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There is an urgent need for new therapeutic strategies to contain the spread of the novel
coronavirus disease 2019 (COVID-19) and to curtail its most severe complications.
Severely ill patients experience pathologic manifestations of acute respiratory distress
syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of
multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19.
Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-
19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who
recover, experience impaired cognition or physical disability. In this review, we argue
the need to develop therapies aimed at inhibiting neutrophil recruitment, activation,
degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest
that currently available pharmacologic approaches should be tested as treatments for
ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds
promise to alleviate progressive pathologic complications of ARDS and reduce
morbidities and mortalities in severely ill patients with COVID-19.

Keywords: COVID-19, SARS-CoV-2, acute respiratory distress syndrome, neutrophils, neutrophilia, neutrophil
extracellular traps, pathogenesis, therapeutics
INTRODUCTION

The recent coronavirus disease 2019 (COVID-19) pandemic that started in Hubei Province of
China has spread rapidly around the world (Wu J. et al., 2020; Zhu et al., 2020). Although COVID-
19 related deaths were mainly reported in China until mid-February 2020, by late March, the virus
spread globally with sharp increases in fatal infections in most countries especially Iran, Italy, South
Korea, Spain, and USA (Hoseinpour Dehkordi et al., 2020). As of May 22, 2020, WHO has
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documented about five million COVID-19 cases and over
330,000 deaths worldwide, with an estimated case fatality rate
of over 6.5% (W.H.O. Rolling Updates on COVID-19). COVID-
19 is caused by SARS-coronavirus-2 (SARS-CoV-2), which
belongs to the coronavirus family and is related to severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) viruses. Structurally, SARS-CoV-2 is an
enveloped virus with a positive-sense single-stranded RNA
genome (Lu et al., 2020). The spike proteins on the virion
surface are responsible for engaging the angiotensin converting
enzyme 2 (ACE2) receptor for entry into susceptible host cells;
the initial infection predominantly targets epithelial cells of lungs
and pharynx (Zhang H. et al., 2020). Aerosolized droplets are
thought to be the primary viral transmission mode, (van
Doremalen et al., 2020) and asymptomatic carriers are a
significant source of community spread (Zhang J. et al., 2020).
There are currently no vaccines nor antiviral drugs available for
routine use to prevent and treat COVID-19. Rapidly, clinical
trials have been initiated, but effective vaccines and drugs will
likely take many months to reach the global market.

Current NIH treatment guidelines recommend the use of
remdesivir in the treatment of patients with severe COVID-19
and advise against the use of HIV protease inhibitors lopinavir
and ritonavir (COVID-19 Treatment Guidelines Panel).
Secondary infections are treated with combinations of
antibiotics, and glucocorticoids may be recommended, based
on the clinical condition of the patients, if assisted ventilation is
required (Wang et al., 2020; Wu C. et al., 2020). At the current
magnitude of contagious infections and associated deaths caused
by COVID-19, there is urgency to employ additional strategies
and treatment options to reduce fatalities. To design novel
treatments, a better understanding of COVID-19 pathogenesis
is essential, especially as it pertains to crucial host-pathogen
interactions. Given that serum levels of the proinflammatory
cytokine IL-6 are significantly elevated in patients with severe
COVID-19, clinical trials have been initiated to evaluate
antibodies that block IL-6 or IL-6 receptor such as tocilizumab
(Actemra, Roche; currently in 35 Clinical Trials, e.g.,
NCT04317092) and sarilumab (Kevzara, Regeneron; currently
in 12 Clinical Trials, e.g., NCT04315298). Although initial results
appear encouraging (Xu X. et al., 2020), there remains a need for
other strategies, particularly for cell-targeted approaches.
Neutrophilia Is Associated With Fatal
COVID-19 Infections
Patients with COVID-19 develop clinical manifestations of high
fever, cough, myalgia, dyspnea, and pneumonia. Significant
numbers of hospitalized patients with respiratory symptoms
eventually develop severe to critical illness with progressive
clinical manifestations of acute respiratory distress syndrome
(ARDS) before succumbing to infection (Chen et al., 2020; Huang
et al., 2020; Pan et al., 2020; Zhou et al., 2020). In addition to direct
virus-inflicted pathologies, exaggerated immune responses
resulting in a “cytokine storm” contribute to disease severity in
subgroups of patients with advanced disease (Chen et al., 2020;
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Huang et al., 2020; Mehta et al., 2020; World Health Organization;
Zhou et al., 2020).

The most significant clinical finding in patients who require
management in the intensive care (ICU) is fulminant
neutrophilia (Huang et al., 2020; Zhou et al., 2020). Patients
with COVID-19, who were admitted to the ICU, had greatly
increased blood neutrophil counts as compared to other SARS-
CoV2-positive patients with less severe symptoms (Huang et al.,
2020). The neutrophil counts increase in parallel with severity of
disease, indicating that an elevated neutrophil-lymphocyte ratio
could be an early prognostic marker in COVID-19 infections
(Gong et al., 2020; Zhang B. et al., 2020). Yang et al. (2020).
found that critically ill patients develop high neutrophilia before
succumbing to infection, thus confirming the association
between excessive neutrophil loads and acute lung pathology in
fatal COVID-19.

Histopathology of lung biopsies and autopsy specimens
demonstrated that patients infected with SARS-CoV-2 develop
manifestations of ARDS with abundant pathologic lesions,
including prominent bronchopneumonia and peribronchial
cuffing with neutrophils and histocytes, denuded alveolar
epithelium, widespread hemorrhagic effusions, fibrin
deposition, and protein exudates that fill alveolar air sacs.
Interestingly, abnormal tissue remodeling with proliferating
epithelium are also observed in COVID-19 infected patients
(Barnes et al., 2020; Barton et al., 2020; Zhang H. et al., 2020)
ARDS has previously been identified in acute respiratory
infections with SARS and MERS and, notably, in patients with
severe influenza (Lew et al., 2003; Kim et al., 2016; Huang et al.,
2018). Indeed, enhanced neutrophilia has been directly
correlated with disease severity in influenza-infected patients
(Ishigaki et al., 2011). Increased serum levels of neutrophil
enzymes serve as markers for poor prognosis in patients with
severe influenza pneumonia (Zhu et al., 2018). Moreover,
pathway analysis of the blood transcriptome identified a
“neutrophil-dominated” immune response that clearly and
unambiguously connects severe influenza that requires ICU
admission to the activation of circulating neutrophils in this
disease (Dunning et al., 2018; Tang et al., 2019). An initial
analysis of COVID-19-derived bronchoalveolar lavage (BAL)
and peripheral blood mononuclear cell (PBMC) RNA
transcriptomes has recently been reported (Xiong et al., 2020),
but there remains urgent need to carry out additional
transcriptomics analyses in patients with COVID-19.

A ground-breaking study on neutrophil activation products
in sera from patients with severe COVID-19 places neutrophils
at the center of ARDS pathogenesis (Zuo et al., 2020).
Neutrophils were traditionally viewed as short-lived and
terminally differentiated innate immune cells that function as
primary responders against infection or injury. More recent
molecular analyses have uncovered an astounding degree of
neutrophil heterogeneity and plasticity that are most vividly
displayed during infections, in autoimmunity, or in oncology
(Silvestre-Roig et al., 2016). In response to myriad external
stimuli, neutrophils release potent enzymes such as neutrophil
elastase (NE) and myeloperoxidase (MPO) from cytoplasmic
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granules (Borregaard et al., 2007). Although neutrophils
contribute to host immunity, excessive recruitment of
neutrophils and their release of granule components along
with nuclear chromatin, or neutrophil extracellular traps
(NETs), (Brinkmann et al., 2004) aggravate tissue injury and
may lead to death in several disease conditions (Xu et al., 2009;
Abrams et al., 2013; Sivanandham et al., 2018). NETs lead to a
dispersal of toxic molecules: histones and granule proteins such as
MPO, NE, and proteinase 3 (Narasaraju et al., 2011; Ashar et al.,
2018; Zhu et al., 2018), and, importantly, NETs strongly stimulate
the production of pro-inflammatory cytokines (Muller and Radic,
2016). Released NETs can disrupt alveolar epithelium and
endothelium, and also degrade the thin alveolar basement
membrane, culminating in epithelial necrosis, denudation of
epithelial lining, vascular damage, pulmonary edema, and
hemorrhage in lethal influenza-infected mice (Narasaraju et al.,
2011; Ashar et al., 2018; Zhu et al., 2018). In addition, at high
neutrophil densities, NETs tend to form large aggregates that can be
a significant source of enzymatic activities (Schauer et al., 2014),
which may accelerate the formation of thrombi in blood vessels
during an infection (Boeltz et al., 2017). In COVID-19 pathogenesis,
lung infection may accelerate local thromboembolic events, for
which neutrophil activity may contribute an essential component
(Ciceri et al., 2020; Klok et al., 2020).

Accordingly, in severe COVID-19, greater neutrophilia may
drive elevated pulmonary influx of neutrophils and stimulate
excessive NET release, which can exacerbate alveolar-capillary
damage and lead to pathologic manifestation of ARDS
(Figure 1). The released NET chromatin, containing large
amounts of extracellular histones, can disrupt epithelial lining
and induce platelet aggregation leading to pulmonary vascular
thrombosis. Over time, the accumulated cellular debris may
precipitate inflammation and magnify the cytokine storm
(Pedersen and Ho, 2020). This scenario is consistent with the
Frontiers in Pharmacology | www.frontiersin.org 3
detection of elevated NET breakdown products in the sera of
severely ill patients with COVID-19 (Zuo et al., 2020). Clearly,
detailed analyses of BAL for indicators of neutrophil activation
and NET release are urgently needed to determine if neutrophilic
influx, and NETosis are important drivers of progressive
pulmonary pathology in the most severe cases of COVID-19.

A note of caution must be included with this synopsis.
Current emergency treatments for patients with severe
complications of COVID-19 usually require the use of external
lung ventilator devices. However, the use of ventilators may
present its own peril. Notably, NET markers are increased in
alveolar spaces of patients with ventilator-associated pneumonia
(VAP) (Mikacenic et al., 2018) and NETs can be detected in
mouse models of mechanical ventilation (Yildiz et al., 2015; Li
et al., 2017). Thus, the use of mechanical respirators for severe
COVID-19 infections may need monitoring according to
neutrophil counts at the beginning and throughout assisted
respiration. Conversely, lessons learned during this pandemic
health emergency will hopefully inform future applications of
this technology in critically ill patients.

Targeting Neutrophils and NET-Associated
Lung Injury in Patients With Severe
COVID-19
Administration of drugs that prevent neutrophil recruitment and
activity may effectively attenuate the pathologic complications of
alveolitis and vascular injury in patients with COVID-19
(Figure 1), and initial results of several treatment strategies
have been reported (COVID-19 Treatment Guidelines Panel).
One early randomized clinical trial was the infusion of vitamin C
in patients with COVID-19, based on the hypothesis that vitamin
C suppresses neutrophil influx, activation, and NET-associated
alveolar-capillary damage (Peng, NCT04264533). Although
vitamin C exhibits anti-oxidant function, its effect on reducing
FIGURE 1 | Possible mechanisms of neutrophilia and NETopathy in alveolar-capillary damage affecting lungs in severe COVID-19. Pharmacological agents that may
find applications in progressive lung pathology are indicated in the green boxes and discussed in the text.
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neutrophil activity and NETs-mediated pathologies in vivo may
be limited. In contrast, small molecules and peptides may reduce
NET release in important ways. This is the case of the therapeutic
peptide P140, which has been tested in clinical trials (Zimmer
et al., 2013) and prevents NET release in vitro (Bendorius et al.,
2018). This peptide regulates chaperone-mediated autophagy
and macroautophagy (Macri et al., 2015), thereby reducing
excessive inflammation that is a prominent feature in patients
with autoimmune disorders. The effect of P140 on the neutrophil
influx in the bronchoalveolar space requires specific attention.

Inhibitors of Neutrophil Migration and
Activation
Neutrophil influx into the lung parenchyma requires
chemoattraction, binding to endothelial receptors, signaling,
and transmigration. These steps are the focus of many in vivo
and in vitro studies, and pharmacological inhibitors are available
to address these separate stages of neutrophil migration and
activation. An important chemokine in infection and
inflammation is CXCL-8/IL-8. Binding of IL-8 to CXCR2 on
neutrophils activates neutrophils and leads to NET release
(Tatsiy and McDonald, 2018). Interestingly, a wide range of
CXCR2 chemokine receptor agonists induce NETs in vivo
(Teijeira et al., 2020). Therefore, targeted inhibition of
neutrophil activation and NET release may be accomplished
using antagonists of the neutrophil chemokine receptor CXCR2.

Small molecule CXCR2 antagonists have been extensively
tested in clinical trials for asthma, chronic obstructive pulmonary
disease (COPD) and influenza. AZD5069 (AstraZeneca) is a
selective CXCR2 antagonist that has been tested for safety and
efficacy in pre-clinical and clinical studies of COPD and asthma
(O'Byrne et al., 2016; Pedersen et al., 2018). AZD5069 was able to
block neutrophil trafficking while preserving neutrophil-
mediated host immunity (Jurcevic et al., 2015; Uddin et al.,
2017). The administration of AZD5069 reduced NETopathic
inflammation of sputum neutrophils from patients with COPD
(Pedersen et al., 2018; Uddin et al., 2019). Similarly, the CXCR2
inhibitor Danirixin (GlaxoSmithKline) has been tested in phase 2
clinical trials in patients with COPD and influenza, where it
reduced neutrophilia (Madan et al., 2019; Roberts et al., 2019). A
third CXCR2 antagonist, SCH527123 (Merck), inhibited lung
neutrophil influx in asthma patients, and decreased neutrophilia
in healthy humans exposed to toxic levels of ozone (Holz et al.,
2010; Nair et al., 2012). Although these selective CXCR2
antagonists decreased neutrophilia in chronic respiratory
diseases, their efficacy in COVID-19 and other acute lung
infections needs to be urgently tested.

Chemokine signals induce neutrophil attachment to
endothelia by activating integrin adhesion receptors and
enhancing integrin binding to the actin cytoskeleton, which are
mediated by PI3 kinase (Yago et al., 2018). The dual inhibitor of
the delta and gamma subunits of PI3 kinase, AZD8154, which is
currently in a phase I trial for asthma (Clinical Trials,
NCT04187508), inhibits the initial step in neutrophil
extravasation and thus may offer therapeutic benefit in lung
pathology associated with severe COVID-19.
Frontiers in Pharmacology | www.frontiersin.org 4
Inhibitors of Neutrophil Proteases
A distinct class of drugs that may potentially ameliorate
alveolitis in COVID-19 are neutrophil protease inhibitors.
Histopathologic examination of lung tissues from deceased
patients with COVID-19 reveals interstitial fibrosis, chronic
inflammation, and formation of intra-alveolar fibrous plugs
(Xu Z. et al., 2020). These findings indicate possible abnormal
lung remodeling and degeneration due to augmented neutrophil-
derived protease activity. NE is a protease capable of degrading
multiple protein targets, including extracellular matrix proteins
such as elastin, collagen and fibronectin, which are abundant
proteins of the alveolar basement membrane. NE inhibitors, e.g.,
sivelestat sodium (ONO Pharmaceuticals), have been evaluated
in clinical trials in patients with COPD (Hayakawa et al., 2010;
Morjaria et al., 2010), and in acute lung injury patients
(Yoshikawa et al., 2010). The use of sivelestat together with
oseltamivir effectively reduced lung injury in a patient infected
with the 2009 pandemic swine-influenza virus (Yokoyama et al.,
2010). Other NE inhibitors, such as AZD9668 (AstraZeneca) and
BAY-678 (Bayer), have undergone clinical trials for the
treatment of COPD (Gunawardena et al., 2013; von Nussbaum
et al., 2015), and thus may provide potential alternative therapies
to prevent alveolar-capillary damage in patients with COVID-19.
Interestingly, the enzymatic activity of NE is quenched by
binding to NETs (Podolska et al., 2019).

Inhibitors of Peptidylarginine Deiminase IV
More direct inhibitors of NET release target peptidylarginine
deiminase IV (PAD4). This enzyme converts arginine to
citrulline in cellular substrates, including core histones, which
promotes chromatin unwinding and NET release (Neeli et al.,
2008). PAD4 inhibitors, including Cl-amidine, YW-56, and
GSK484, have shown efficacy in NET-mediated pathologies,
including in animal models of thrombosis associated with
myeloproliferative neoplasms (Wolach et al., 2018), lethal lung
endotoxemia (Liang et al., 2018), and cellular damage due to
hypoxia (Lange et al., 2014). Administration of these inhibitors,
either systemically or directly into the lungs, may benefit from
the simultaneous dispersal of NETs. Clearly, clinical trials to
assess the use of neutrophil recruitment blockers, protease
inhibitors or NETosis suppressors in the management of
severely ill patients with COVID-19 should be considered as
potential therapeutic strategies to reduce the progressive lung
pathology and its possible fatal outcome.

Recombinant DNase-1
A currently available therapeutic that degrades DNA and
dissolves NETs is recombinant DNase (Pulmozyme,
Genentech), which may allow better penetration of co-
administered compounds into affected lungs (Cortjens et al.,
2018). However, circulating DNase-1-generated NET
degradation products still possess pro-inflammatory
capabilities as well as protease activity (Schauer et al., 2014).
This bears the risk of spreading inflammation and enlarging the
areas of tissue damage. It stands to reason that the effect of
June 2020 | Volume 11 | Article 870
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recombinant DNase on thrombo-inflammation in COVID-19
will require further studies.

b-Blockers
Selective inhibition of adrenergic signaling by the b1-blocker
metoprolol in patients with myocardial infarction causes
“stunning” of neutrophils and reduces the infarct size (Garcıá-
Prieto et al., 2017). In addition to its effect on cardiomyocytes,
metoprolol inhibits neutrophil migration. It acts early in the process
of neutrophil recruitment by reducing the engagement of activated
circulating platelets and thus ameliorates inflammation (Garcıá-
Prieto et al., 2017). Interestingly, metoprolol also inhibits the NET-
mediated pathology in the gall bladder (Munoz et al., 2019).

Additional Immunopathologic
Complications May Contribute to Severe
COVID-19
Clinical reports document that about one infive SARS patients suffer
complications of bronchopneumonia, with superinfection by
bacterial and other pathogens (Ng et al., 2006). Hence, it is likely
that a substantial fraction of patients with severe COVID-19
(including those with pneumonia arising from assisted ventilation)
experience secondary bacterial pneumonia associated with excessive
neutrophil infiltration and NETs within infected lung tissues.

Remarkably, an increase in fibrin degradation products (D-
dimers) has been linked to fatal COVID-19 infections (Gong et al.,
2020; Wang et al., 2020). Increased coagulation due to elevated D-
dimers may instigate occlusion of small blood vessels in
pulmonary vasculature that leads to ischemia, vascular injury,
and hemorrhagic effusions in critically ill patients. Widespread
pulmonary vascular thrombosis has also been documented in
severe influenza, including during the 1918 Spanish flu and the
2009 swine-flu pandemics, especially in autopsy findings
(LeCount, 1919; Walters et al., 2016). This type of pathology
may also be attributed to secondary bacterial pneumonia (Morens
et al., 2008; Rudd et al., 2016). Studies reveal that extracellular
histones released fromNETs lead to alveolar-capillary damage and
potentially mediate platelet activation, aggregation, and
development of vascular thrombosis (Xu et al., 2009; Abrams
et al., 2013; Ashar et al., 2018). Platelet activation may stimulate
further NET release, thus engendering a vicious cycle (Maugeri
et al., 2014). Interestingly, increased fibrinogen degradation
products (FDP), indicators of heightened thrombotic status, are
also observed in animal models of influenza, where the use of anti-
histone antibodies could suppress alveolitis and vascular
thrombosis (Ashar et al., 2018). Furthermore, in conditions of
murine neutrophilia, intravascular formation and aggregation of
NETs may form thrombi that are often fatal, especially in the
context of low activities of the serum-borne DNase-1 and DNase-
1L3 (Jiménez-Alcázar et al., 2017).

Highly notable pathologic features common to COVID-19,
SARS, and secondary bacterial pneumonia are the prominent
proteinaceous exudates in alveolar spaces, i.e., pulmonary edema
that contributes to ARDS. These are attributed to increased
vascular permeability associated with severe inflammation,
which may be a direct effect of neutrophil extravasation.
Frontiers in Pharmacology | www.frontiersin.org 5
Neutrophils exit the vasculature and reach the alveolar spaces
by disrupting tight junctions between endothelial cells through
the action of proteinase 3 (Kuckleburg et al., 2012). Under
extreme conditions, stress on the endothelial junctions may
result in fluid leakage into the lungs.

Future Therapeutic Choices
A better understanding of COVID-19 immunopathology is critical
to develop novel therapeutic interventions. A recent
histopathologic analysis of the lung biopsy of a COVID-19
patient identified diffuse alveolar damage, necrotic epithelium,
epithelial denudation, with large numbers of epithelial cells in the
alveolar air space (Zhang H. et al., 2020). Temporal changes in
inflammatory cytokine responses in BAL may identify factors that
contribute to pathogenic changes in ARDS and uniquely
distinguish critically ill patients. Analysis of BAL for increased
levels of NE, matrix metalloproteinases (MMPs), and the
accumulation of deiminated histones could become essential
diagnostic tools to rapidly assess different target strategies to
attenuate pathogenic progression in ICU patients with severe
pulmonary complications. It is important to point out that lung
function may be compromised by various other etiologies or their
complications, as it is unlikely that a single pathogenic mechanism
operates in all affected patients. In particular, any intervention
designed to inhibit neutrophil functions must be weighed carefully
against the fact that adequate innate immunity is required in any
infectious disease, especially COVID-19, where a secondary
bacterial or fungal infection may arise during prolonged
intubation. Nevertheless, greater attention on neutrophils may
help lessen the burden of COVID-19 in the severely ill.
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