 2015; Law-
rence et al. 1995). Another study determined that the prob-
able mechanism behind the self-assembling nature of TK9 is 

that due to increase in hydrophobic and aromatic residues in 
the environment, hydrophobic bonding as well as π − π inter-
actions increases between the amyloid aggregation-prone 
motifs of peptidemers which result in steady transition to 
cross β-sheet nature by self-assembly, resulting in the for-
mation of amyloids. Moreover these motifs can easily bind 
with other amyloid prone proteins in the host and result in 
acceleration of amyloidogenesis of those proteins leading to 
some peculiar morbidity (Lopez de la Paz and Serrano 2004; 
Minor and Kim 1994).

Amyloidogenesis in human‑host proteins 
as a result of COVID‑19

COVID-19, though being a respiratory system infection, 
has a plethora of other symptoms which spread almost to 
every other system in the body ranging from neurological/
sensory problems like loss of taste and smell, fatigue; gastro-
intestinal problems like nausea, diarrhea; urinary problems 
like kidney failure, septic shock; microcirculatory problems 
like microangiopathy besides the severe respiratory compli-
cations like pneumonia, chest congestion, etc. Along with 
this, immunogenic activation leading to cytokine storm has 
a critical effect on weak organs of our body leading to multi-
organ failure and even death (Zeng et al. 2020; Connors 
and Levy 2020; Coperchini et al. 2020; Rodriguez-Morales 
et al. 2020). There are already many existing amyloidogenic 
diseases in our body which include both neuropathy and 
cardiomyopathy and based on the previous findings of amy-
loidogenicity in SARS-CoV-2 protein and proof of corona-
virus proteins accelerating the amyloidogenesis of neurode-
generative protein αS responsible for Parkinson’s Disease 
(discussed above), it was thought of whether SARS-CoV-2 

Fig. 2  Aggregation of αS in the absence and presence of SARS-
CoV-2 proteins. a Aggregation assay of αS in the absence (black) and 
presence (color) of S-protein. The aggregation process is followed 
by recording the fluorescence of the amyloid-binding dye ThT. The 
assay was performed at a NaCl concentration of 10 mM with 50 μM 
αS and 0.1  μM (red), 0.5  μM (orange), and 1  μM (blue) S-protein. 
b ThT-based aggregation assay of αS in the presence of N-protein. 
The assay was performed at a salt concentration of 10 mM NaCl with 

50 μM αS and 0 μM (black) 0.1 μM (red), 0.5 μM (orange), 0.8 μM 
(green) and 1 μM (blue) N-protein. c Influence of the salt concentra-
tion on aggregation lag time for N-protein concentrations of 0.5 μM 
(orange), 0.8 μM (green) and 1 μM (blue) at an αS concentration of 
50 μM. The points represent the mean of three independent measure-
ments, and error bars show the standard deviation. Figure taken with 
permission from Ref. (Semerdzhiev et al. 2022)
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proteins can affect or aggravate the amyloidogenesis of the 
other pre-existing amyloidogenic proteins in our body or 
not (Li et al. 2021). Studies were conducted which yielded 
many positive results, some of which are discussed in Fig. 3.

Amyloidogenesis in COVID‑induced ARDS

Acute Respiratory Distress Syndrome (ARDS) is the con-
dition in which fluid gets filled in the air sacs of the lungs, 
called alveoli, depriving organs of oxygen which is detected 
in about 20–67% of hospital-admitted COVID patients 
(Grasselli et al. 2020; Said et al. 2013). Owing to the fact 
that lung inflammation in many cases can lead to pulmo-
nary as well as non-pulmonary amyloidosis like systemic 
amyloidosis in pulmonary tuberculosis patients due to SP-C 
peptide amyloidogenesis. Besides, other conditions like 
cystic fibrosis, pulmonary sarcoidosis, rheumatic diseases, 
etc., are prominently related with amyloid A (AA) amyloi-
dosis (Gustafsson et al. 1999; Brunger et al. 2020; Obici and 
Merlini 2012). All these prior findings led to the assump-
tion of a probable link of amyloidogenesis as the molecu-
lar mechanism behind COVID-19 induced ARDS. Though 
not yet proved, there are many hypothetical pathways that 

are thought to lead to amyloidogenesis in COVID-induced 
ARDS, as depicted in Fig. 4. These include over-expression 
of the enzyme elastase in the plasma which may lead to 
excessive digestion of elastin proteins in the cell, that may 
result in formation of amyloidogenic peptides gradually 
post-COVID infection, overexpression of serum amyloid 
A (SAA) due to pulmonary inflammation during COVID 
and subsequent overexpression of matrix metalloprotease 
enzymes like MMP-3 which can cleave SAA and result in 
production of amyloidogenic proteins which may cause non-
pulmonary amyloidosis, secondary infection post-COVID 
owing to compromised immunity by pathogens like Kleb-
siella pneumoniae and Escherichia coli which may lead to 
the release of lipopolysaccharide-like factors which may 
induce ARDS due to AA (amyloid-A) amyloidosis, that can 
severely affect the renal functions in our body (Zahid et al. 
2020; Lundmark et al. 2002; Bochicchio et al. 2013). Apart 
from these reduced redox-homeostasis in lungs post-COVID 
due to increase in oxidative stress in the pulmonary environ-
ment that pertubes the metastable lung surfactant proteins 
like SP-C resulting in their amyloidogenesis, further signi-
fying the chances of amyloidosis in ARDS patients (Dluhy 
et al. 2003; Johansson 2001). Due to the above mentioned 

Fig. 3  Graphical representation of effect of SARS-CoV-2 on pre-
existing Amyloidogenic entities in our body; A Fluid-filled alveoli 
(left) of ARDS affected patient when comes under effect pf COVID-
19 results in increased propensity of amyloidosis; B Downregulation 
of ACE-2 and upregulation of S-protein in lungs post-COVID infec-
tion leads to formation of amyloidic microclots in pulmonary vascu-

lature; C Native serum amyloid-A hexamer undergoes several path-
ways in presence of nine-residue segment of E-protein called SK9 
and ultimately leads to amyloid fibril formation; All these results 
finally culminates into one outcome, i.e., aggravation of COVID-like 
symptoms and severity of co-morbidities
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pathways, the initial amyloids formed may not have such 
adverse effects in our body but can act as amyloid-enhancing 
factors which may cause severe amyloidosis in future and 
result in onset of various amyloidogenic diseases.

Amyloidogenic microclot formation

Hypercoagulation or microclot formation in the lungs of 
SARS-CoV-2 infected patients is a common pathology. 
Since, SARS-CoV-2 achieves host-entry by docking its 
S-protein with the ACE-2 receptor of the host, the role of 
both the participants were studied in microclot formation in 
patients. Angiotensin helps in anti-thrombosis of the plate-
let, thereby decreasing clot formation in blood, which is cat-
alyzed by ACE-2 enzyme. Due to COVID, downregulation 
of ACE-2 receptors is noticed which results in microthrom-
bosis of blood in the pulmonary environment (Fraga-Silva 
et al. 2008; Verdecchia et al. 2020). Furthermore, it was seen 
that, patients with pre-existing cardiac amyloidosis had an 
increased rate of microclot formation in their lungs when 
compared with the ones without cardiac amyloidosis; sug-
gesting that these set of patients are coming under high-risk 
radar of added morbidities post-COVID infection (Menter 
et al. 2020; Hanley et al. 2020; Ng et al. 2016). Now, while 

analyzing the role of S-protein, it must be known beforehand 
that SARS-CoV-2 can shed the spike protein cover which 
can circulate to different systems of our body, including the 
urinary and nervous system, crossing the blood–brain bar-
rier (George et al. 2021; Rhea et al. 2021; Bleu et al. 2015). 
Healthy platelet-poor plasma (PPP) was tested with and 
without the addition of S-protein; mass spectrometry, SEM, 
fluorescence microscopy analysis showed the emergence of 
dense amyloid structures, resistant to trypsin digestion lead-
ing to the formation of microclots, impairing steady blood 
flow (Grobbelaar et al. 2021; Erickson and Banks 2018). 
Thus, it was seen that presence of prior cardiac amyloi-
dosis accelerated microclot formation due to the onset of 
COVID-19 as well as the interaction of S-protein with plate-
lets resulting in amyloid-prone aggregate formation in the 
pulmonary vasculature post-infection.

Amyloidogenesis in serum amyloid‑A protein

Serum amyloid A is such a protein which leads to deposition 
of amyloid fibrils during the course of many inflammatory 
diseases like cancer leading to the inflammation, hyperco-
agulation/thrombosis and also multi-organ damage in many 
cases. In COVID-19 patients, SAA related amyloidosis like 

Fig. 4  The possible pathways of amyloid formation in severe acute respiratory syndrome coronavirus-2/coronavirus disease-2019 (SARS-
CoV-2/ COVID-19)-induced acute respiratory distress syndrome (ARDS). Figure taken with permission from Ref. (Sinha and Thakur 2021)



 3 Biotech (2022) 12:322

1 3

322 Page 8 of 13

kidney failure and thrombosis is quite common which led 
to the hypothesis of any direct interaction between SARS-
CoV-2 protein and SAA, that may cause long-term risk in 
COVID survivors in near future like multisystem inflam-
matory syndrome in children as well as adults (MIS-C and 
MIS-A, respectively) (Hanff et al. 2020; Fabrizi et al. 2020; 
Morris et al. 2020; Yeung et al. 2016). Molecular simula-
tion studies proved the effect of 9-residue segment known as 
SK9 of the E-protein leads to the increased amyloidogenic 
propensity of SAA. This is guided by mainly three mecha-
nisms: firstly, SK9 binding with whole SAA protein can 
decrease the stability of native SAA hexamer which results 
in formation of amyloidogenic monomers; secondly, SK9 
can bind with the fragmented SAA and result in formation 
of amyloid-prone form of SAA; finally, SK9 can stabilize 
SAA fibrils making them more aggregation prone and resist-
ant to proteolysis (Jana et al. 2021; Zhou et al. 2014; Woo 
et al. 2007).

Discussion and future prospective

COVID-19, though being primarily a pulmonary viral infec-
tion, has several other pathogenesis linked with it like acute 
respiratory distress syndrome (ARDS) that can result in sys-
temic AA amyloidosis, cytokine storm, heart damage, kid-
ney damage, neurological problems, disturbances in blood 
flow, etc., (Huang et al. 2021; Lipcsey et al. 2021; Gao et al. 
2021; Sinha and Thakur 2021; Sen et al. 2016). Apart from 
this, hypercoagulation of blood and impaired fibrinolysis 
have been reported in COVID-19 recovered patients, pro-
posing a link of amyloidogenesis in different proteins of 
SARS-CoV-2 resulting in amyloidogenic disease-specific 
symptoms and manifestations in COVID-19 (Grobbelaar 
et al. 2021). The two most abundant proteins in COVID-
19 infected human cells are the N-protein and S-protein of 
SARS-CoV-2. S-proteins present the primary contact protein 
between the host and the virus along with being the host-
entry point, whereas N-protein is more conserved and stable 
in the individuals affected than S-protein. Besides, both the 
proteins have been extensively used as the main antigen for 
various vaccine productions against SARS-CoV-2.

S-protein amyloidogenesis was tested, and it was proven 
that endoproteolysis induced by immune-responsive pro-
teases like neutrophil esterase (NE) can nick S-protein at 
multiple sites and promote amyloid fibril formations; seg-
ment 192–212 being the most accurate and pathologically 
important. Other proteases can also result in such fragmen-
tation followed by amyloidogenesis, but what was proved 
with NE digestion of S-protein provides the basic mecha-
nism of what might be the case for other enzymes as well. 
Segment 192–212 in S-protein is that potent segment which 
is highly amyloidogenic and may result in amyloidosis in the 

near future after COVID-infection and also after vaccina-
tion (Laudicella et al. 2021; de Jong et al. 2006). Next, both 
S-protein and N-protein were tested against αS protein, amy-
loidosis of which results in development of Parkinson's Dis-
ease (PD), to develop a molecular link between COVID-19 
and the onset of Parkinsonism, especially in younger patients 
post-recovery. S-protein showed no role in enhancement of 
αS aggregation but N-protein, on the other hand, not only 
enhanced the aggregation but also resulted in production 
of more homogenized and stable fibrillar morphology, dis-
turbing the endogenous αS proteastasis in the cell which 
hampers normal cellular functions and causes Parkinsonism. 
Therefore, overlapping mechanisms between different path-
ways of amyloidogenesis in cell and that of ARDS induced 
cellular machinery, led to the hypothesis of a link between 
COVID-induced ARDS and amyloidogenesis. Though not 
molecularly proven, several pathways are present which can 
lead to amyloidogenesis of different critical proteins like 
systemic AA, lung surfactant proteins like SP-C, elastin, 
that may initially cause minute amyloidosis, but in near 
future can result in production of amyloid-enhancing fac-
tors causing severe amyloidogenesis in critical proteins like 
Transthyretin (TTR) (Thomas et al. 2021; Smith et al. 1979; 
Koike and Katsuno 2020; Driggin et al. 2020).

At present, worldwide 97 COVID vaccines are in the 
pipeline, 37 vaccines have been approved/authorized and 
being used all over the world (Craven 2022; Jeyanathan 
et al. 2020; Flaxman et al. 2020). Most of the authorized 
and developing vaccines use either S-protein or N-protein 
of SARS-CoV-2 as the main antigen, which means apart 
from the viral infection, we are being medically incorporated 
with the amyloidogenic viral proteins in the ever-increasing 
doses of vaccination. Thus, it is of utmost importance to 
study the side-effects of vaccination using the amyloidogenic 
viral proteins, as being done in the case of SARS-CoV-2 
to prevent the onset of amyloidosis related cardiopathy and 
neuropathy including neurodegenerative diseases like Alz-
heimer's disease and Parkinson's disease; seeds of which are 
being borne in our system from a young age due to COVID-
related amyloidogenesis. Summarized data on the amyloi-
dogenic proteins of COVID-19, their mechanism of action 
and future implications is provided on Table 2.

Conclusion

COVID-19 has been the greatest bane to our existence in 
recent times and teamed up with the age-old machinery of 
amyloidogenesis, it is resulting in aggravated complica-
tions and morbidities in critical amyloidogenic diseases like 
ATTR (transthyretin amyloidosis). S-protein and N-protein 
amyloidogenesis, resulting due to endoproteolysis and pro-
teastasis of cellular αS protein, respectively, may lead to 
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aggregation and amyloid formation that can cause neuro-
degenerative and other amyloidogenic cardiac and neural 
complications in future. Along with this, the side effects of 
COVID-19 vaccination using these very proteins as their 
main antigen needs to be studied properly to prevent the 
onset of amyloidogenesis related pathological conditions in 
individuals post SARS-CoV-2 infection, and aggravation of 
common morbidities between COVID-19 and critical amy-
loidogenic diseases like ATTR.
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